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Alternative Title

The Lively Art of Constructing Discrete Plasma Universes
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Computational Plasma Physics: Uniquely Challenging

Vast majority of plasma physics in contained in the Vlasov-Maxwell equations that
describe self-consistent evolution of distribution function f(x,v, t) and
electromagnetic fields:

ofs of;

) - (vF L (FR) = [ ==

8t+v (vfs) + V. - (Fsfs) (8t)c
where Fs = gs/ms(E + v x B). The EM fields are determined from Maxwell
equations

a—B+VXE=0

ot
vis dv®

OE *°
ewoa—v x B = —uozs:qs/

Theoretical and computational plasma physics consists of making
extensions/approximations and solving these equations in specific situations.
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Why is solving Vlasov-Maxwell equations hard?

Despite being the fundamental equation in plasma physics the VM
equations remain highly challenging to solve.

Highly nonlinear with the coupling between fields and particles via
currents and Lorentz force. Collisions can further complicate things



rrrL Gkeyll

Why is solving Vlasov-Maxwell equations hard?

Despite being the fundamental equation in plasma physics the VM
equations remain highly challenging to solve.
Highly nonlinear with the coupling between fields and particles via
currents and Lorentz force. Collisions can further complicate things

High dimensionality and multiple species with large mass ratios:
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Why is solving Vlasov-Maxwell equations hard?

Despite being the fundamental equation in plasma physics the VM
equations remain highly challenging to solve.

Highly nonlinear with the coupling between fields and particles via
currents and Lorentz force. Collisions can further complicate things

High dimensionality and multiple species with large mass ratios:
6D phase-space, me/mp, = 1/1836 and possibly dozens of species.

Enormous scales in the system: light speed and electron plasma
oscillations; cyclotron motion of electrons and ions; fluid-like
evolution on intermediate scales; resistive slow evolution of
near-equilibrium states; transport scale evolution in tokamak
discharges. 14 orders of magnitude of physics in these equations!



Goals and Outline

Goal of these lectures is to introduce modern concepts in
computational plasma physics, specially with a view towards
connecting continuous and discrete properties of the equations.
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Goals and Outline

Goal of these lectures is to introduce modern concepts in
computational plasma physics, specially with a view towards
connecting continuous and discrete properties of the equations.

Part 1: Physics that should be preserved in the discrete system.
Indirect properties and going beyond accuracy and order of
schemes.
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Goals and Outline

Goal of these lectures is to introduce modern concepts in
computational plasma physics, specially with a view towards
connecting continuous and discrete properties of the equations.
Part 1: Physics that should be preserved in the discrete system.
Indirect properties and going beyond accuracy and order of
schemes.
Part 2: Schemes for fluid and (gyro) kinetic equations. Mostly
focussed on Finite-Volume (FV) schemes for multi-fluid equations,
and advanced discontinuous Galerkin (DG) for (gyro) kinetic
equations.

Treat kinetic and multifluid, multimoment equations as PDEs. Not a
talk on PIC methods! (See work by H. Qin, P. Morrison et al on
modern structure preserving schemes).
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Why Care?

One can look at computational physics in two ways: as an end in
itself, and as a tool for applications. Both of these are important!
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One can look at computational physics in two ways: as an end in
itself, and as a tool for applications. Both of these are important!
As end in itself:

Sits between applied mathematics and theoretical physics. The

goal is to design efficient numerical methods to solve equations
from theoretical physics.
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Why Care?

One can look at computational physics in two ways: as an end in
itself, and as a tool for applications. Both of these are important!
As end in itself:
Sits between applied mathematics and theoretical physics. The
goal is to design efficient numerical methods to solve equations
from theoretical physics.
The goal here is the numerical method itself: what are its
properties? Does it faithfully represent the underlying physics?
Does it run efficiently on modern computers? Research into
modern numerical methods (including structure preserving
methods) fall into this category.
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Why Care?

One can look at computational physics in two ways: as an end in
itself, and as a tool for applications. Both of these are important!
As end in itself:
Sits between applied mathematics and theoretical physics. The
goal is to design efficient numerical methods to solve equations
from theoretical physics.
The goal here is the numerical method itself: what are its
properties? Does it faithfully represent the underlying physics?
Does it run efficiently on modern computers? Research into
modern numerical methods (including structure preserving
methods) fall into this category.
Usually, besides the fun of solving complex equations, we wish to
gain deeper understanding of underlying physics. Some
theoretical questions can only be answered with computer
simulations.
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Why Care?

As a tool for applications:

The second reason to care is that computational physics provides
tools to understand/design experiments or observations.

Large number of routine calculations are needed to build modern
experiments (heat-transfer, structural analysis, basic fluid
mechanics, equilibrium and stability calculations, etc). Such
routine calculations are no longer cutting edge research
topics.
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Why Care?

As a tool for applications:

The second reason to care is that computational physics provides
tools to understand/design experiments or observations.

Large number of routine calculations are needed to build modern
experiments (heat-transfer, structural analysis, basic fluid
mechanics, equilibrium and stability calculations, etc). Such
routine calculations are no longer cutting edge research
topics.

However, today strong need to be at intersection of cutting-edge
computational physics and critical applications: E.g: More than
$6 billion are invested in private fusion efforts; billions more in public
efforts.
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Exploring the Fusion Design Space

What is needed to explore or “confine” the design space for the
crowded space of fusion concepts?
Unfortunately, neither the physical models or the numerics are fully
developed yet to understand burning plasma regime. Enormous
scales, hairy plasma-material-interaction and zoo of possible
instabilities.
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Exploring the Fusion Design Space

What is needed to explore or “confine” the design space for the
crowded space of fusion concepts?
Unfortunately, neither the physical models or the numerics are fully
developed yet to understand burning plasma regime. Enormous
scales, hairy plasma-material-interaction and zoo of possible
instabilities.
Two approaches:
Do calculations with first-principles models on the large computers.
Required to do detailed physics studies
Do many smaller calculations in an optimization loop to confine
the design space. Run occasional large calculations to verify.

Each of these approaches needs development of appropriate models,
and fast numerical methods on modern hardware architecture. Put
everything in an optimization loop.
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Setting the Stage: Shock-Bubble Interactions
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Setting the Stage: Kevin-Helmholtz Instability
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The Ultimate Discrete Scheme (UDS)

A hypothetical “Ultimate Discrete Scheme” must possesses the
following three properties

Robustness The scheme must be robust: capture shocks,
maintain positivity, preserve monotonicity, satisfy involutions
(divergence constraints), properly preserve energy partition.
Accuracy Provide low dissipation for smooth high-k modes to

properly simulate turbulence. Converge quickly to give accurate
results when needed

Efficiency Run rapidly for modest resolutions. Do interesting
physics on a laptop. Use GPUs and other hardware accelerators for
larger simulations. Do 1000s of simulations.

Sadly, such a scheme does not exist! Many of the goals are
contradictory.

un/4 |1 o conrtfdio



No Free Lunch Principle

No Free Lunch Principle

There is no unique discrete system of equations corresponding to a
given system of continuous equations. No discrete system is perfect
and a method that works well in one situation may not work well in
others.

12/46 | o onrtfdio



No Free Lunch Principle

No Free Lunch Principle

There is no unique discrete system of equations corresponding to a
given system of continuous equations. No discrete system is perfect
and a method that works well in one situation may not work well in
others.

“All numerical methods suck, though some suck less than others.
Make sure your method sucks less that the competition”
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Many approximations developed over the decades
Modern computational plasma physics consists of making justified

approximations to the VM system and then coming up with efficient
schemes to solve them.
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Many approximations developed over the decades

Modern computational plasma physics consists of making justified
approximations to the VM system and then coming up with efficient
schemes to solve them.

Major recent theoretical development in plasma physics is the discovery
of gyrokinetic equations, an asymptotic approximation for plasmas in
strong magnetic fields. Reduces dimensionality to 5D (from 6D) and
eliminates cyclotron frequency and gyroradius from the system. Very
active area of research.
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Many approximations developed over the decades

Modern computational plasma physics consists of making justified
approximations to the VM system and then coming up with efficient
schemes to solve them.
Major recent theoretical development in plasma physics is the discovery
of gyrokinetic equations, an asymptotic approximation for plasmas in
strong magnetic fields. Reduces dimensionality to 5D (from 6D) and
eliminates cyclotron frequency and gyroradius from the system. Very
active area of research.
Many fluid approximations have been developed to treat plasma via
low-order moments: extended MHD models: multimoment models;
various reduced MHD equations
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Many approximations developed over the decades

Modern computational plasma physics consists of making justified
approximations to the VM system and then coming up with efficient
schemes to solve them.

Major recent theoretical development in plasma physics is the discovery
of gyrokinetic equations, an asymptotic approximation for plasmas in
strong magnetic fields. Reduces dimensionality to 5D (from 6D) and
eliminates cyclotron frequency and gyroradius from the system. Very
active area of research.

Many fluid approximations have been developed to treat plasma via
low-order moments: extended MHD models: multimoment models;
various reduced MHD equations

Numerical methods for these equations have undergone renaissance in
recent years: emphasis on memetic schemes that preserve conservation
laws and some geometric features of the continuous equations. Based on
Lagrangian and Hamiltonian formulation of basic equations. Very active
area of research.
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Integrating kinetic effects in fluid models

For physically accurate simulations of various fusion machines, its
important to go beyond resistive and Hall-MHD.

Traditional approach has been to use a generalized Ohm's law,
adding physics to it in a piecemeal fashion.

However, this approach has limited success, and in particular, there
is no systematic way to add important collisionless kinetic effects
in a self-consistent and numerically tractable manner.

A major challenge in the fusion and other applications is that the
plasma is nearly collisionless, and that the magnetic fields
(external coils, planetary dipole) add a preferred direction,
adding significant anisotropy to the system.
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Alternative is to use multi-fluid moment models

In this approach we take moments of the Vlasov equation,
truncating the moment sequence using a closure.

The interaction between species is via electromagnetic fields, which
are evolved using Maxwell equations (retaining displacement
currents)

This approach allows natural and self-consistent inclusion of finite
electron inertia, Hall currents, anisotropic pressure tensor
and heat flux tensor.

Even though the multi-fluid moment equations contain physics all
the way from light waves and electron dynamics to MHD scales, by
use of advanced algorithms very efficient and robust schemes can
be developed, allowing us to treat a sequence of increasing
fidelity models in a uniform and consistent manner.
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Sequence of models with 5, 10 and 20 moments

Taking moments of Vlasov equation leads to the exact moment equations

listed below
% + aa_(nuj) =0
% + %&sz = nauiEy + e Pig B

In the five-moment model, we assume that the pressure is isotropic

Pjj = péjj. For the ten-moment model, we include the time-dependent
equations for all six components of the pressure tensor, and use a closure for
the heat-flux. In the twenty-moment model, we evolve all ten components
of the heat-flux tensor, closing at the fourth moment.
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Planetary Scale Simulations Are Now

Ten-Moment Simulation of Mercury’s Magnetosphere (Dong et. al.
, 46, 2019

http://cmpp.rtfd.io
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Reconnection On Mercury's Night and Day Sides

\'N

http://cmpp.rtfd.io




Figure: Ten-Moment simulation of Earth’s magnetosphere shows extended
night-side current sheet, just after a disruption driven by ballooning
instability. Wang et. al. JCP 415, 2020
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More Planetary Magnetospheres: Uranus

Uranus magnetosphere
Jarmak et al-Acta
_~Astronautica 2020

Ten-Moment simulation of Uranus’s magnetosphere shows extremely
complex magnetic-field structure due to dipole axis tilt with respective to
revolution plane.
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Simple harmonic oscillator

Consider first the simple harmonic oscillator
d’z 5
e T W
This has exact solution z = acos(wt) + bsin(wt), where a and b are
arbitrary constants. How to solve this numerically? Write as a system of
first-order ODEs
dz ~dv 5
P i
Note that the coordinates (z, v) label the phase-space of the harmonic
oscillator. Multiply the second equation by v and use the first equation to

get
d (1, 15,
dt <2V 2 0.

This is the energy and is conserved.
Question: how to solve the ODE such that the energy is conserved by

the discrete scheme?
2746 | oo
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Harmonic oscillator: Forward Euler Scheme

First attempt: use the simplest possible scheme, replace derivatives
with difference approximations

At
or
" =24 An; v = v — Atw?2"

This is the forward Euler scheme. Lets check if the discrete scheme
conserves energy:

(V72 4 WP (2R = (14 ALY (V) + w3 (2")P)

The presence of the w?At? in the bracket spoils the conservation. So
the forward Euler scheme does not conserve energy. Also, note that
the energy, in fact, is increasing!
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Harmonic oscillator: Forward Euler Scheme

Closer look: write as a matrix equation

_ 1 At| |z
T =wiAt 1| v
—_———

Jacobian, J

Zn+1
Vn+1

Observe that the determinant of the Jacobian is

det(J) = (1 + w?At?) which is the same factor as appears in the
energy relation. One may reasonably conjecture that when this
determinant is one, then perhaps energy is conserved.

Volume Preserving Scheme

We will call say a scheme preserves phase-space volume if the
determinant of the Jacobian is det(J) = 1.

/4 | oo



rrrL Gkeyll

Harmonic oscillator: Mid-point Scheme

Perhaps a better approximation will be obtained if we use averaged values of
z,v on the RHS of the discrete equation:

Zn-}—l _ Zn Vn + Vn+l

At 2
Vn+l —yn 2zn + zn+1
- =
At 2

This is an implicit method as the solution at the next time-step depends on
the old as well as the next time-step values. In this simple case we can
explicitly write the update in a matrix form as
zn 1 1 - w?At?/4 At z"
v T T w2A /4 | WAL 1w AR/A] v
For this scheme det(J) = 1. So the mid-point scheme conserves phase-space
volume! Some algebra also shows that

(Vn+1)2 =+ w2(Zn+1)2 — (Vn)2 +w2(zn)2

showing that energy is also conserved by the mid-point scheme.

24 | oo



rrrL Gkeyll

Harmonic oscillator: Mid-point Scheme is symplectic

A more stringent constraint on a scheme for the simple harmonic
oscillator is that it be symplectic. To check if a scheme is symplectic
one checks to see if

JTol=0
where o is the unit symplectic matrix
> [ 0 1]
-1 0
Turns out that the mid-point scheme for the harmonic oscillator is

also symplectic. Note that if a scheme conserves phase-space volume,
it need not be symplectic.

/4 | o oo
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Accuracy and Stability
To study the stability, accuracy and convergence of a scheme one usually
looks at the first order ODE

dz

Fraa

where v = A + iw is the complex frequency. The exact solution to this
equation is z(t) = zpe~7*. The solution has damped/growing modes (A > 0
or A < 0) as well as oscillating modes.

The forward Euler scheme for this equation is
2" = 2"~ Atyz" = (1 - Aty)z".

The mid-point scheme for this equation is

zn+1 _ 1- ’yAt/Q zn
1+~At/2
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Accuracy and Stability
We can determine how accurate the scheme is by looking at how

many terms the scheme matches the Taylor series expansion of the
exact solution:

1 1
2(t") = z(t") <1 — YAt + 572At2 - 673Af3 +-- >

The forward Euler scheme matches the first two terms
2™ = 2"(1 - Aty)

The mid-point scheme matches the first three terms

1 1
"l = 2" (1 — Aty — E’yzAt2 — 173At3 + .. >
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Accuracy and Stability

We can determine if the scheme is stable by looking at the
amplification factor |z"*1/z"|. Note that for damped modes (\ > 0)
this quantity decays in time, while for purely oscillating modes

(A = 0) this quantity remains constant.

The amplification factor for the forward Euler scheme in the
absence of damping is 1 4+ w?At? > 1, hence this scheme is
unconditionally unstable.

The amplification factor for the mid-point scheme in the absence
of damping is exactly 1, showing that the mid-point scheme is
unconditionally stable, that is, one can take as large time-step one
wants without the scheme “blowing up”. Of course, the errors will
increase with larger At.

/4 | oo
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Runge-Kutta schemes

Even though the forward Euler scheme is unconditionally unstable,
we can use it to construct other schemes that are stable and are
also more accurate (than first order).

For example, a class of Runge-Kutta schemes can be written as a
combination of forward Euler updates. In particular, the strong
stability preserving schemes are important when solving hyperbolic
equations. Note that these RK schemes will not conserve energy
for the harmonic oscillator, but decay it.

Other multi-stage Runge-Kutta schemes can be constructed that
allow very large time-steps for diffusive processes, for example, that
come about when time-stepping diffusion equations.
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Simple harmonic oscillator

We looked at
d%z 5
a2~ F
and wrote it as system of first-order ODEs
@z _ v; dv _ —w?z
dt ' dt

Now introduce energy-angle coordinates
wz = Esinf; v =Ecosb

then E? = w222 + v2 = Eg is a constant as we showed before. Using
these expressions we get the very simple ODE 0 = w. This shows that
in phase-space (v,wz) the motion is with uniform angular speed
along a circle.
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Simple harmonic oscillator: Phase-errors

The mid-point scheme had
(vn+1)2 +w2(zn+1)2 — (Vn)2 +w2(2n)2 _ Eg

which means that the mid-point scheme gets the energy coordinate exactly
correct. However, we have

wz"tt

n+1 __
tané =

Using the expressions for the scheme and Taylor expanding in At we get

E2 3 nE2
tan 0™ = tan 0" + — O At + 2 Z OAR L O(AL)
(v7)? (v7)?

The first three terms match the Taylor expansion of the exact solution
tan(6" + wAt) and the last term is the phase-error.
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Single particle motion in an electromagnetic field

In the Lagrangian frame the distribution function remains constants
along characteristics in phase-space.

These characteristics satisfy the ODE of particles moving under Lorentz

force law
dx
x_,
dt
% - %(E(x, t) + v x B(x, t))

In the absence of an electric field, the kinetic energy must be conserved
L o2
5 |v|® = constant.

This is independent of the spatial or time dependence of the magnetic
field. Geometrically this means that in the absence of an electric field the
velocity vector rotates and its tip always lies on a sphere.
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Single particle motion in an electromagnetic field

A mid-point scheme for this equation system would look like

><n+1 —xn Vn+1 + v

At 2
Vn-&—l_vn q — Vn+1 +Vn _
— = — (E(x, t B(x, t
ae = B+ B )

The overbars indicate some averaged electric and magnetic fields
evaluated from the new and old positions. In general, this would make
the scheme nonlinear!

Instead, we will use a staggered scheme in which the position and
velocity are staggered by half a time-step.

n+l _ _n
X X MRSV
At
yt1/2 _yn=1/2 q o ytL/2 4 n—1/2 .
= (B ) e X B(x", "))
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The Boris algorithm for the staggered scheme

The velocity update formula is
L2 n—1/2 yrHL/2 4 ne1/2
At 2
This appears like an implicit method: most obvious is to construct a linear 3 x 3
system of equations and invert them to determine v"*!. Puzzle to test your
vector-identity foo: find Aif A=R+ A x B.
The Boris algorithm updates this equation in three steps:

q

= ;(E(x"7 t") + x B(x", t"))

v :vn71/2+iEnE
m 2
vi—vo q + - n
At am\ TV)xB
Vn+1/2:V++£EnE
m 2

Convince yourself that this is indeed equivalent to the staggered expression above.
So we have two electric field updates with half time-steps and a rotation due to
the magnetic field. Once the updated velocity is computed, we can trivially

compute the updated positions.
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The Boris algorithm for the staggered scheme

How to do the rotation? The Boris algorithm does this in several steps:

Compute the t and s vectors as follows

hm(@&)ﬁzﬁﬂ
m 2 B m 2
2t
1+t

Compute v/ = v~ + v~ x t and finally v = v~ + v/ xs.

See Birdsall and Langdon text book Section 4-3 and 4-4 and figure 4-4a.
Easily extended to relativistic case. Note that using the approxiate form in
computing t will lead to an error in the gyroangle.

Note that in the absence of an electric field the Boris algorithm conserves
kinetic energy.
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Why is the Boris algorithm so good?

See paper by Qin at. al. Phys. Plasmas, 20, 084503 (2013) in which it is
shown that the Boris algorithm conserves phase-space volume. However,
they also show that the Boris algorithm is not symplectic.

The relativistic Boris algorithm does not properly compute the E x B
velocity. This can be corrected. For example Vay, Phys. Plasmas, 15,
056701 (2008). The Vay algorithm however, breaks the phase-space
volume preserving property of the Boris algorithm.

Higuera and Cary, Phys. Plasmas, 24, 052104 (2017) showed how to
compute the correct E x B drift velocity and restore volume preserving
property. Seems this is probably the current-best algorithm for updating
Lorentz equations.

The saga for better particle push algorithms is not over! For example, an
active area of research is to discover good algorithms for asymptotic
systems, for example, when gyroradius is much smaller than gradient
length-scales or gyrofrequency is much higher than other time-scales in
the system. Common in most magnetized plasmas.
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The Physics of Discretized Equations

One view of computational physics: we are studying the physics of
discretized equations and not really “Nature” itself. Not obvious that
these are the same (as measure by some metric).
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The Physics of Discretized Equations

One view of computational physics: we are studying the physics of
discretized equations and not really “Nature” itself. Not obvious that
these are the same (as measure by some metric).

Many important physical properties are “indirect”. Simplest example:
of  oOf
5 + Ix 0
From this we can derive a conservation law for L, norm:
01,

1
R

9 2 _
ot 2 8x2’r 0.

This is an example of an “indirect” property. Not obvious that the
L> norm of your discrete solution is actually preserved by the scheme
you choose. In fact, not obvious if it even should be preserved!
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The Physics of Discretized Maxwell Equations

Maxwell equations have very important indirect properties:
conservation of momentum and energy. Energy conservation is the L
norm of the field:

9 [ B2  ¢FE? 1
i —V- - (ExB)=—-E.J.
af(?ltoJr 2 >+Mov (ExB) !

Does a scheme conserve the discrete energy? Should it conserve
discrete energy?

Choices based on tradeoff one is willing to make.

/46 KGN oo



Effect of Discrete Energy Conservation

The most popular scheme for Maxwell equations is the Finite-Difference
Time-Domain (FDTD) method. Conserves energy!
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Effect of Discrete Energy Conservation

The most popular scheme for Maxwell equations is the Finite-Difference
Time-Domain (FDTD) method. Conserves energy!

Energy conserving scheme for Maxwell equations (purple) compared
to exact solution (black). Conservation of energy means there is no damping
of spurious high-k modes.

/46 KGN oo



rrrL Gkeyll

Energy Conservation in Vlasov-Maxwell is Indirect

If we evolve the Vlasov equation we are evolving the distribution
function f(x,v, t) in phase-space. However, total energy is a moment
of the distribution function and also includes electromagnetic terms.

= miviRfdz+ — [ (2ER+ —|B]?) d® =0
dtzs:/sz"" Z+dt/9<2’ "+ 20 Bl ) I

Not obvious that a scheme will conserve total energy.
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Energy Conservation in Hamiltonian Systems

Many plasma problems are described by Hamiltonian system of
equation: Vlasov-Poisson equations, gyrokinetic equations, several
ideal fluid models.

0
0

where {f, g} is a Poisson-bracket operator and H is a Hamiltonian.
Example of Vlasov-Poisson equations:

i+{f H} =0

1
H(x,v) = Emv2 + q9(x)
with the bracket

9Bo
{f.g}=— (Vf Vig ~ Vig - Vuf) + =3 - Vuf x Vig
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Energy Conservation in Hamiltonian Systems

Energy conservation in Hamiltonian systems are also indirect.
These follow from the property of the Poisson-bracket that

/Kf{f,H}dz:/KH{f,H}dz:O.

It is not obvious that a scheme will preserve these property: former
is required for entropy conservation, and the latter for energy
conservation
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Energy Conservation in Hamiltonian Systems

Energy conservation in Hamiltonian systems are also indirect.
These follow from the property of the Poisson-bracket that

/Kf{f,H}dz:/KH{f,H}dz:O.

It is not obvious that a scheme will preserve these property: former
is required for entropy conservation, and the latter for energy
conservation

Worse, there is no guarantee that the distribution function remains
positive! Very serious problem.

Adjusting the distribution function via simple positivity fixes can
add huge energy conservation errors for many problems.
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The Question of Discrete Entropy

In addition to momentum and energy, the Vlasov-Maxwell and other
equations have an entropy that is either constant (collisionless
plasma) or increases monotonically (collisional plasmas)

d
2| _fin(F) > o0
dt/K n(f) =0

Again, it is not immediately clear how the entropy of the discrete
system behaves. Connected to the behavior of f2 and positivity of f.
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A More Subtle Form of Indirect Properties

Even if you have an explicit conservation law, there are other subtle
properties that are indirect. For example, typical fluid codes will
evolve total energy equation

oE
o TV uE+pl=0.

where total energy £ contains two contributions, one from the kinetic
energy and the other from the internal energy:

1 p
E=Zou- _r
2pu u+7_1
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The Behavior of Kinetic Energy

Now consider the evolution of just the kinetic energy

0 1, 1,
— | Zpu“d = - ds — -udx =0.
8t/92pu x—i—j{{m <2pu +p)u s /QpV udx =20

This equation shows that the KE in a volume only changes due to
the compressibility of the fluid.

Similarly, in a plasma, there will be J - E term that allows energy
exchange between particles and fields.
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The Behavior of Kinetic Energy

Now consider the evolution of just the kinetic energy

0 1, 1,
— | Zpu“d = - ds — -udx =0.
é)t/92pu x—i—j{{m <2pu +p)u s /QpV udx =20

This equation shows that the KE in a volume only changes due to
the compressibility of the fluid.

Similarly, in a plasma, there will be J - E term that allows energy
exchange between particles and fields.

Question: does the numerical scheme have this property? That is,
is there any spurious exchange terms that are messing up the
physics of energy partition between the various terms?
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The Behavior of Kinetic Energy

Now consider the evolution of just the kinetic energy

0 1, 1,
— | Zpu“d = - ds — -udx =0.
é)t/92pu x—i—j{{m <2pu +p)u s /QpV udx =20

This equation shows that the KE in a volume only changes due to
the compressibility of the fluid.

Similarly, in a plasma, there will be J - E term that allows energy
exchange between particles and fields.

Question: does the numerical scheme have this property? That is,
is there any spurious exchange terms that are messing up the
physics of energy partition between the various terms?

An incorrect discrete exchange can lead to improper behavior of
energy at the highest-k modes. These modes are precisely what we
need to get correct to understand turbulence!
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What Does All This Mean?

Many of the indirect properties listed above are required for robust
and physically correct simulations: not enough to focus only on
convergence and stability of the scheme!

Often one must make a trade off: there is no “free lunch” and
depending on the problem one must choose what property to
pursue.
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Consider the Advection Equation

To fix ideas consider we wish to solve the advection equation

8f of

ot ax =0

Using the four-cell symmetric recovery scheme to compute interface
values in the FV update formula we get the semi-discrete scheme
five-cell stencil update formula:

of; 1 [X+2 of 1

4 =_— —dx = — fiio—8fi_1+8fi 1 —

ot Ax/le/2 dx Tonx =2~ 81 ¥ 8l1 = i)
This scheme conserves L, norm! How accurate is this scheme, or
what is its order of convergence? Does this scheme maintain
monotonicity and positivity?

w7/ | oo



et Gkeyll
Advection Equation: Central 4th Order Scheme

Central 4th order scheme (conserves Ly norm)
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Blue: Exact solution. Orange: Central 4th order solution
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Advection Equation: Central 4th Order Scheme

Central 4th order scheme (conserves Ly norm)
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Advection Equation: Upwind 5th Order Scheme

Upwind 5th order scheme (does not conserves L, norm)
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Godunov's Theorem

A very important theorem proved by Godunov is that there is no linear
scheme that is "monotonicity preserving” (no new maxima/minima
created) and higher than first-order accurate!
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Godunov's Theorem

A very important theorem proved by Godunov is that there is no linear
scheme that is "monotonicity preserving” (no new maxima/minima
created) and higher than first-order accurate!

Consider a general scheme for advection equation
n+1 n
i = Z Cicfii
k
The discrete slope then is

n+1 n+1 __ n n
t = = E :Ck (fj+k+1 - ’5’+k) .
k

Assume that all 7, — £ > 0. To maintain monotonicity at next
time-step hence one must have all ¢, > 0.
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Godunov's Theorem

First order upwind scheme:

this satisfies monotonicity as long as At/Ax < 1.

Second order symmetric scheme

At
n+1 n n n

fj 6 T 9Ax QX(GH - j—1)
clearly this does not satisfy the condition of monotonicity.

In general, condition on Taylor series to ensure atleast second-order
accuracy shows that at least one of the c,s must be negative. Hence, by
contradiction, no such scheme exists!
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Godunov’'s Theorem: Consequences and Workarounds

Godunov's Theorem is highly distressing: accurate discretization seems to
preclude a scheme free from monotonicity violations
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Godunov’'s Theorem: Consequences and Workarounds

Godunov's Theorem is highly distressing: accurate discretization seems to
preclude a scheme free from monotonicity violations

One way around is to start with a linear scheme that is very accurate and
then add some local diffusion to it to control the monotonicity.
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Godunov’'s Theorem: Consequences and Workarounds

Godunov's Theorem is highly distressing: accurate discretization seems to
preclude a scheme free from monotonicity violations

One way around is to start with a linear scheme that is very accurate and
then add some local diffusion to it to control the monotonicity.

However, Godunov's theorem shows that this “diffusion” must be
dependent on the local solution itself and can't be fixed a priori. This
means a monotonicity preserving scheme must be nonlinear, even for
linear hyperbolic equations.
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Godunov’'s Theorem: Consequences and Workarounds

Godunov's Theorem is highly distressing: accurate discretization seems to
preclude a scheme free from monotonicity violations

One way around is to start with a linear scheme that is very accurate and
then add some local diffusion to it to control the monotonicity.

However, Godunov's theorem shows that this “diffusion” must be
dependent on the local solution itself and can't be fixed a priori. This
means a monotonicity preserving scheme must be nonlinear, even for
linear hyperbolic equations.

Leads to the concept of limiters or artificial viscosity, that control the
monotonicity violations (adding diffusion to high-k modes). No free
lunch: limiters must diffuse high-k modes but this will inevitably lead to
issues like inability to capture, for example, high-k turbulence spectra
correctly without huge grids.

Major research project: interaction of shocks, boundary layers and
turbulence in high-Reynolds number flows.
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The FV Revolution in computational fluid dynamics

In the mid and late 20th century a major revolution occurred in solution of
hyperbolic PDEs

Driven by need to solve Euler and Navier-Stokes equations for airplanes, the
space-program and other problems

Even a subsonic jet (Mach 0.8) can have local pockets of supersonic flow.
Reentry vehicles develop bow shocks as they enter the atmosphere

The idea to use nonlinear schemes occurred to many people. Including von
Neumann and Ritchmyer (1950).

Key breakthrough was discovery of MUSCL scheme by van Leer. “Towards the
Ultimate Conservative Difference Scheme” (1970s). Part V has > 5000
citations. Extremely impactful.

Discovery of many schemes, ENO, WENO, PPM, Wave-Propagation, MP.
Massive research in limiters

Driven in large part by few people: van Leer, Ami Harten, Phil Roe, Phil
Collela, Randy LeVeque, Marsha Berger, Stan Osher, Tony Jameson, Chi-Wang
Shu, Peter Lax, ...
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Nonlinear flux limiters: Getting around Godunov

To get around Godunov's Theorem we need to construct a nonlinear scheme,
even for linear equations. One apporach is to use nonlinear flux-limiters:

Fivry2 = 0(r)Ffiap + (1 - ¢(rj+1))FjL+1/2

where ¢(r) > 0 is a limiter function: chooses between high-order and
low-order flux.
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even for linear equations. One apporach is to use nonlinear flux-limiters:

Fivry2 = 0(r)Ffiap + (1 - ¢(rj+1))FjL+1/2
where ¢(r) > 0 is a limiter function: chooses between high-order and
low-order flux.

What are the low- and high-order fluxes? For high-order fluxes: use either
symmetric or higher-order upwind-biased recovery to construct the flux.
For low-order use first-order upwind fluxes.
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Nonlinear flux limiters: Getting around Godunov

To get around Godunov's Theorem we need to construct a nonlinear scheme,
even for linear equations. One apporach is to use nonlinear flux-limiters:

Fivry2 = 0(r)Ffiap + (1 - ¢(rj+1))FjL+1/2
where ¢(r) > 0 is a limiter function: chooses between high-order and

low-order flux.

What are the low- and high-order fluxes? For high-order fluxes: use either
symmetric or higher-order upwind-biased recovery to construct the flux.
For low-order use first-order upwind fluxes.

The first-order upwind flux is “Total-Variation Diminishing” (TVD),
TV(f™1) < TV(f") where “Total-Variation” is defined as:

TV(F) = Ifi1 — £
j
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Nonlinear flux limiters: No “Perfect” Limiter!

Unfortunately, there is no perfect
limiter (though some come close to
perfection): depends on problem
and best to implement many!

Most limiters “chop off” genuine ) :[‘
maxima/minima: notice that [
¢(r < 0) = 0 which means that if i

. . . .. L
there is a genuine maxima/minima N w S
I ~ 1 7
then low-order flux is selected. Lo s
Tricky to distinguish step-function fa) )

from parabola!
Accuracy-preserving limiter:
Suresh and Huynh, JCP 136,
83-99 (1997). Not an easy paper
to understand.
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Advection Equation: Monotone 5th Order Scheme

Monotone, upwind 5th order scheme (does not conserves L, norm)
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