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A View of The Earth

_@ Center for Hydrometeorology and Remote Sensing, University of California, Irvine






Studying the Hydrologic Cycle at Various Scales
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Globally: 86% of Evap. and 78% of Precip. occur over the oceans

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Climate, Hydrology and Water Resources

* How will Climate change affect precipitation

variability and water Availability?

* Can we predict the future changes
which are responsive S

to “user’ needs?

Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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Global Warming And Hydrologic Cycle Connection
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine






ater balance in Semi Arid Regions

Precipitation

Evapotranspiration ~250 mm/yr
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Water Balance in the Semi-Arid Southwest

Data in Million Gallon/Day. Source: USGS Water Use Report 1990
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Vegetation change in the Southwestern US:

Semi-arid grasslands in
New Mexico and Arizona

are being replaced
by deep rooted shrubs.

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Interspaces are sources of runoff, Canopies are sinks for runoff

orasslands deep rooted shrubs.

Sure: Eric Small, NMT now at CU Boulder

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Impact of Vegetation Cover Change on Infiltration

grasslands

GRASSLAND

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Impact of Vegetation Cover Change on Infiltration

deep rooted shrubs.

SHRUBLAND

Animation Assisted by: Wei Chu and Gi-H. Park Study By: Eric Small, NMT now at CU Boulder

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Two Primary Water Resources/Hydrology Challenges:
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Major Deserts of the World

Mame
Antarctic
Arctic
Sahara
Arabian
Gobi
Patagonian
Great Victoria
Kalahari
Great Basin
Syrian
Chihuahuan
Great Sandwy
Kara-Kum
Colorado Plateau
Gibson
Sonoran
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Major Deserts of the World

Type of Desert Surface Area

FPolar 5.5 million mi=
Folar 5.4 million mi=
Subtropical 3.5 million Mmi=

Subtropical 1 million mMi=

Cold Winter 500,000 mi=
Cold Winter 260,000 mi=z
Subtropical 250,000 mi=
Subtropical 220,000 mi=
Cold Winter 190,000 mi=®
Subtropical 190,000 mMmi=
Subtropical 175,000 mi=
Subtropical 150,000 Mmi=
Cold Winter 135,000 miz
Cold Winter 130,000 mi=z
Subtropical 120,000 mi=
Subtropical 120,000 mi=
Cold Winter 115,000 Mmi=

T T NN

Location

Antarctica

Alaska, Canada, Greenland, lceland, NMorway, Sweden, Finland, Russia

MNMorthern Africa
Arabian Peninsula
China and Mongolia
Argentina
SAoustralia
South Africa, Botswana, Namibia
United States
Syria, lraq, Jordan, Saudi Arabia
Mexico
Aoustralia
Uzbekistan, Turkmenistan
United States
Aoustralia
United States, Mexico

Uzbekistan, Turkmenistan, Kazakhstan

Ly =

Cold Winter 100,000 mi=

lran

Thiar
Simpson
Mojave
Atacama
Mamib

=

SUuDtroplcal 7o, 000 Fril
56,000 Mmi=
54,000 mi=
54,000 mi=

13,000 mi=

Subtropical
Subtropical
Cool Coastal

Cool Coastal

Thala, Parkistart
Australia
United States
Chile
Angola, Namibia, South Africa

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Global Distribution of Desert Areas and their
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Increasing Population: Number of Mega Cities

Population: 8.3 Billion by 2025

W

Projected Global

Population in Millions
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& Cold

. 25-28
Urban population 1970: ~37%
2010: ~53%

Took 200,000 years of human history for world's population to reach 1 billion;
and only 200 years more to reach 7 billion plus.

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Primary So utton To Satisfy Water
Resources Needs and Address Hydrologic
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Capturing and regulating Stream flow: Reservoirs
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Center for Hydrometeorology and Remote Seﬁsing, University of California, Irvine



Roman Aqueducts Raised Water Works to Functional Art

Gravity flows of imported surface
water sustained ancient Roman cities.
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Today’s Large Aqueducts are transforming many regions

S

SAHRA

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



A Oanat is a horizontal well!

RIVER
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Qanat is not the shortest distance from the surface to the groundwater

Source: Prof Majid Hassanizadeh

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Ground Water Extraction
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Mechanical Pumps: Ground Water Over Pumping

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Groundwater Overdraft, land subsidence and sinkholes

Near Kerman, Iran

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Land Subsidence Due to Ground water Pumping : Iran

Motagh M,rTL Walter and M Sharifi
GRL (2008) - (DOI:10.1029/2008GL033814)

T

University of California, Irvine

Center for Hydrometeorology & Remote Sensing, iversity of California, Irvine



http://dx.doi.org/10.1029/2008GL033814

Expectations:

Provide useful, Relevant and
“Reliable” Information for
operational, planning and Design of
water Resources systems

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Information Relevant to Water Resources Planning

- - Observations, -
' Statistical and extrapolation techniqu

ylo2ls (Future Predictions)

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Information Relevant to Water Resources Planning

Center for Hydrometeorology and Remote Sensing, University of California, Irvine
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Required Hydrometeorological Predictions

1o YWarning _._.-_

Weather Scale:




Common practice in Flood and River Flow Forecasting

River Discharge

Forecast > :
Current Time Time

Animation Assisted by: Q. Xia & Gi-H. Park

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Extending the Short-term flood Forecasts

Estimating Future “Short-Term” Rainfall:

I- Models: (NWP - OPF)

2- Extrapolation-based Nowcasting




Efforts in Extending the Forecast Lead Time

Observatlons (QPE) et QPF

River Discharge

Forecast > :
Current Time Time

Animation Assisted by: Q. Xia, Gi-H. Park & L. Bastidas

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Progress in OPF to extend the
lead time of hydrologic forecasts
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Quantitative Precipitation Forecast (OPF)
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Progress in hydrologic
modeling

Upper zone
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Fundamental Law
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Trace The Water Drop
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Evolution of Hydrologic R-R Models

API Model

+4 4 Precipitation

F: Free waler
T: Tension water

Distributed

(Mike SHE)
e

Variable Infiltration Capacity (VIC)
Macroscale Hydrologic Model
id Cell Ve

|
sif Vegetation Coverage

N

VIC Model

Distributed

Center for Hydrometeorology 8 Physically-based



Hydrologzc Modelmg 3 Elements!

—If the “World” of
5 Watershed Hydrology
Was Perfect!
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Flow in Channels: How far can we go simplifying?

QOverbank areas

V= n! R?3 SI/Z

Water b 1
=507k )
[ —

n — Manning Coefficient
R — Hydraulic Radius
S — Energy Slope

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Hydrologic Modeling

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Hydrologic Modeling: “Lumped”

Precipitation

- OQbserved

Lumped Model

Streamflow

] | 1 ] |
1} 20 40 60 a0 100 120

Day Animation Assisted by: Q. Xia

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




“Semi-distributed” Hydrologic Models

—— Qbserved

T Lumped Model
3 /\ [\/\‘ / Semi-Distributed Model
ST )
D i ) Day i - Anil;;nation Assisted by: Q. Xia

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Example of Distributed Model Appl. in large Basins

Sub-basin 3

Sub-basin 4
Sub-basin 1
/ K
Sub-basin 2

Large basin

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Example of Distributed Model
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Hydrologic Modeling

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



Model Calibration

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



A look into the “heart” of R-R Models

Percolation Process is the
Core element in Partitioning
\\\ \‘\ \\\\\ the rain between the various
stores
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Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Automatic
Calibration Approach

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Ildentification Problem

1. Select a model structure (Input-State-Output equations)

2. Estimate values for the parameters

“The Truth”

U — Uniwversal Set
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M,(6) — Selected Model Structure

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Concept of Model Calibration

Measured Measured
Inputs Outputs

B Real World TN

A 4

IVIODEL (0) Computed

Outputs

\4

Optimization
Procedure

"Calibration: constraining the model to be consistent with observations”

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



' The Automatic
“ Calibration Approach




Calibration components

Objective Function
Search Algorithm

Sensitivity Analysis

Problems with identifiability

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Ildeal case: Convex Optimization
 —————————————

Objective Function

Parameter X Created By G-H Park




Parameter Estimation (non-convex, multi-optima)
e

Objective Function

Parameter X Created By G-H Park




Parameter Estimation (non-convex, multi-optima)
e

Global Optij

Objective Function

Parameter X Created By G-H Park




Difficulties in Optimization

1.- Reg|ons of More than one main
a - <n convergence reqion

2.- Local Many small "pits” in
Optima each region
3.- Roughness Rough surface with
discontinuous
derivatives

Duan, Gupta, and Sorooshian, 1992, WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Optimization Strategy — Local Direct Search

Calibration of the Sacramento Model
Downhill Simplex Method, Nelder & Mead, 1965

=
to ™ .
-

Parameter Value .
Parameter Value

1500 2000 1500 - 2000
Function Evaluations _ Function Evaluations

Duan, Gupta, and Sorooshian, 1992, WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The SCE-UA Algorithm ...
(1992)

Duan, Gupta, and Sorooshian, 1992. WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The Shuffled Complex Evolution Algorithm

The SCE-UA Algorithm ...

Duan, Sorooshian, and Gupta 1992, WRR

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




The Concept Behind SCE Method

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Concept Behind SCE Method

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Concept Behind SCE Method

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



The Concept Behind SCE Method

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



SCE Method — How it works ...

\= <

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Shuffled Complex Evolution (SCE-UA)

\= <

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Global Optimization — The SCE-UA Algorithm

Duan, Gupta & Sorooshian, 1992, WRR

Simplex
Method

Parameter Value .
Parameter Value

2000

Shuffled
Complex
Evolution

(SCE-UA)
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10.000 20,000 30,000 10,000 20,000 30,000
Function Evaluations Function Evaluations

Center for Hydrometeorology and Remote Sensing, University of California, Irvine



AGU Monograph — Now Available

Water Science and Application &

Calibration of Wa fershed Models presents "

a state-of-the-art analysis of mathematical - = , ®

methods used in the identification of models 1 - 3 " ko tl 0 n f
far hydrologic forecasting, design, and water — A 2 u 0
resources management. From reviewing - ; S . £1 i h

advances in calibration methodologies, .

to describing automated and interactive Ty J 3 ¥y - . i -
strategies for parameter estimation, uncertainty = - = . : = e 3 : .('. e o e s
analysis, and probabilistic prediction, this - ; 5 k] y J

baok addresses five questions essential ta > ) % LA |
the discipline: P4 & :

What constitutes best estimates for
watershed model parameters?

What computational procedures ensure
proper model calibration and meaningful
evaluation of performance?

How are calibration methods developed
and applied to watershed models?

What calibration data are needed for
reliable parameter values?

Hew can watershed modelers best
estimate model parameters and assess
related uneertaimt es?

Far scientists, researchers and students of

watershed hydrology, practicing hydrologists,
civil and erwironmental engineers, and water
TESOLIRCE Managers. i
(Qmgyun Duan

Hoshin V. Gupta

www.agu.org Soroosh Sorooshian
—r——— i - Alain N. Roussean

P, Richard Turcotte
Lol : " Editors

Center for Hydrometeorology and Remote Sensing, University of California, Irvine




End of Lecture I
Thank You F. or.Listening

: ;—Rtver, NM Photo: J. Sorooshian 2005
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