aRPa FVG

agenzia recionale per la Protezione dell'ambiente Del friuli venezia ciulia

Hydrological measurements and modelling in FVG - part 2

6th Workshop on Water Resources in Developing Countries
Giovanni Bonafè
Regional Center for Environmental Modelling, ARPA-FVG

aRPa FVG
 summary

model HYPE

HYPE: verification

FUSE: calibration

FUSE: verification

model HYPE

[Hundecha et al., 2016]
https://hypeweb.smhi.se/explore-water/forecasts/

trend of the monthly mean
1981-2010

data: world-wide HYPE model run by SMHI error bars show 95\% confidence interval

trend of the monthly mean

1981-2010 daily data

data: world-wide HYPE model run by SMH error bars show 95\% confidence interval

aRPaFVG HYPE: Statistics

- SMHI provided daily output for the 1981-2010 thirty-year period for all major watercourses globally.
- The global operational configuration is straightforward, but there is potential to execute the model with greater detail and fine-tune it at a local scale.
- North Adriatic: flow rates decrease in summer and increase in winter.
- Summer decrease is statistically significant only for the Po River and the Marano and Grado Lagoon.

HYPE: verification

monthly median discharge

simulated discharge: world-wide HYPE model run by SMHI
estimated discharge: from hydrometric levels (bars represent interquartile range)

symbol description formula

NMB $\underset{\text { bias }}{\text { normalized mean }} \overline{\bar{O}} \sum_{i=1}^{n}\left(M_{i}-O_{i}\right)$
NMGE $\underset{\substack{\text { normalised mean } \\ \text { gross error }}}{\substack{\bar{O}}} \sum_{i=1}^{n}\left|M_{i}-O_{i}\right|$
r Pearson correlation

$$
\frac{1}{n-1} \sum_{i=1}^{n} \frac{\left(M_{i}-\bar{M}\right)}{\sigma_{M}} \cdot \frac{\left(O_{i}-\bar{O}\right)}{\sigma_{O}}
$$

coefficient

IOA | Index of |
| :--- |
| Agreement | \(\left\{\begin{array}{l}1-\frac{\sum_{i=1}^{n}\left|M_{i}-O_{i}\right|}{2 \cdot \sum_{i=1}^{n}\left|O_{i}-\bar{O}\right|} \Leftarrow \frac{\sum_{i=1}^{n}\left|M_{i}-O_{i}\right|}{2 \cdot \sum_{i=1}^{n}\left|O_{i}-\bar{O}\right|} \leq 1

2 \cdot \sum_{i=1}^{n}\left|O_{i}-\overline{-}\right|

\sum_{i=1}^{\sum_{i=1}\left|M_{i}-O_{i}\right|}-1\end{array} \Leftarrow \frac{\sum_{i=1}^{n}\left|M_{i}-O_{i}\right|}{2 \cdot \sum_{i=1}^{n}\left|O_{i}-\bar{O}\right|}>1\right.\).

index	river	annual skill scores		
		min	ave	\max
IOA	Aussa+Cormor	-0.65	-0.35	0.04
	Stella	-0.67	-0.28	0.25
	Tagliamento	-0.75	-0.07	0.57
NMB	Aussa+Cormor	-0.82	-0.71	-0.55
	Stella	-0.72	-0.55	-0.23
	Tagliamento	0.20	0.62	0.85
NMGE	Aussa+Cormor	0.59	0.73	0.82
	Stella	0.59	0.68	0.86
	Tagliamento	0.68	1.00	1.40
	Aussa+Cormor	0.40	0.62	0.76
	Stella	0.23	0.58	0.84
	Tagliamento	0.27	0.52	0.72

aRPaFVG HYPE: Statistics

- Inputs to the Lagoon are significantly underestimated.
- Isonzo: Seasonal trend well reproduced, but constant overestimation.
- Tagliamento: Significant overestimation in the rainiest months, when some of the waters likely recharge the artesian aquifer or are transferred to neighboring basins.
- Decent correlation, but unsatisfactory Index Of Agreement.

FUSE: calibration

- FUSE [Clark et al., 2008]
- R package fuse [Vitolo et al., 2016]
- FUSE proposes 1248 possible architectures of simple hydrological models, derived from 4 archetypes.
- Each architecture has a given number of parameters, whose values are modifiable, each within a suggested range.
- For each basin, the most performing models are iteratively selected (highest IOA during the period 2014-2017, excluding a 100-day spin-up), testing all possible architectures with different combinations of parameters, totaling about one hundred thousand simulations, i.e., over one hundred million simulated days.

[Lane et al., 2019] adapted from [Clark et al., 2008]

elements	options	rivers			
		Corm	Stel	Ison	Tagl
rainfall error	additive	X	X	-	X
	multiplicative	-	-	X	-
upper soil layer	defined by a single state variable	x	x	x	x
lower soil layer	baseflow reservoir of fixed size	X	-	-	X
	baseflow reservoir of unlimited size, frac rate	-	x	-	-
	tension reservoir plus two parallel tanks	-	-	x	-
surface runoff	TOPMODEL parameterization	X	X	X	X
vertical drainage	defined by moisture content in lower layer	X	X	X	X
evapotranspiration	root weighting	X	-	-	X
	sequential evaporation model	-	x	x	-
interflow	interflow allowed	X	X	X	-
	no interflow	-	-	-	x
routing	use a Gamma distribution	X	x	X	X

parameters	rivers			
	Corm	Stel	Ison	TagI
additive rainfall error (mm)	3.1	9	-	-1.8
multiplicative rainfall error (-)	-	-	1	-
depth of the upper soil layer (mm)	46	280	240	51
depth of the lower soil layer (mm)	3200	2500	2400	4900
fraction total storage in tension storage (-)	0.65	0.41	0.51	0.29
fraction of roots in the upper layer (-)	0.41	-	-	0.11
model percolation multiplier for dry soil layer (-)	29	180	160	36
model percolation expon. coeff. for dry soil layer (-)	3.7	4.4	4	2.6
interflow rate (mm day ${ }^{-1}$)	360	350	750	-
baseflow rate (mm day ${ }^{-1}$)	860	-	-	33
baseflow exponent (-)	6.1	4.6	9.4	2.8
mean value of the topographic index (m)	6.5	8.4	5.2	5.7
shape param. for the topogr. index Gamma distrib. (-)	4.7	3.7	3.9	5
time delay in runoff (days)	1.4	1.8	1.9	0.87
baseflow depletion rate (day ${ }^{-1}$)	-	$1 / 59$	-	-
fraction storage in 1st baseflow reservoir $(-)$	-	-	0.60	-
fraction of percolation to tension storage $(-)$	-	-	0.33	-
baseflow depletion rate 1st reservoir (day ${ }^{-1}$)	-	-	$1 / 5.6$	-
baseflow depletion rate 2nd reservoir (day ${ }^{-1}$)	-	-	$1 / 42$	-

- The upper soil layer, surface runoff, and percolation are represented with the same algorithm across all basins.
- By imposing an additive error in precipitation, we can account for the fact that watershed budgets do not close.

FUSE: verification

Tagliamento

monthly averaged discharge
2014-2018

monthly averaged discharge

Above: FUSE without correction for water balance gaps; Below: with correction

evapotranspiration	Index of Agreement			
calculation method	Cormor	Isonzo	Stella	Tagliamento
from latent heat flux	0.48	0.72	0.61	0.60
Penman-Monteith (crop)	0.39	0.70	0.62	0.61
Penman-Monteith (grass)	0.37	0.69	0.62	0.51

evapotranspiration	Index of Agreement			
calculation method	Cormor	Isonzo	Stella	Tagliamento
from latent heat flux	0.48	0.72	0.61	0.60
Penman-Monteith (crop)	0.39	0.70	0.62	0.61
Penman-Monteith (grass)	0.37	0.69	0.62	0.51

In some cases only, the different methods used in estimating ET lead to significantly different performance in flow prediction.

period	river	skill scores			
		NMB	NMGE	r	IOA
train (2014-2017)	Cormor	-0.03	0.24	0.39	0.48
	Isonzo	-0.28	0.61	0.67	0.72
	Stella	-0.09	0.18	0.60	0.62
	Tagliamento	-0.14	0.36	0.32	0.61
test (2018)	Cormor	-0.01	0.20	0.49	0.50
	Isonzo	0.44	0.98	0.65	0.56
	Stella	-0.03	0.18	-0.01	0.47
	Tagliamento	-0.05	0.50	0.49	0.55

	HYPE	FUSE
Who runs it	SMHI	ARPA-FVG
Open source	Yes	Yes
Domain	Global	FVG
Sub-basins	Yes	No
Snow	Yes	No
Pollutants	Nitrates, phosphorus	No
Lakes	Yes	No
Aquifers	Not active	No
Land cover	Yes	No
Calibration	Large areas or global	Individual basin

river	index	HYPE			FUSE	
		min	ave	max	train	test
Stella	IOA	-0.67	-0.28	0.25	0.62	0.47
	NMB	-0.72	-0.55	-0.23	-0.09	-0.03
	NMGE	0.59	0.68	0.86	0.18	0.18
	r	0.23	0.58	0.84	0.60	-0.01
Tagliamento	IOA	-0.75	-0.07	0.57	0.61	0.55
	NMB	0.20	0.62	0.85	-0.14	-0.05
	NMGE	0.68	1.00	1.40	0.36	0.50
	r	0.27	0.52	0.72	0.32	0.49

river	index	HYPE			FUSE	
		min	ave	max	train	test
Stella	IOA	-0.67	-0.28	0.25	0.62	0.47
	NMB	-0.72	-0.55	-0.23	-0.09	-0.03
	NMGE	0.59	0.68	0.86	0.18	0.18
	r	0.23	0.58	0.84	0.60	-0.01
Tagliamento	IOA	-0.75	-0.07	0.57	0.61	0.55
	NMB	0.20	0.62	0.85	-0.14	-0.05
	NMGE	0.68	1.00	1.40	0.36	0.50
	r	0.27	0.52	0.72	0.32	0.49

aRPa FVG FUSE: Verification

- Introducing an additive error in precipitation parameters that reflects the observed gaps in watershed budgets significantly improves prediction performance for rivers Stella and Cormor.
- Only in some cases do the different methods used in estimating ET result in significantly different flow prediction performance.
- Generally, ET calculated from LHF leads to the best predictions.
- Locally calibrated FUSE predictions generally outperform global HYPE predictions.

Thank you for your attention

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.
(-i Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E. (2008).
Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models.
Water Resources Research, 44(12).
围 Hundecha, Y., Arheimer, B., Donnelly, C., and Pechlivanidis, I. (2016).
A regional parameter estimation scheme for a pan-European multi-basin model.
Journal of Hydrology: Regional Studies, 6:90-111.
Lane, R. A., Coxon, G., Freer, J. E., Wagener, T., Johnes, P. J., Bloomfield, J. P., Greene, S., Macleod, C. J., and Reaney, S. M. (2019).
Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain. Hydrology and Earth System Sciences, 23(10):4011-4032.
(Vitolo, C., Wells, P., Dobias, M., and Buytaert, W. (2016). fuse: An R package for ensemble Hydrological Modelling.

