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A fundamental dynamical constraint - that fluctuation induced charge-weighted particle Aux must
vanish- can prevent instabilities from accessing the free energy in the strong gradients characteristic
of Transport Barriers (TBs). Density gradients, when larger than a certain threshold, lead to a
violation of the constraint and emerge as a stabilizing force. This mechanism. then, broadens the
class of configurations (in magnetized plasmas) where these high confinement states can be formed
and sustained. The need for velocity shear, the conventional agent for TB formation, is obviated.
The most important ramifications of the constraint is to permit a charting out of the domains
conducive to TB formation and hence to optimally confined fusion worthy states: the detailed
investigation is conducted through new analytic methods and extensive gyrokinetic simulations.




Simplest system possible ITG adiabatic electrons

Particle motion in an B field with an external force

Is the superposition of a gyromotion and a drift due to F with velocity
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The equilibrium solution is a Maxwellian distribution whose mean velocity is VT,VN
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i.e. superposition of diamagnetic drifts and F induced drift



Simplest system possible ITG adiabatic electrons

Let’s consider a kinetic description of a collisionless plasma, satisfies Vlasov

d . 10 L 7 3 2R 0 B
[a—l-v E—F—(q’oxBJrF)-%]f—O.

And add a perturbation
¢ = o(a) expi(kyy + k.2 — wt)



Simplest system possible ITG adiabatic electrons

Let’s consider a kinetic description of a collisionless plasma, satisfies Vlasov
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And add a perturbation
¢ = o(a) expi(kyy + k.2 — wt)

Each distribution function will respond with a similar perturbation
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Satisfying the linearized Vlasov equation
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Simplest system possible ITG adiabatic electrons

We can solve for the perturbation integrating along unperturbed trajectories
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Simplest system possible ITG adiabatic electrons

We can solve for the perturbation integrating along unperturbed trajectories
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Simplest system possible ITG adiabatic electrons

We can solve for the perturbation integrating along unperturbed trajectories
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Which can be solved and used to derive a dispersion relation from the dielectric function
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Simplest system possible ITG adiabatic electrons

Explicitly performing integral and n=0 limit (long wavelength low frequency)

W — wy W — Wp
E —E\W|—] - = V.
1+ Ap)? {1+W_WF! (|kz@‘th) 1]AO(£)} !
SpeCleS

One can consider various limiting cases:

- only density gradient and F not dependent on q -> flute instability (like Rayleigh-Taylor)
- only B gradients

- only density gradient -> drift waves, modification of sound waves

- only temperature gradients -> slab ITG




Simplest system possible ITG adiabatic electrons

Explicitly performing integral and n=0 limit (long wavelength low frequency)
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SpeCleS

One can consider various limiting cases:

- only density gradient and F not dependent on q -> flute instability (like Rayleigh-Taylor)
- only B gradients

- only density gradient -> drift waves, modification of sound waves
- only temperature gradients -> slab ITG

Neglect FLR, expand W, neglect resonances
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Simplest system possible ITG adiabatic electrons

| | . dInT, Ly
In practice we usually have T and n gradients n; = =
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Simplest system possible ITG adiabatic electrons

Why it is so relevant? Understood as one of the most important turbulence drive
mechanisms

Te
G = :I:\/—Qf(kgpiPVlogT -Vlog B

Unstable at the outboard midplane.

Electron contribution is not necessarily negligible.
They are responsible for the TEM, the other major
instability in a Tokamak.




Mixing length estimates

Mixing length argument, balance linear growth and nonlinear convection D = R 9 v/ki

Variations incorporating the eigenfuction work better (k3 )(ky) = iji (ky, ky, 2) | (ky, Ky, 2) |
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Transport barriers

Let’s consider a series of variations around nominal parameter sets representative of

transport barrier conditions
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Critical R/L;
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Very strong variation of critical gradients with
plasma parameters. Best is to use F_the
fraction of pressure gradient in density:

1/Ly,

Fp = (Tdn/dz)/|80T) /de] =~ 7



Transport barriers

Let’s consider a series of variations around a nominal parameter set repernsetative

of transport barrier parameters
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F, = normalized density gradient

Fp is much more robust indicator of the intrinsic system behavior




Transport barriers

For a lot of variations

Growth rate vy

Maximum growth rate among all k,
(Simulation results for a typical core-like geometry)
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bound
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Transport barriers

For a lot of variations

Max Y among all k‘. Vs Fp for numerical Maxy among all kg vs Fp ETG for A=1.6
2|  stellarator geometries Wendelstein 7X and NCSX 55 (including large Debye length)
Analytic
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F, = normalized density gradient

Regardless of the completely different parameters, the system follows the same behavior,
why?
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The charge Flux Constraint - FC

The reason of such a robust behavior stems from a very simple constraint

Z qSF7‘S =0

The charge weighted flux must be zero.




The charge Flux Constraint - FC

The reason of such a robust behavior stems from a very simple constraint

Z qSF’I‘S =0

The charge weighted flux must be zero.

This acts together with the energetics dynamics of the system

B, T 5 fs mSnS(SVE?x g  O0E* 6B%,
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Free energy in fluctuations grows because of fluxes (minus entropy)




A mean field theory - SKiM

Gyrokinetics is extremely complicated, many degrees of freedom. Simplify it with a mean field
theory (Simplified Kinetic Model - SKiM), constructed by taking an average along the field line:
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Eigenfunction averaged wave vectors and drift frequencies



A mean field theory - SKiM

Gyrokinetics is extremely complicated, many degrees of freedom. Simplify it with a mean field
theory (Simplified Kinetic Model - SKiM), constructed by taking an average along the field line:
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Eigenfunction averaged wave vectors and drift frequencies

One can solve SKiM and compare to “standard” dispersion relation, but there is some basic information
one can extract



A mean field theory - SKiM

Compute the particle flux resulting from h gives

dv farJo(< ki > pi)? i ,
/ vivJdo(< ki > pi) [’72+(w7~—<k‘” > uy— < Wa >)2]
[1/L,, + (msv*/2Ts — 3/2)/L7] =0

Cannot be solved if )
1/L, > 3/(2Lt)

or

Fp: >0.6

Simple prediction, no need to perform any complex GK simulation, valid for any fluctuation!

The violation of the charge flux constraint is extremely robust and fundamental.



FC vs energetics - a graphical picture

The crucial role of the FC can be more easily understood visually
Positive flux

_,FM'SJ()(< ki > pi)2(w = w*) q2, neez .
_ d L -1) 2= - = Negative fl
D) 7 2 (/ T <k > - <wa > L - SoaTE T

ion species

Solved only if

Im(D(w)) =0 Flux constraint Solution of the system is the intersection of the

two curves in the complex plane.
w Both are important and provide two different
Re(zwD(w))zo Free energy dynamics to the system evolution



FC vs energetics - a graphical picture

Positive flux

o - Negative flux

System is stabilized by the
FC. Increasing F_shrinks

. p
and finally removes the
zero flux region, even if
there is a lot of free energy
available.




FC vs energetics - a graphical picture

<og> = 0.2 <o4>=0.1

Positive flux

: X i 25 30 - Negatlve flux
(b)

0.5

Scan in curvature, from
positive to very negative

In this case the stabilization is
via energetics, the FC can
always be satisfied




What about nonlinear behavior?

Nonlinear transport is dominated by low ky modes & follows similar trend

‘ Nonlinear heat flux (normalized) vs F, for diverse geometries and parametersJ SOIUbII'ty reson \535—3‘
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Dependence of F_on details of the eigenfunction, max Fp~0.53 & k~1, but for low ky dramatic changes once
near 1/3



What about nonlinear behavior?

<k, pi>vsFp
for case A k,p;=0.2
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As Fp is increased and the solubility is approached, the system adapts with major changes in the eigenfunction
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What about nonlinear behavior?
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What about nonlinear behavior?
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Inclusion of kinetic electrons

Non-adiabatic electron response often plays a crucial role in gyrokinetic instabilities. For trapped
electrons, it can lead to the TEM.

Since non-adiabatic electrons contribute charge flux in the opposite direction violation of FC becomes
more difficult.

It is possible that when the non-adiabatic electron charge flux is large enough, density gradients do
not, necessarily, lead to insolubility. This situation occurs for many typical tokamak geometries, in fact.

In these cases, the stabilization is greatly reduced because the FC remains soluble for much larger
density gradients. But the flux constraint may still be potent enough to suppress instabilities and allow
TB formation. Negative shear and/or large Shafranov shifts are experimental cases where TB for
without velocity shear

The FC still applies, and can still be used to understand how to drive instabilities!



Inclusion of kinetic electrons

3.0 3.0

Fp = 0.5

Fe=0.5
25 case non-ITB B (without trapped e)

25 case non-ITB A (without trapped e)
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There is more energetics from trapped particles (not really necessary) and FC is soluble ->
instability appear



Inclusion of kinetic electrons
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! D,.ix for pedestal-like cases !

The behavior is however quite
similar to what happened with
adiabatic electrons.

Dmix

D ix (normalized to value at F,=0)

The system adapts to stabilizing
effect (e.g. curvature by getting
closer to adiabatic e)
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Inclusion of kinetic electrons

Consider a single case where we vary the gradients to (de)-stabilized a mode

vy from SKiM for ITG,,, TEM and ITG/TEM
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Inclusion of kinetic electrons

2.00

ITG,, F,=0.5

TEM F,=0.5
175 (stablized by constraint)

(stablized primarily by energetics)
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Stabilized by FC, as before Free energy is too small,
but FC can be satisfied

ITG and TEM are strongly coupled, their fate goes together

ITG/TEM F,=0.5

(unstable)
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TEM provide FC, ITG free
energy at the cost of lower
growth rates



Inclusion of kinetic electrons

SKiM can be generalized to include kinetic electrons and used to understand how the system behaves.

1 —'_‘ y from SKiM varying <oy o, &> Li i —,—‘ y from SKiM varying <f,.,,> ‘_'7
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Stabilization is in fact the effect of a reduced effective trapped fraction.
The eigenfunction adapts to avoid curvature stabilization, and in doing so decouples from trapped electrons
-> flux decrease



Inclusion of kinetic electrons

This is the regime we want, adaptation makes non-adiabatic response small, hence the FC will be
dominating stability
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Inclusion of kinetic electrons

SKiM confirms that the stabilization is due to <ftrap> and FC actively working

0.4 TEM y from SKiM 0% TEM y from SKiM
varying <fr,,> varying <oy o &>
0.35}
<f. rap> = 0.3 L _Q
0.3 L 1 015 <®Oq orp o> = -0.07
0.25 -
> 0.2 02
0.15 | <frap>=0.2 |
0.1 0.05}

Wy orp > = -0.1

0 : Z 3 p04 05 06 % 01 02 03go04 05 0.6
P Fp



Inclusion of kinetic electrons

SKiM confirms that the stabilization is due to <f,_ R and FC actively working

0.4 TEM y from SKiM 0.2 TEM y from SKiM
varying <fr,,> varying <o orp e>

0.35¢

|
0.3} Trap |l 0.15

<Oy orp > = -0.07




Impurities can amplify the FC effect

Nonlinear heat flux (gyroB units)

Nonlinear
heat flux vs
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The FC overpowers energetics
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Summary

Progress towards understanding the TB formation

There are two basic dynamics that regulate the system: free energy is available for microinstability to
grow if they satisfy basic laws: the radial charge flux must be zero.

More energy means more transport but only if the FC is not violated, otherwise the system cannot sustain
instabilities.

A way to produce a TB is to drive the system towards conditions where violation of the FC is approached.
Not an easy or granted, but there are knobs that one can leverage, i.e. tuning density gradients and
impurity content.
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