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Al APPLIED TO METEOROLOGICAL RESEARCH

° FROM NWP TO MLWP: Al applied to weather forecasting

0 THE BASICS OF Al: data and computing power

° THE DOWNSCALING PROBLEM: from global to local forecasts

° WEATHER FORECASTING: multi-framework approaches for Italian MLWP models

o WHAT'S NEXT?: from forecast to social impact
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FROM NWP TO MLWP
Al applied to weather forecasting
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I FROM NWP TO MLWP




PANGU-WEATHER
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Developed by HUAWEI, PanguWeather uses a Swin transformer and a new algorithm based on the 3D
Earth-specific transformer (3DEST), an encoder-decoder architecture derived from a variant of a vision
transformer. This model features an Earth-specific positional bias that replicates the physical structure of
the Earth. The input consists of 4 surface variables and 5 at 13 altitude levels, while the output includes 4
models with different lead times (1, 3, 6, and 24 hours). Training this model requires approximately 16 days
on a cluster of 192 Nvidia Tesla-V100 GPUs.


https://www.nature.com/articles/s41586-023-06185-3

GRAPHCAST

A Input weather state B Predict the next state C Roll out a forecast
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Developed by DeepMind (Google), this model is based on graph representation: the Graph Neuradl
Network (GNN). It employs an encoder-process-decoder architecture with 36.7 million parameters.
GNNs, coupled with fluids, have demonstrated remarkable capabillities in learning the dynamics of
systems described by partial differential equations. The input comprises 5 surface variables, 6 at 37
altitude levels, observed every 6 hours. The output consists of a family of models utilizing two subsequent
states of the atmosphere to generate forecasts. Training this model takes approximately 4 weeks on ¢
cluster of 32 TPUs.


https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/
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THE BASICS OF Al
Data and computing power




Forecast model: Italy Flash Flood - Reference date: 2024-05-28 - Product: IFF
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Meteo Italian Supercomputing Portal

The objective of the MISTRAL portal is to facilitate
and promote the re-use of datasets by the

meteorological community and related communities
to provide value-added services using HPC

resources, thus creating new business opportunities. MISTRAL METEOHUE  MAPS  DOCUMENTATION NV
The data will be available as gridded fields,

probabilistic products (such as rainfall forecasts for 4
flash flood prediction) or point time series derived L »

from the Italian operational forecast modelling chain
and post-processed fields (such as thunderstorm
probability).
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https://www.mistralportal.it/
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This work presents & new dataset for recent climate developed within the Highlander project by dynamically downscaling ERAS reanalysis, originally available at =31 km horizontal resolution, to =2.2 km resolution (i.e., convection permitting scale). Dynamical downscaling was applied through Regional Climate Mode! (RCM) COSMOS.0_CLM3.
and INT2LM 2.06. The temporal resalution of output is hourly (iike for ERAS). Runs cover the whale ltalian teritory to provide a very detailed (in terms of space-time resolution) and comprehensive (in terms of meteorological fields) dataset of cimatological data for at least the last 42 years (01/1881-1212022). These types of datasets can be used
for (applied) research and downstream services (.g., for decision support systems).

resources and the

References
Raffa, M.; Reder, A.; Marras, G.F.; Mancini, M.; Scipione, G.; Santini, M.; Mercogliano, P. VHR-RI

\_IT Dataset : Very High Resolution Dynamical Downscaling of ERAS Reanalysis over Italy by COSMO-CLM. Data 2021, 6, 88. hitps://doi.oro/10.3390/data6080088

.
Te rTITOfy. - Dynamical Downscaling with COSMO-CLM of historical (1981/2005) and future climate (2006/2070) projections
This climate projection dataset, named "VHR-PRO_IT" and produced within the Highlander project, has an horizontal resolution of = 2.2 km resolution {i.e., Convection Permitting Scale) thanks to dynamical downscaling with CMCC-CM global model over the period 1981-2070, adopting the IPCC historical plus RCP8.5 scenario. An
intermediate dynamical downscaling has been conducted through the configuration of regional climate model (RCM) COSMO-CLM at = & km over Italy, previously provided by Fondazione CMCC. The temporal resolution of outputs is hourly. Runs cover the whole ltalian territory (and neighbouring areas according to the necessary computation
boundary), so to provide a very detailed (in terms of space-time resolution) and comprehensive (in terms of meteorclogical fields) dataset of projected climatological data for at least 90 years (01/1981-12/2070). All output variables (reported in the following table) are on single levels except soil water content that is provided for 7 soil levels.
References
Raffa, M., & Mercogliang, P. (2022). Dynamical Downscaling with COSMO-CLM of historical (1989/2005) and future climate (2006/2050) data under scenario RCPE.5 at 2.2 km over Italy [Data set]. Fondazione CMCC. hitps://doi.org/10.25424/CMCC-J90A-5P 12 Paper in preparation.
g Downscaling of ERAS using ECMWF's ecPoint post-processing
ERAS ecPoint products are the first ever (probabilistic) global reanalysis products for point scales. They are based on the ECMWF ERAS reanalysis, run at =0.3° horizontal resolution (31km), but downscaled to point scale using ecPoint post-processing. The products comprise 24-h rainfall and 24-h minimum and maximum 2m temperature, and
are probabilistic in nature, being stored as percentiles (L, 2,..99) for each grid box. Downscaling means that values stored are fully compatible with in-situ measurements (i.e. from raingauges and thermometers), whilst the raw ERAS output refers instead to average values for the modelled grid scale - i.e. over regions measuring about 31km by
31km. ecPaint is a new and innovative statistical post-processing technique specifically developed by ECMWF to downscale relatively low-resolution numerical model autput (2 g. from global madets). All ecPaint products explicitly incorporate the expected sub-grib variability, and bias correction for gridbox means (which both vary according to grid-
box weather types)
References
Hewson, T.D., Pillosu, F.M. A low-cost posi-processing technique improves weather forecasts around the world. Commun Earth Environ 2, 132 (2021). hitps.//doi.org/10.1038/s43247-021-00185-9
] Sail Erosion Indicators (1991-2050) @2.2 km over ltaly

Soil erosion

Extreme climate canditions affect the maintenance of soil functions, especially in areas particularly subject to rainfallinduced erosion. The case study on Soil Erosion in HIGHLANDER is based on a cansolidated empirical model (RUSLE) to genrate assessment (1991-2020) and projections (2021-2050) about the rainfall erasivity and potential
loss of soil on bath forest and agricultural lands at very high spatial resolution (@2km for rainfall erosivity and 250 m for sail loss). Such a dataset with very high resolution at national scale will support in identifying areas particularly at risk under changes in climate variabiity and extreme events, so to formulate strategies to reduce soil erosion
through appropriate management of forests and agricultural fislds, also in terms of working practices and sail protection measures.


https://highlanderproject.eu/
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THE DOWNSCALING PROBLEM
From global to local forecasts




DOWNSCALING: FROM GLOBAL TO LOCAL FORECAST

ERA5 ~ 31km CERRA ~ 5.5km

Downscaling in meteorology is a technique used to obtain high-resolution weather forecasts for specific
areas by refining information from global or regional-scale weather models. Global weather models often
have relatively low resolutions, typically spanning tens of kilometers, which may not capture local or
detalled weather phenomena adequately. Downscaling involves employing high-resolution weather
models to provide more detailed forecasts for smaller geographical areas. These models refine input data
from global or regional models to produce more precise predictions for small geographic areas.
Downscaling aims to enhance the accuracy and detail of weather forecasts for specific regions or areas

of interest.



OUR DEEP LEARNING APPROACH FOR DOWNSCALING
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WEATHER FORECASTING
Multi-framework approaches tor
Ifalian MLWP models




Al-GCM

Al General Circulation Model
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The project aims to construct a novel GCM approach using recent developments in ML and supported by
infra-seasonal atmospheric signals. The aim is twofold. On the one hand, the potential to significantly
reduce the run time of short-term forecasts. On the other hand, the possibility to increase the forecast skill
for the medium term. The final objective is to produce a prototype model that could be further developed
with future funding. The fraining process will use an ERAS reanalysis dataset to develop different models
based on U-Net and Transformers technologies. This project is funded by IFAB for 18 months. Cineca is
involved by providihng computational support and a suitable framework to run the model.


https://www.ifabfoundation.org/ifab-activities/projects/ai-general-circulation-model/
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https://doi.org/10.1029/2021MS002502​

OUR HPC IMPLEMENTATION
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SPATIO-TEMPORAL: MOVIES MAKE PREDICTIONS

Spatio-temporal learning algorithms are designed to analyze and understand spatial and temporal
patterns in data. They consider both the spatial and temporal dimensions of data, enabling them to
capture spatial relationships between different entities and temporal dynamics over time. Typically
leveraging convolutional neural networks or transformer, they automatically learn these relationships from
data. Widely applied across diverse sectors including environmental sciences, geospatial data analysis,
social network monitoring, and financial forecasting, they aim to comprehend and forecast spatio-
temporal behaviors and trends within data.



I ViT FOR WEATHER FORECASTS
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https://arxiv.org/abs/2306.11249

OUR HPC IMPLEMENTATION
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COMPARE, EVALUATE AND UNDERSTAND
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The first results seem very promising. Both models developed show metrics that are fully comparable with
those found in the literature and obtained by numerical methods. In the last months of the project, the
models will be optimised and compared with other ML models as well as with numerical models. In
addition, thanks to Cineca's Mistral platform, the results obtained will be compared with real data from
the observation stations.


https://www.mistralportal.it/
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WHAT'S NEXT?
From forecast fo social mpact




WEATHER4ENERGY

Input

Ground Truth

Prediction

The project focuses on the efficient translation of meteorological information into impacts, providing
accurate predictions of solar and wind power generation, power line capacity, hydrogeological hazards
and potential threats to road infrastructure under future climate scenarios. The project is based on
advanced meteorological models and involves the development of an innovative framework for
translating meteorological information into concrete impacts, supported by high-performance
infrastructure and cloud computing provided by the partnership with Cineca. This project is funded by the
Innovation Grants within the scope of Centro Nazionale for a total of 24 months.


https://www.supercomputing-icsc.it/en/spoke-4-earth-climate-en/
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mailto:m.angelinelli@cineca.it​
http://www.linkedin.com/in/matteo-angelinelli-astrophysic
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