Lecture II Hydrological modeling requirements for Water Resources Applications – Data Requirement Issues

Soroosh Sorooshian

Center for Hydrometeorology and Remote Sensing University of California Irvine

ICTP 6th Workshop 01: Water Resources in Developing Countries: Hydroclimate Modeling and Analysis Tools Trieste, Italy: May 20^h – 31st 2024

Hydroclimate of the Past and Future: Observation & Modeling

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Information Relevant to Water Resources Planning

Observation (learning from data: Trends and Statistical Information useful for planning purposes)

Models (Future Projection)

2000-year HydroClimate history of central U.S.

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

1930's Dust bowl

A Key Requirement!

Hydrometeorological Challenges

Having adequate high resolution (time and Space) observations for hydrologic applications (model Input, Calibration, Testing, and to capture extremes is crucial)

Precipitation Measurement

Data Requirements for Hydrologic Modeling

Data Limitation is an Important Factor in Success of Hydrologic Modeling

Precipitation Observations: Which to trust??

Rain Gauges

TRANSMIT Horizontal Pulse

Satellite

Spatial Resolution Challenges

GPCC Precipitation Climatology Version 2022 1.0 degree number of stations per grid for May

Rain Gauge Coverage over China

Coverage of the WSR-88D and gauge networks

Maddox, et al., 2002

Daily precipitation gages (1 station per 600 km² for Colorado River basin) hourly coverage even more sparse

Radar-Gauge Comparison (Walnut Gulch, AZ)

Temporal Resolution

Challenges

2 Precipitation Scenarios with different Temporal properties

Monthly Total

100 mm

Frequency 6.7% Intensity 50.0 mm

100 mm

Frequency 67% Intensity 5.0 mm

Idea from: K. Trenberth, NCAR

Temporal Scale Importance: Daily Precip. at 2 stations

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Coverage of the WSR-88D and gauge networks

Maddox, et al., 2002

Daily precipitation gages (1 station per 600 km² for Colorado River basin) hourly coverage even more sparse

Observation of Primary Hydrologic Variables

HRS

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Space-Based Observations

Satellite Data for Precipitation estimation

Active vs Passive Radar Sensors on Low Earth Orbiting Satellites

Typical Footprint of Geo-Stationary Satellites

WORLDWIDE GEOSAR SATELLITE COVERAGE

* Indicates satellites moving on an elliptical orbit

Geostationary Satellites Covering the US - Recent Past and Future Generation

Slices of Earth - observational and modeling data

Integrated Multi-satellitE Retrievals for GPM (IMERG)

<u>Precipitation Estimation from Remotely Sensed Information</u> <u>using Artificial Neural Networks (PERSIANN)</u>

PERSIANN System

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks

<u>Precipitation Estimation from Remotely Sensed Information using</u> <u>Artificial Neural Networks (PERSIANN)</u>

PERSIANN Websites and Apps

En CHRS iRain (Real-Time Weather Scale)

CHRS RainSphere (Climate Data)

CHRS Data Portal

Stochastic Hydrology (Requirement- Observation Data)

Statistical Hydrology

Statistical Hydrology: "synthetic" stream flow Generation

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Statistical Hydrology Developed Based on Stationarity Assumption

CHRS

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Flood Frequency Analysis: Stationarity!

Potential Hydrologic Scenarios

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Hydrologically - Relevant Remote Sensing Missions

SMOS ESA's Soil Moisture and Ocean Salinity (2009)

SMAP Soil Moisture Active Passive Satellite(2014)

TRMM The Tropical Rainfall Measuring Mission

GPM Global Precipitation Measurements (2014)

SWOT Surface Water and Ocean Topography (2020)

GRACE Gravity Recovery and Climate Experiment (2002)

MODIS Moderate Resolution Imaging Spectroradiometer (1999), (2002)

Problems with IR only algorithm

Assumption: higher cloud \rightarrow colder \rightarrow more precipitation

Landslide Risk map:

University of California, Irvine

Information Relevant to Water Resources Planning

Climate Model Projections and their application in Water Resources

Climate Model Downscaling to regional/watershed Scale

Ensemble Approach

Generation of Future Precipitation Scenarios

Downscaled Precipitation to Runoff Generation

Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Required Hydrometeorologic Predictions

Seasonal-Scale Predictions

Short Range

hours -----> days -----> weeks -----> months ---> seasons ---> years ----> decades

Flash Flood Warning

Flash Flood Guidance

Headwater Guidance

Flood Forecast Guidance

Reservoir Inflow Forecasts

Spring Snow Melt Forecasts

Water Supply Volume

Mid-range

Forecast Requirements

IRI 3-Month Multi-Model Probability Precipitation Forecast

IRI Multi–Model Probability Forecast for Precipitation for February–March–April 2024, Issued January 2024

IRI 3-Month Multi-Model Probability Precipitation Forecast

IRI Multi–Model Probability Forecast for Precipitation for June–July–August 2024, Issued May 2024

Center for Hy

Center for Hydrometeorology and Remot

W California Invine

Future Model Scenarios (2006-2099)

Middle East and North East Africa future model projections

Dr. Chiyuan Miao - BNU

IPCC AR5 Scenarios

Time period: 2006-2099

RCP8.5 ("High": 8.5 W/m², Equivalent CO₂ conc. 936 ppm by 2100)

.001

.005

.01

.05

.1

.2

.3

.4

.5

-.1

-.2

-.5

-.4

-.3

Center for Hydrometeorology & Remote Sensing, University of California, Irvine

-.01 -.005 -.001

-.05

Resolution: 0.5°x0.5°

IPCC AR6 Scenarios

Future Modeling Scenarios

North East Africa

Time period: 2006-2099

RCP8.5 ("High": 8.5 W/m², Equivalent CO₂ conc. 936 ppm by 2100)

Precipitation change (mm per month per decade)

-15 -12 -9 -6 -3 -1.5 -.3 -.15 -.03 .03 .15 .3 1.5 3 6 9 12 15 Resolution: 0.5°x0.5° Center for Hydrometeorology and Remote Sensing, University of California, Irvine

Take Home Message

• Despite advances to date, predicting the future Hydro-Climate variables will remain a major challenge:

Factoring in Resiliency in water resources system's design and credibility of information 5....

• Long-term and sustained observation programs are critical, especially for model verification. Without some degree of verifiability, hard to expect their use

Thank You for Listening and wish a great learning experience in the next two weeks

Somewhere in New Mexico, USA - Photo: J. Sorooshian