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e New nonlinear solutions of the old wave equation

e Accelerating self-modulated nonlinear waves in magnetized plasmas
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e Can we surf a gravitational wave?
e Amplification of electromagnetic plasma waves due to gravitational wave

e Amplification of electromagnetic plasma waves due to cosmological gravitational waves
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e Interacting quantum and classical waves: Resonant and non-resonant energy transfer to electrons immersed in an intense
electromagnetic wave.

e Statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave.




RESONANCE OF QUANTUM AND
RELATIVISTIC QUANTUM ELECTRONS
WITH INTENSE EM WAVES

Asenjo & Mahajan, Phys. Plasmas 29, 022107 (2022)




We develop a systematic theory of energy exchange between a quantum and
a classical wave, demonstrating when the energy transfer may be efficient.

We concentrate on investigating the dynamics of the quantum and relativistic
electron wave (EW) in the field of a classical circularly polarized
electromagnetic (CPEM) wave (with and without an ambient magnetic field).

These calculations are stimulated by the recent experimental work in photon-
induced near-field electron microscopy (PINEM), demonstrating the resonant
phase-matching exchange between photons and electrons.



CPEM wave

For analytic simplicity, the EM wave is assumed to be circularly
polarized (CPEM). The contravariant components of electromagnetic
four potential A* of a CPEM wave propagating in the z-direction are
(the Minkowski signature tensor n* = diag[1, —1, —1, —1])

A’ =0=A% A" =Acos(wt—kz), A’ = —Asin(ot—kz).
(1)

where A is its constant amplitude and the four-wave vector in the lab
frame is k* = [®,0,0,k|. Notice that k*A, = 0=k A, and the
Lorentz invariant A*A, = A* has no space time dependence;



Non-relativistic quantum electron: Schrodinger equation
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The second derivative is negligibly small for the NR electron
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Non-relativistic quantum electron gain energy because wave-wave interaction through
its perpendicular momentum (perpendicular to the EM propagation).



Non-relativistic quantum electron in external magnetic field
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the latter, now, contains the energy corresponding to the Landau level
[. To this order, the interference of the CPEM wave and the ambient

field does not appear.



Relativistic quantum electron: Klein-Gordon equation
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where u = K% + m* + qg*A* and 1 =2gAK, (A/u<1). Mathieu equation!
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APPLICATION: RESONANT ENERGIZATION OF PARTICLES BY
RADIO AGN, MAHAJAN & OSMANOYV (A&A, 2022)

They apply the essentials of this theory to the particular case of a plasma in the magnetospheres of a radio AGN
that emits copious EM energy in the radio frequency range

They found that the resonant mechanism is dominant
under the two most important impeding (cooling)
processes: (1) the inverse Compton (IC) scattering of the
charged particles with the ambient photon field, and (2)
synchrotron radiation when relatively strong magnetic
fields are present.

The energy increase with luminosity, up to several
hundreds to thousand ExaeV.
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NOW WE CAN CONSTRUCT A STATISTICAL MODEL
FOR RELATIVISTIC QUANTUM FLUIDS INTERACTING
WITH AN INTENSE ELECTROMAGNETIC WAVE

Mahajan & Asenjo, Physics of Plasmas 23, 056301 (2016).




At leading order for relativistic quantum electrons interacting with intense EM wave
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Flux tensor
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Now we are ready to construct the general energy-momentum
tensor for the Klein-Gordon fluid in the CPEM
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In the rest-frame, it is
reduced to the
previously calculated
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Lastly, Klein-Gordon current and closure with Maxwell’s equations

We can take the (o) R
microscopic particle O/ — M’ O2A 4?Tt?2” Ki()
current derived from jl> > . f — V%A, = — .' ! l —A
Klein-Gordon equation, gnrK,({) Ot MK>(C)
and averaging over <]J_> T MK (_,. Al
distribution function JVER2G
Yields the dispersion
relation with new
transparency effects
_ _ 2 A2 2 The most simple effects
(1) 2 rf - W / m= \/1+ q A /m of this relativistic
2 2 “p . =K | K quantum plasma in
- — ;{‘ — : th 2(4) 1(4/) intense EM waves is
l—f' l—,rh C=MIT propagation of waves at

lower frequencies in
plasma



CONCLUSIONS

Relativistic quantum particles can be energized by intense EM waves. A perpendicular
momentum is needed.

A plasma fluid theory, formed by relativistic quantum particles interacting with intense EM
waves, can be constructed.

The fluid plasma presents the nonlinear effects of its constituents, and it can be seen through
modifications to the dispersion relation of EM waves.

We can do something similar to Dirac electrons. In that case, the energy positive and negative
solutions, and spin up and down, couple to the EM field.
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