E 0k L D@ B T
S W e L AT YR
(B RSOt T
AR T T e O

e

Dynamic hybrid workflows for Deep

Learning on HPC infrastructure

lacopo Colonnelli, Assistant Professor (RTD-A)
Universita degli Studi di Torino

Member of the CWL Technical Team

y ICS

Centro Nazionale di Ricerca in HPC,
Big Data and Quantum Computing

The Abdus Salam

International Centre
\ for Theoretical Physics
UNIVERSITA
DI TORINO

— e ke s e s
R e

Reproducibility and FAIRness

Reproducibility

(Reproducible WOrkflowg Standardised Assessment
* Version control repositories G s
» Scripts / containerisation n
« Recipes Common code base -
* Accessible forcing data
\« Attached DOIs W,

N e A ‘8@5 nteroperable

indable

ccessible

Accelerate debugging & development
Recognition for “non-standard” outputs
Democratisation of skills

Shared knowledge base

eusable

R m B SIS
st)

ne Learning

Reproducibility in Mach

Improving Reproducibility in Machine Learning Research
(A Report from the NeurIPS 2019 Reproducibility Program)

Joelle Pineau JPINEAUQCS.MCGILL.C
School of Computer Science, McGill University (Mila)
Facebook AI Research

CIFAR

Philippe Vincent-Lamarre
Ecole de bibliothéconomie et des sciences de l'information,
Université de Montréal

PHILVLAM@QGMAIL.CON

Koustuv Sinha KOUSTUV.SINHA@MAIL.MCGILL.C
School of Computer Science, McGill University (Mila)

Facebook AI Research

Vincent Lariviére VINCENT.LARIVIEREQUMONTREAL.C

A Step Toward Quantifying Independently
Reproducible Machine Learning Research

Edward Raff
Booz Allen Hamilton

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

Ecole de bibliothéconomie et des sciences de linformation,
Université de Montréal

Alina Beygelzimer BEYGEL@YAHOO-INC.COM

Yahoo! Research

Florence d’Alché-Buc
Télécom Paris,
Institut Polytechnique de France

FLORENCE.DALCHEQTELECOM-PARIS.FR

Emily Fox EBFOX@CS.WASHINGTON.EDU
University of Washington

Apple

Hugo Larochelle HUGOLAROCHELLE@QGOOGLE.COM
Google

CIFAR

State of the Art: Reproducibility
in Artificial Intelligence

Odd Erik Gundersen, Sigbjgrn Kjensmo
Department of Computer Science
Norwegian University of Science and Technology

Workflows

A workflow is an abstraction that models a complex and modular
working process as a set of steps and their inter-dependencies.

Workflows

raivd s s

Rawldata Clean data Models
I ! !

* Experiments,
<«€—— Exploratory analysis,
Reporting

Temporary

—>

Production
components

Monitoring data

Now o Malke e Przea

www.salute.gov.it

-

Workflows

Data Retrieval

Skip simple model during reiteration

Feature
Data Extraction and Feature Scaling Build a
Preprocessing Feature and selection ——>» simple
Engineering model

Data Preparation

T Reiterate till satisfactory model performance

............0‘....‘....‘0..........0‘..

| Optimization and | Deployment & Build The ﬂmﬂg
Retraining Monitoring model Algorithm

Workflow Semantics

* Host semantics define the subprogram in each workflow step,
usually expressed in a general-purpose progromming languoge
(e.g., Java, Python, C++) or as a shell script

* Coordination semantics define the interactions between steps.
Coordination semantics can be either interleaved with host
semantics or expressed through o declarative markup syntax,
an imperative Domain Specific Language (DSL), or a graph-based
modelling interface

O HE B N L e Do
G eSS R L e O
e Sk e g

1
i
ﬁ‘a

Workflow Lifecycle

* During the design phase, a domain expert describes the different
functional components of an application and their dependencies
as a workflow model

* During the runtime phase, a WMS deploys and manages the
computational units required for the workflow execution

e

L K

)

Workflow Management

ystems (WMSs)

Tools in charge of exposing coordination semantics
to the users and orchestrating workflows

Workflow Management Systems (WMSs)

WMS

AN

Workflow Workflow
platform runtime

SN

Interleaved Independent
semantics semantics

/ SN

Task-based Imperative Declarative
programming libraries coordination language coordination language

= - T T Tt e Y A W L e
=B : 3 "’»4‘-:-::’%9?#** s® 0@‘&%@,5 1

= == ua--d-»_.,-:g-..;!:-‘-:-.- =) #’#* . . ‘@.oooe,} .
=5 B e e T % T e 2 e

COTS

Workflow Platforms

* Support both design and runtime phases, usually through
advanced Graphical User Interfaces (GUI)

* Support all asp

ects of workflow management, e.g.,, provenance

collection, catalogs, and fault-tolerance

* Usually tightly coupled with a specific underlying architecture
(e.g., the Grid), without focusing on portability

* They are usual
configured, as -

y complex to be installed and properly
they rely on low-level external libraries that must

be independent

y managed (e.g., HTCondor or GAP interface)

10

A

\J.

11

= L T T Tt e Y A W L e

el eRaReR e e S e i
e s X g et

N s " e it e Do

Task-based Programming Libraries

* Users identify and annotate functions that can be executed as
asynchronous remote tasks

* Synchronicity is typically implemented with the futures paradigm

* The workflow execution plan, typically a layered dataflow model,
is built just-in-time by the runtime engine

* Privilege performance over accessibility, exposing a low-level
programming model directly to the user

* Task-based programming libraries commonly offer support for a
limited set of host languages, resulting in limited reusability and
extensibility

12

APACHE [f DASK

STORM J‘z
Soark

Imperative Coordination Language

* Workflow are described using an imperative DSL, which is
commonly a subset of a general-purpose programming language

* Apache Airflow and Snakemake are essentially Python scripts
extended by declarative code that can be executed on
distributed infrastructures

* Makeflow exposes a technology-neutral syntax similar to Make

* The Nextflow framework builds on the Unix pipe concept to
expose an explicit dataflow model

* Toil and DagOnStar model workflows as pure Python scripts,
through dedicated APls

14

Imperative Coordination Language

Apache

Airflow
nexc flow

_? (| Makeflow ol

Massively Parallel Workflows

A framework for reproducible data analysis

15

£

: : Sim: e S kI Tl T B Ve
L %“inf”:'-':':tﬁs%w Hx¥e®eSie: 17
n£.¢4;n - 35 #* b ® o 88y >

= e It T uxP e v

&

o

Declarative Coordination Language

* The Common Workflow Language (CWL) is an open standard for
describing workflow DAGs following a JSON or YAML syntax

* Ofther examples of workflow modelling open standards are the
Workflow Description Language (WDL) and the Serverless
Workflow Specification

* Declarative coordination languages are commonly less expressive
than imperative ones, but it's easier for WMSs to apply rewriting
techniques for optimization, improving performance portability

* Also, declarative languages are usually product-agnostic,
improving portability and reusability. An exception is DAX, the
Pegasus’ XML-based low level representation of DAGs

16

Declarative Coordination Language

2 Pegasus COMMON

> wdl} oy

LANGUAGE

Serverless
Workflow
Specification

1/

Common Workflow Language
(CWL)

< T - — e ; = s Eane ¥
B e e
B e

i ¥ LR o
ey e B

* Open standard for describing analysis
workflows and tools
* Defined with a schema, specification and

test suite Pt software freedom

* Portable and scalable across a variety p;:ﬂggd?r conservancy
of software and deployment |
environments COMMON

* Designed to meet the needs of data- WORKFLOW
iInfensive science to improve the LANGUAGE

FAIRness of their workflows

19

s>

Common Workflow Language (CWL)

* Human readable (YAML or JSON)

* CWL file contains o CommandLineTool or Workflow description

\smn: Vit

class: Workflow

cwlVersion: v1.2

class: CommandLineTool inputs:
rna_reads_fruitfly: File

baseCommand: echo

steps:
wiiilin s quality_control:
P ’ run: bio-cwl-tools/fastqc/fastqc_2.cwl
message_text: P
pre: str}ng reads_file: rna_reads_fruitfly
inputBinding:

out: [html_file]
position: 1

outputs:
outputs: [] quality_report:
type: File

outputSource: quality_control/html_file

20

Common Workflow Language (CWL)

* Human readable (YAML or JSON)
* CWL file contains o CommandLineTool or Workflow description

* Inputs/outputs are explicitly stated R
class: Workflow
cwlVersion: v1.2 _ :
. : 1Nputs: inputs:
ELRREC SIS T rna_reads_fruitfly: File - rna_reads_fruitfly: File
baseCommand: echo .
steps:
Senidns quality_control:
P ’ run: bio-cwl-tools tqc/fastgc_2.cwl
message_text: —efjmmmmmm—n message_text: Hello world! e
FYDE: Str}ng reads_file: rna_reads_fruitfly
1nputBinding: out: [html_file]

position: 1
outputs:
outputs: [] %ahtyrepor*\
type: File

outputSource: quality_control/html_file

21

Common Workflow Language (CWL)

* CWL Types: strings, numbers, files, or records that

combine these; or arrays of any of these types

* Union and optional types too

cwlVersion: vl1.2
class: Workflow

cwlVersion: v1.2

inputs: : =
class: CommandLineTool P : - HOPMES &
rna_reads_fruitfly} File rna_reads_fruitfly} File
baseCommand: echo
steps:

quality_control:

message_text: message_text: Hello world! ;E?: i b el e

FYPEi §tr}ng| reads_file: rna_reads_fruitfly
inputBinding: out: [html_filel]
position: 1

Implicit string type outputs:

quality report:
type] File
outputSource: quality_control/html_file

inputs:

outputs: []

22

S BT BT m B WG LW . ® ento. b 2 o e ' :
— | e o R Y e S el ; Y5 s b o

£ - B o o -.t_:‘,b«‘j"-%- - W*#* ‘ . .@ ° T . ”"‘,. %
E B ™M s Y 2006 8 R el Do A o g ; . YN RUATDITE

Common Workflow Language (CWL)

#!'/usr/bin/env cwl-runner
cwlVersion: v1.2

class: Workflow CWL Supports Scatfer/Gather parallel

requirements: pa’r’rerns at the s’rep level since v1.0.
ScatterFeatureRequirement: {}

inputs:

T i If scatter declares more than one

input parameter, scatterMethod

steps: _ _
echo: describes how to decompose the input
run: hello_world.cwl : . :
scatter: message intfo a discrete set of jobs (dofproduct,
in:
nessage: message_array nested crossproduct, or flaf

e crossproduct).

outputs: []

25

#!/usr/bin/env cwl-runner
cwlVersion: v1.2
class: CommandLineTool
baseCommand: node
hints:
DockerRequirement:
dockerPull: node:slim
inputs:
src:
type: File
inputBinding:
position: 1
outputs:
example_out:
type: stdout
stdout: output.txt

AOUN s

CWL Supports soffware confainers ot
the CommandLineTool level since vI1.0.

The DockerRequirement directive
allows users to specifty the Docker

image that should execute the
command

Multiple CWL implementations can
support different container runtimes

24

5 L Ba B

%’?JP’*#“ ": ;

s AL DL DO ot

HTCOHM i_/ IEM Spectrum LSF @Bﬂglne

- E:. (\ . 4’%, Apache
clurm \4 PBS Works Eégs MESOS

workinad managar

Authors of CWL
tool and workflow
descriptions

kubernetes 3 Google Cloud
£ openstack. «/spemn|EC2 /N Azure

ENVIRONMENT

MODULES

“

25

CWL Ecosystem — iewer

§ About APl Explore

Common Workflow Language Viewer

This tool visualises and lists the details of a CWL workflow with its inputs, outputs and steps and packages the files involved into a downloadable Research Object Bundle (zip file
with metadata in a manifest), allowing it to be easily viewed and shared.

Want to make your workflows look their best in CWL Viewer? Find out about CWL recommended practices

Workﬂow URL Q Fetched 2023-07-02 13:15:38 GMT - Download as Research Object Bundle + Verified with cwitool version 3.1.20221201130942
Permalink: [?)] ntips//waid.org/cwl/view/git/1 7o85ea19d8152: 6 35250561 TRACBSTR-workfiow.cwl .
Provide a github.com, gitlab.com or Git repository link to the workflow (or directory of workflows) here Download Image
KX T
Don't know what to view? Try these from common-workflow-language/workflows: compile, make-to-cwl, lobSTR or explore the collection 'E LY] ‘Workflow Inputs

1

1

]

l strinfo |E| rg-sample Il rg-lib ” output_prefix ” reference ” noise_model | i
(AT)i A% 1 I

URL to workflow

0 https://github.com/common-workflow-language/workflows/tree/lobstr-v1/workflows/lobSTR/lobSTR-workflow.cwl \i\rgﬂample ‘p%lb mﬂpquenm
| IobSTR ” "aligned.sorted.bam" |

CWL Viewer © 2016-2022 Common Workflow Language Project and contributors. Distributed under Apache License, version 2.0 (required attribution notices).
(Privacy policy)

$ boscel [l EOHPCUA

output_prefix noise_model

Workflow Outputs

Inputs/Outputs Tools Nested Workflows Default Values | Selected

https://view.commonwl.org

26

https://view.commonwl.org/

CWL Ecosystem — WorkflowHub

AbWorkflowHub 9 - st @

M amse, Sty Cummas T gungs JONR, .o, finanas o Vi, asssamnes o B faulh emmspene (283 WOfkﬂOWS ,

WorkflowHub

‘ o — L

110 teams

Wiy D

EOSC service provided by ELIXIR, =" LS Lo DOLS (DataCite &

i

R

103 organisations

EOSC-Life, The University of Manchester S

Launched Sept 2020 m— e (
Open Development (Json:apt] @ Bioschemas (

360 people AJ

https://workflowhub.eu

27

https://workflowhub.eu/

@ Enabling reproducible, transparent research.

N

RO-Crate

\\\\\

\W\

&)
&
>

Linked
Open Data

Executable

@ scientifichypothesis

N
CJ | SLIDES

PUBLICATIONS

N

. DATA </>| METADATA
D

|/~| RESULTS I
D

£| WORKFLOWS

{@}RO-CrEEe]

File
SoftwareSourceCode A HowToSte
ComputationalWorkflow B ~ P
HowTo ey
Pt SoftwareApplication position: 3
@id: packed.cwl
Y hasPart name: cwitool
\ ///
“\ instrument_- < instrument workExample
il /
\\ OrganizeAction ControlAction
input \ e el gl
output name: workflow | object *| name: orchestrate
\ engine run grep
instrument \
- result
o«
CreateAction agent | person or

name: workflow run

*

*
FormalParameter

5
exampleOfWork

Organization

N

SoftwareApplication

name: grep

4

: Arument

=] object output object
result i 2
. v
File or . object CreateAction
PropertyValue result Pt gy

D Prospective provenance (plan)
D Retrospective provenance (what happened)

https://www.researchobject.org/workflow-run-crote/

28

https://www.researchobject.org/workflow-run-crate/

CWL Community

Website: https://www.commonwl.org/

User guide:
https://www.commonwl.org/user_guide/
Forum: hittps://cwl.discourse.group/

Chat: https://matrix.to/#/#cwl:matrix.org
GitHub: https://qgithub.com/common-
workflow-language/

Weekly video chat:
https://groups.google.com/forum/#lforum/co

mmon-workflow-language-videochat-invites

$

Common Workflow Language
CWL Community Support Donate

Getting Started

Support, Community and Contributing
Specification

Implementations

Repositories of CWL Tools and Workflows
Software for working with CWL

Projects the CWL community is participating in
Contributers and Governance

Getting Started

The CWL user guide provides a gentle introdu
line tool and workflow descriptions.

Browse CWL Implementations to find a softwz
CWL Recommended Practices

CWLOBFETORHFEFFa X isa15n
Japanese.

A series of video lessons about CWL is availa
sblumcnesnamu(Computation Management) fr

Support, Community

The recommended place to ask a question ab
Group. Previously we used biostars.org where

If vou are interested in learnina mare or contri

The Common Workflow Language (CWL) is an open standard for descr
a way that makes them portable and scalable across a variety of softwe
workstations to cluster, cloud, and high performance computing (HPC) «
meet the needs of data-intensive science, such as Bioinformatics, Medi
Physics, and Machine Learning.

CWL is developed by a multi-vendor working group consisting of organi
enable scientists to share data analysis workflows. The CWL project is
the Open-Stand.org principles for collaborative open standards develop
Freedom Conservancy and is formally managed by the elected CWL le.
made by the CWL community which is open for participation by anyone

Common Workflow Language

§ & https://www.commonwl.org W @commonwl

B Repositories 34 & Packages A People 78 Ay Teams 3

Pinned repositories

[user_guide B cwl-vi.2

The CWL v1.0 user guide Released CWL v1.2 specific

@HTML ¥ 12 % 29 @ Common Workflow Langt
S

29

https://www.commonwl.org/
https://www.commonwl.org/user_guide/
https://cwl.discourse.group/
https://matrix.to/
https://github.com/common-workflow-language/
https://github.com/common-workflow-language/
https://groups.google.com/forum/
https://groups.google.com/forum/

ession
COMMON

WORKFLOW
LANGUAGE

https://github.com/Sera?1/SMR394-1-
ICTP/blob/main/Day2/Tutorial-Workflow/BEADME.md

May 29, 2024 ICTP Advanced School on Applied ML 30

https://github.com/Sera91/SMR3941-ICTP/blob/main/Day2/Tutorial-Workflow/README.md
https://github.com/Sera91/SMR3941-ICTP/blob/main/Day2/Tutorial-Workflow/README.md

AR

Y
A
w

k3
*%

s
54

e

BB
e ;
e
L =
A S
Lo i E

|

Hybrid workflows

Scientific Workflows
CHALLENGES:

* Each step of a distributed application can
require multiple infercommunicating
agents (e.g., a Spark cluster or a micro-
services architecture);

* Large-scale architectures can be
heterogeneous (e.g., Cloud+HPC
environments and Classical+Quantum
computing);

* Large-scale architectures can be modular,
and modules can be independent of each

other (e.g., modular HPC and
infrastructure federations)

Driver Program

/_; Task

Worker Node

Executor

Cache

Task

SparkContext

¥ Cluster Manager

\ Worker Node
\J Executor | cache
p

Task

Task

0
Quantum
devices GPUs
\ o eSS
D *3‘ \

|

ASICs FPGAs CPUs
’ U]
e i h o3 2
— | T
& mlml \) —
i . __Cloud center A e
Cloud Tier e ! ' e
@ Hop @ Hop a Hop
2¢ network 3 f2¢ network ¢ f2c network &
ﬂ Hop @ Hoj a Hop
AP vop == & o
‘ ______ — . __________ —
Fys . e 2f network
Fog Tier Fog piode f2f network Fog node Fog nod
: : i
ToT region 1 E ToT region 2 E ToT region 31
H H '
A A A
| 5. -
- | — - = =
End Tier 1ol end devices 1ol end dev IoT end devi

A directed bipartite graph encoding ™ /\ D>)
executable . data and :
between them

Topology of deployment locations

A directed groph where the nodes are the
locations in charge of executing steps and
the links are directed communication
channels between locations

Mapping relations

Many-to-many relations stating which locations are in
charge of executing each workflow step

35

L“‘l‘

e T A5 T A
o ;,’s-::l'%”iﬂ"f(\ LW

=

-%’%6?5»'@??9&*# : : :
@

odel In’rerpre’ru’rio\n’

S1
A step s becomes fireable o }APS
(ready for execution) when: Sj
* Each input port In(s) 5o ' S3

contains the right number of

* |ts related location is
deployed

* All its input data have been
transferred on that location

5S4

LA

. docker

LANGUAGE

&

e
Jupyter g WORKF L0V

apptainer.org J

https://streamflow.di.unito.it v ; lux

slurm

workload manager

~

—n!

e .

Model description
files
StreamFlow file M

C StreamFlow
2

StreamFlow executor

|. Colonnelli, B. Cantalupo, I. Merelli and

M. Aldinucci, “StreamFlow: cross- Scheduler Data manager Deployment
breeding cloud with HPC,” in /EEE manager
Transactions on Emerging Topics in StreamFlow

Computing, vol. 9, iss. Y, p. 1723-1737, extensions Connector

2021. doi: 10.1102/TETC.2020.5012202.

Docker/
- _

33

https://streamflow.di.unito.it/
https://ieeexplore.ieee.org/abstract/document/9177340

L3

)
"

b
L] é

StreamFlow is listed as a production-ready implementation of CWL. It has also
been used as a software loborotory to experiment new CWL extensions in the
CWLYHPC Working Group (e.g., the Loop extension for iterative workflows)

Software Description Self-Reported Compliance Platform support

cwiltool Reference implementation of CWL CWL v1.0 - v1.2 Linux, OS X, Windows, local
execution only

Arvados Distributed computing platform for CWL v1.0 - v1.2 AWS, GCP, Azure, Slurm, LSF
data analysis on massive data sets.
Using CWL on Arvados

Toil Toil is a workflow engine entirely CWL v1.0 - v1.2 AWS, Azure, GCP, Grid Engine,
written in Python. HTCondor, LSF, Mesos, OpenStack,
Slurm, PBS/Torque

CWL-Airflow Package to run CWL workflows in CWL v1.0 - v11 Linux, OS X
Apache-Airflow (supported by
BioWardrobe Team, CCHMC)

StreamFlow Workflow Management System for ~ CWL v1.0 - v1.2 FRITUTCER o0 Kubernetes, HPC with Singularity
hybrid HPC-Cloud infrastructures (and nearly all optional features) (PBS, Slurm), Occam, multi-node
SSH, local-only (Docker,

Singularity) 3 6

a.’\

=it

SIS

B¢ .o h
g %‘*3;_# Te :f.:%%t% >

Case study: Distributed Conjugu’re Grud|en’r

Initial solution X,

l

p0=r0=h—Ax0

\/ Stand-alone
(rk:rk) job
Ap+1 =
(pk'Apk)
qd1 = <A1 pk) q; = (Az,::pk) qs = <A3,::pk> dx = (AK,:rpk>
k+ + Xp+1 = X + Ap+1Pk

Fk+1 = Iy — A1 APy

A
Reduction
r , T
Beos =(k+1: Tk+1) q = Ap,
(g,) l
Y % — 1 —
Pr+1 = rk+J1 + Br+1Pk k+1 k‘ k+1q

qd1 =

HPC Facility A HPC Facility B

petiapch g * . ® L I Ol

n_Case study: Cr

. L@ eso VD
et u X T e O N o s

Init
model

0SS~

< MARCONI100
Cluster -

MNIST

l. Colonnelli, B. Casella, G. Mittone, Y. Arfat, B. Cantalupo, R.
Esposito, A. R. Martinelli, D. Medi¢ and M. Aldinucci, “Federated
Learning meets HPC and cloud,” in Astrophysics and Space Science
Proceedings, vol 60, 2023, p. 193-199. doi: 10.100//978-5-031-

34167-0_59

StreamFlow OpenkL
MNIST acc. SVHN acc. Time MNIST acc. SVHN acc. Time
Cloud 100 rounds, 1 epoch/round 99.36% 92.74% 2h40m 97.91% 83.15% 3h06m
50 rounds, 2 epochs/round 99.37% 92.74% 2h20m 98.88% 94.21% 2h09m
Hybrid 100 rounds, 1 epoch/round 89,29% 93.06% 2h57m E - -

50 rounds, 2 epochs/round 99.34% 92.85% 1h45m - - -

https://doi.org/10.1007/978-3-031-34167-0_39
https://doi.org/10.1007/978-3-031-34167-0_39

33 Ly i e
=

Train Llama2-7B LLAMAZ2-/B LLAMA2-7B

—

rain Llama2-7B

Cross-Fuci’Ii’r- Federu’red Learnihg -
|
|

instgnce *B' “: i \B\ w; : instgnce
Aggregate . Colonnelli et al., “Cross-Facility
instances Federated Learning”, Ist EuroHPC
User Day, Bruxelles, Belgium, 2025.
LLAI‘*ZJB :
- ; Workflow model
\i/ Deployment model
D 2 0
) 9
b { P @
CINECA Leonardo Cluster CINECA Ada OpenStack Cloud VM IT4I Karolina Cluster

40

AR

Y
A
w

k3
*%

s
54

e

BB
e ;
e
L =
A S
Lo i E

|

L iterate workflows

Scientific Workflows Adoption

CHALLENGES:

* Learning a new coordination language is an extra efforts that
offen domain experts don’t do;

* Dealing with language syntax and semantics (although simple and
declarative) can be difficult for non IT people;

* People are often more comfortable in extending their knowledge
of a product they already use, instead of learning something new
from scratch.

42

CHALLENGES:

* Notebooks™ purely sequential execution flow mokes it impossible
to exploit the inherent concurrency of workflow graphs;

* The lack of a rigorous workflow model prevents to satisty non-
functional requirements like portability, reproducibility,
provenance collection;

* Using Notebooks as a high-level intferface to HPC facilities poses
crucial security challenges due to the lack of support for hybrid
topologies.

45

oy N ¥ Y Y § &R N
s xxx;'xxx‘:i.“. :;:"):)%a
gAY N

Hybrid Literate Workflows|ea /zzléj &++

Ci+2
REQUIREMENTS: Ak s \gm
* Infer inter-cell true data v /
dependenc|es 'I'O Cons'l'rUC'I' a DAG Default notebook’s executor (e.g. Jupyter kernel)

* Derive sequentially equivalent
parallel semantics to extract
concurrency from the cells

execution; [51 j [@ j

Serialisation and
communication

° EXfehd -I-he NO-I-ebOOk me'l'ada'l'd Executors deployed on other locations
format to describe: PR o
: : —>Ci—1f--eee > ¢ t-Tisleb—s
* Topologies of deployment locations - L —

* Mapping relations

* Explicit intra-cell data-parallel
constructs (e.g. scatter/gather)

ci, Scatter(In(c;)) c;, Gather(Out(c;))

R o

* 84

™ -5’%6?%6%35 *

R 'm

Jupyter Workflow

The Jupyter Workflow kernel extends the IPython software stack to
support hybrid literate workflows in the Jupyter stack.

IT consists of three main components:

* A coordination metadata format to model global cells configurations
and location topologies;

* A dependency resolver component fo help users identify the input
dependencies of each cell;

* A Jupyter stack extension to handle coordination metadato, execute
cells remotely and manage data transfers (through StreamFlow).

https://jupyter-workflow.di.unifo.it

45

https://streamflow.di.unito.it/

notebook.ipynb Jupyter Frontend
<} HTTP > Notebook | | Extension
Coordination

metadata {}

ZeroMQ

<

Extended Jupyter
Kernel
L 1

Dependency
Resolver

SerDes

HPC SSH Kubernetes
Connector Connector Connector

A 4

SerDes SerDes SerDes

Code cell

Domain
expert

Executor Executor Executor

= | ©

=1 JUPYTER
<2/ \\ORKFLOW

https://jupyter-workflow.di.unito.it

Workflow metadata

{
"step": {
"in": [{ # List the members of In(c;)
||type n . "name n I n env" I "file" I n Control n 2

"name": "variable name",

"serializer": {
"predump": "code executed before serializing",
"postload": "code executed after serializing"
1,

"value": "value to assign to the name",

"valueFrom": "can take value from a different variable"

1,

"autoin": True | False, # Resolve In(c;) automatically
"out": [# List the members of Out(c;)

],

"scatter": {
"items": ["variable name" | "scatter subscheme"],
"method": "dotproduct" | "cartesian" | ...

ik

},

Edit Workflow Step

Configuration

[CJ Execute in background @

Inputs

Automatically infer input dependencies

IO 3 E3 D
Input name

Scatter

1

2 "items": [

3 "var"

4

5

OUtpUIS
Output name

Target

Deployment

Local Process

Locations

46

https://jupyter-workflow.di.unito.it/

R B R K K ®
. &

®_ oSS~
° 2

e
#iﬁ‘o

=
_hL‘ AA.. S

Jupyter Workflow

Jupyter Notebook | Workflow representation
|
1 | 1
. | i
. g v
4 | 4
|
!
scatter ([T]) | Scatter
5 i 5 ceooe 5
scatter('[T,P], | Gather
cartesian) |]
|
6 | Scatter
| O\
| o |
E 6 coe 6 6 Y 6
|
|

@UUHNTUMESPRESSU

K*xxxxxuu ..{5:,“;__5__ $ LTS

"
XYYy Y A A Sy
1A GG SAEERS R

Jupyter Notebook

1) init

2) individuals ¥, # 9/

3) merge_individuals P Projéct

A

DT DTG D

4) sifting

5) mutations_overlap

6) frequency

7

I. Colonnelli, M. Aldinucci, B. Cantalupo, L. Padovani, S. Rabellino,
C. Spampinato, R. Morelli, R. Di Carlo, N. Magini, and C. Cavazzoni,
“Distributed workflows with Jupyter,” Future generation computer
systems, vol. 128, pp. 282-298, 2022.

https://jupyter-workflow.di.unifo.it

47

https://streamflow.di.unito.it/

