aRPa FVG

agenzia recionale per la

Hydrological measurements and modelling in FVG - part 1

6th Workshop on Water Resources in Developing Countries
Giovanni Bonafè
Regional Center for Environmental Modelling, ARPA-FVG

aRPaFVG

observations

discharge estimation
evapotranspiration
hydrological balances

observations

Radar sensor (microwave) on Torre in Tarcento (station N105)

altezze idrometriche
medie, minimi e massimi mensili di misure orarie gennaio 2000 - febbraio 2022

altezze idrometriche e portate

misure saltuarie tra marzo 2005 e novembre 2021

- We have at least twenty-year historical series for the main watercourses near the mouth.
- For Aussa, we lack data downstream of the Corno confluence.
- For the Isonzo, we also have hourly flow estimates, but we do not know when flow measurements were actually taken.
- We lack information on sediments and vegetation, which would allow us to assess the representativeness of flow measurements over time.
- In the years 2015-2020, few flow measurements have been taken (except for the Tagliamento).
- In more recent years, new observational campaigns have been carried out (data not shown here).

©usgs.gov

discharge estimation

aRPaFVG Estimation of discharge

- Measuring the discharge Q of a watercourse requires resources (personnel, time, instruments).
- We have sporadic measurements of Q, but continuous automatic measurements of water levels h.
- We can calibrate rating curves, which are empirical functions that relate water level to discharge

$$
Q=Q(h)
$$

aRPaFVG Estimation of discharge

- Measuring the discharge Q of a watercourse requires resources (personnel, time, instruments).
- We have sporadic measurements of Q, but continuous automatic measurements of water levels h.
- We can calibrate rating curves, which are empirical functions that relate water level to discharge

$$
Q=Q(h)
$$

- Extrapolating rating curves to low-flow or flood regimes not covered by discharge measurements can lead to errors.
- Significant changes in roughness, slope, or cross-section due to sedimentation or vegetation may invalidate the rating curves.
- We assume that the rating curves follow a generalized power law form

$$
Q=a(h-c)^{f(h)}
$$

- We calibrate a hierarchical Bayesian model for each watercourse [Hrafnkelsson et al., 2022]
- We utilize the R package bdrc [Hrafnkelsson et al., 2021]

altezze idrometriche misurate e portate stimate

medie, minimi e massimi mensili di dati orari
gennaio 2000 - febbraio 2022

elaborazioni: ARPA-FVG, Centro Regionale Modellistica Ambientale

aRPaFVG Estimation of discharge

- In addition to hourly discharge estimates for the Isonzo (already available), we now have data for Aussa, Cormor, Stella, and Tagliamento.
- Since we employed a Bayesian method, we can also assess uncertainty and the probability of exceeding a threshold.
- The Tagliamento river exhibits significant variability (is it real?)

evapotranspiration

- We will see that the FUSE software includes a wide range of hydrological models; all assume that the discharge Q of a watercourse at a point is a function of the precipitation P and evapotranspiration E affecting the upstream basin of that point.
- We calculate P and E from the outputs of WRF.
- P is the average precipitation in the basin.
- We compute E by averaging the estimates for each cell obtained with three different methods across the basin.
- From the latent heat flux LHF:

$$
E=L H F / \lambda
$$

where $\lambda=\lambda\left(T_{a}\right)$ is the latent heat of evaporation.

- Penman-Monteith formula for short vegetation [Richard et al., 1977]:

$$
Q=Q_{\text {grass }}\left(T_{a}, R H, \text { Rad, prec, ws }\right)
$$

- Penman-Monteith formula for tall vegetation [Walter et al., 2000]:

$$
Q=Q_{\text {crop }}\left(T_{a}, R H, \text { Rad, prec, ws }\right)
$$

- We utilize the R packages bigleaf [Knauer et al., 2018] and Evapotranspiration [Guo et al., 2022].

- We can estimate the average evapotranspiration in a basin directly from the latent heat flux or from some variables typically measured at weather stations.
- We can compare predicted and measured ET.
- The Penman-Monteith method provides higher estimates if taller vegetation is assumed.
- The estimate from LHF is higher in summer and lower in autumn compared to the P-M method.

hydrological balances

- If the watershed is closed

$$
\begin{aligned}
\text { Precipitation }(P) & - \text { Evapotranspiration }(E) \\
& - \text { Change in Storage }(\Delta S)=\text { Discharge }(Q)
\end{aligned}
$$

- Over a few years, the variation of reserves ΔS (glaciers, lakes, aquifers) should be relatively small compared to the other components

aRPaFVG Watershed budgets

- The Isonzo watershed budget closes within its own basin with precipitation, evapotranspiration, and outflow at the mouth
- The Tagliamento releases to the basins of other rivers a portion of the water precipitated within its own basin
- Stella and Cormor likely receive water from the Tagliamento basin via subsurface flow through the soil
- During the calibration phase of hydrological models, these factors need to be taken into account

© wilderness-society.org
Tagliamento "is a remarkable floodplain river that retains the dynamic nature and morphological complexity that must have characterized most Alpine rivers in the pristine stage." [Tockner et al., 2003]

Thank you for your attention

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

國 Guo, D., Westra, S., and Peterson, T. (2022).
Evapotranspiration: Modelling Actual, Potential and Reference Crop Evapotranspiration.
R package version 1.16.
Hrafnkelsson, B., Rognvaldsson, S., Jansson, A. O., and Vias, R. (2021).
bdrc: Bayesian Discharge Rating Curves.

```
R package version 1.0.0.
```

(Hrafnkelsson, B., Sigurdarson, H., Rögnvaldsson, S., Jansson, A. Ö., Vias, R. D., and Gardarsson, S. M. (2022).

Generalization of the power-law rating curve using hydrodynamic theory and Bayesian hierarchical modeling.
Environmetrics, 33(2):e2711.
R- Knauer, J., El-Madany, T. S., Zaehle, S., and Migliavacca, M. (2018). Bigleaf - An R package for the calculation of physical and physiological ecosystem properties from eddy covariance data.
PLoS ONE, 13(8):e0201114.

Richard, G., Pereira, L., Raes, D., and Smith, M. (1977).
Crop Evapotranspiration (guidelines for computing crop water requirements) FAO Irrigation and Drainage Paper No. 56 FAO. Water Resources, Development and Management Service Rome, Italy.
冨 Tockner, K., Ward, J. V., Arscott, D. B., Edwards, P. J., Kollmann, J., Gurnell, A. M., Petts, G. E., and Maiolini, B. (2003).

The Tagliamento River: a model ecosystem of European importance. Aquatic Sciences, 65:239-253.
Walter, I. A., Allen, R. G., Elliott, R., Jensen, M. E., Itenfisu, D., Mecham, B., Howell, T. A., Snyder, R., Brown, P., Echings, S., et al. (2000).
Asce's standardized reference evapotranspiration equation.
Watershed management and operations management, 2000:1-11.

