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Super-Resolution Convolutional Neural Networks
for coastal ocean modelling

Federica Adobbati1, Lorenzo Bonin2, Fabio Giordano1,2, Stefano Querin1, Gianpiero
Cossarini1 and Luca Manzoni1,2

1National Institute of Oceanography and Applied Geophysics - OGS
2University of Trieste

We present a method based on Convolutional Neural Networks (CNNs) for the coastal super-
resolution task of ocean modeling products (both physical and biogeochemical), applied to a
marginal sea of the Mediterranean, the northern Adriatic Sea.

CNNs have been successfully used to solve image related tasks, such as super-resolution
problems, where the neural network is trained to improve the resolution of a generic digital im-
age. We adapted the super-resolution task to resolve images that are 3D model output, including
masked areas (i.e. land points). We trained the super-resolution CNN and tested with two sets
of model output at different resolutions: the low resolution (∼ 4km) Mediterranean Copernicus
Marine Service (CMS) reanalysis, and the high- resolution (∼ 750m) reanalysis of the northern
Adriatic Sea.

The resolution of CMS data barely resolve all the smaller-scale processes, coastal features,
and variability (e.g., mesoscale eddies and meanders, river plumes, fronts) that characterize the
sub-regional areas of the basin. The high-resolution (∼ 750m) reanalysis was performed in the
framework of the CADEAU project [1], covering the period from 2006 to 2017, and tackling
both physical and biogeochemical aspects. The resulting high-resolution dataset consists of
876, 5-day average, data points (i.e., 3D model output) for each variable.

Neural networks can be trained to reproduce the coastal patterns learned from such a dataset,
starting from the corresponding coarse-resolution CMS products.

We tested different architectures: a simple CNN [2] and a U-net [3], and different options in
the selection of the input data: univariate vs multivariate, with vs without details on boundary
conditions (e.g., river inputs). We evaluated their performances against standard interpolation
methods. Results are promising and showing that:

1. the level of variability observed in the high resolution model is efficiently introduced

2. biases are corrected

3. realistic spatial patterns in front of river mouths are reproduced.

The use of information on river boundaries proved to be important, as regional (global) models
with low resolution rarely contain realistic runoff data. Among the list of physical and bio-
gechemical variables, alkalinity and dissolved inorganic carbon perform better, and the use of
multivariate approach does not increase the accuracy of the reconstruction.

This work is part of the broader iNEST PNRR project, and contributes to the goal of devel-
oping a digital twin of the northern Adriatic Sea.

[1] A. Bruschi, I. Lisi, R. De Angelis, S. Querin, G. Cossarini, V. Di Biagio, S. Salon, C. Solidoro, D.
Fassina, S. Ancona, C. Silvestri, J. Environ. Manag. 293, 112878 (2021).

[2] C. Dong, C. Loy, K. He, X. Tang, IEEE PAMI 38, 295 (2015).
[3] O. Ronneberger, P. Fischer, T. Brox, MICCAI 2015 18, 234 (2015).
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Signature of warm dark matter in the cosmological density fields
extracted using Machine Learning

Ander Artola1

1 Heidelberg University, Germany

The precise nature of Dark Matter (DM) remains an unsolved puzzle in Physics, with various
candidates distinguished by their free-streaming velocities, which dictate the scale at which the
gravitational clustering of matter is inhibited by the motion of DM particles. While Cold Dark
Matter effectively describes many observational features of the Universe, Warm Dark Matter
(WDM) models emerge as alternatives at smaller scales. Significant efforts have been made in
the literature to constrain the mass of WDM using Lyman-α forest flux statistics, such as the 1D
Power Spectrum. This work explores the potential of using Neural Networks to directly extract
the intergalactic medium baryon density fields from the Lyman-α forest of high-redshift quasars
[Nayak et al.(2023)]. Inference on WDM models is carried out by leveraging the Sherwood-
Relics simulation suite [Bolton et al.(2017)] to generate mock spectra. The networks, trained
on Ly-α forest spectra extracted from Sherwood simulations, can successfully recover IGM
conditions, even when the spectra are contaminated with realistic noise and instrumental effects.
This work shows that the inference predictions on untrained WDM models can recover their
masses within 2σ. Applying this Machine Learning approach to high-resolution quasar spectra
can potentially provide tighter constraints on the nature of DM, clearly outperforming single
summary statistics, such as the Power Spectrum. [Villasenor et al.(2023)]

[Bolton et al.(2017)] Bolton, J.S., Puchwein, E., Sijacki, D., Haehnelt, M.G., Kim, T.-S.,
Meiksin, A., and, ...: 2017, Monthly Notices of the Royal Astronomical Society 464, 897.
doi:10.1093/mnras/stw2397.

[Nayak et al.(2023)] Nayak, P., Walther, M., Gruen, D., and Adiraju, S.: 2023, arXiv e-prints,
arXiv:2311.02167. doi:10.48550/arXiv.2311.02167.

[Villasenor et al.(2023)] Villasenor, B., Robertson, B., Madau, P., and Schneider, E.: 2023, Physical
Review D 108, 023502. doi:10.1103/PhysRevD.108.023502.
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Background: Lung cancer poses a substantial global health challenge, imposing a significant 

burden on healthcare systems. Timely detection is paramount for improving patient prognosis 

and treatment outcomes. The integration of artificial intelligence (AI) into medical imaging 

processes offers a promising avenue to enhance diagnostic accuracy and efficiency in lung 

cancer screening. Objectives: This study aims to propose a diagnostic aid system for the early 

detection of lung cancer from CT images, leveraging shape and texture attributes to achieve 

effective lung nodule classification. Given the pivotal role of early detection in lung cancer 

outcomes, the integration of AI tools enhances the potential for accurate and timely diagnoses. 

Material and Methods: The proposed methodology consists of three key steps. Firstly, a 

semantic segmentation step is implemented using the U-Net convolutional neural network. 

Subsequently, an extraction and selection step of attributes takes place, which are then utilized 

in the classification step. This classification step is based on a CNN convolutional neural 

network, ensuring a comprehensive and effective approach to lung nodule detection. 

Results: The obtained results demonstrate a high level of accuracy in both the segmentation 

and classification of lung nodules. The U-Net algorithm for segmentation achieved an 

impressive accuracy of 99.16% and a Dice Coefficient (DSC) of 88.44%. The classification 

results for distinguishing nodules from non-nodules in terms of ROI regions achieved an 

accuracy of 90.36%. Further classifications were performed to distinguish between subsolid 

nodules (solid or non-solid) with an accuracy of 91.89% and the malignancy of nodules with 

an accuracy of 91.54%. These promising outcomes open avenues for potential advancements 

in the early detection and diagnosis of lung cancer using CT images, highlighting the valuable 

contribution of AI tools in the realm of lung cancer screening. Conclusion: In conclusion, this 

study introduces a robust diagnostic aid system demonstrating high accuracy in the early 

detection of lung cancer from CT images. The integration of AI, particularly deep learning 

techniques, proves instrumental in achieving enhanced precision in lung nodule classification. 

These results underscore the potential of the proposed system as a valuable tool for clinicians 

and healthcare professionals, contributing to improved healthcare outcomes and paving the 

way for further advancements in the field of lung cancer diagnosis and treatment. 

 

Keywords: Lung cancer; CT images; Deep learning; Semantic segmentation; Lung nodule 

classification; U-Net convolutional neural network; CNN convolutional neural network. 
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Evaluating Filled Rubber Viscoelasticity: A Comparative Analysis
between NODEs and Classical Phenomenological Models

Federico Califano1, Jacopo Ciambella1,2

1Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome,
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Recent literature reveals an escalating trend of incorporating data-driven methodologies in the
modeling of visco-elasto-plastic materials, especially of deep neural networks (DNNs). These
networks are broadly classified into three categories: black box NNs, NNs that incorporate
physics in a weak manner, and NNs that enforce physics strongly. In our study, we employ
the Neural Ordinary Differential Equations (NODEs), a specialized variant of DNNs. In 2018,
Chen et al. introduced NODEs, which utilizes a general multi-layer perceptron (MLP) as the
driving component on the right-hand side of a system of ordinary differential equations (ODEs)
[1]. This method notably integrates the time-step scaling of dynamics, an element not present
in recurrent neural networks (RNNs). NODEs were integrated into the flow of internal states,
following the Coleman-Gurtin internal state variable theory [2]. In addition, the development
of automatically convex data-driven creep potential functions, utilizing NODEs and focusing
strongly on the enforcement of physics, was successfully carried out [3]. It has been demon-
strated that the creep potential proposed by Reese and Gonvindjee [4], represents a specific
instance within this methodology. Nevertheless, it remains to be established whether it effec-
tively captures the deformation-enhanced shear thinning of the creep potential, a key aspect for
accurately describing the Payne effect observed in filled rubber [5]. In this presentation we will
assess the capability of NODEs in characterizing the behavior of filled rubber under varying
frequencies and strain amplitudes.

[1] Chen, R. T. Q. et al. Neural ordinary differential equations. In Proc. of the 32nd Int. Conf. on NIPS, pp.
6572–6583, Red Hook, NY, USA, 2018. Curran Associates Inc.

[2] Jones, R. E. et al. A neural ordinary differential equation framework for modeling inelastic stress response
via internal state variables. J. Mach. Learn. Model. Comput., 3(3):1–35, 2022.

[3] Taç, V. et al. Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations. Com-
put. Methods Appl. Mech. Eng., 411:116046, 2023.

[4] Reese, S. and Govindjee, S. A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct.,
35(26):3455–3482, 1998.

[5] Califano, F., and Ciambella, J. Viscoplastic simple shear at finite strains. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 2023. https://doi.org/10.1098/rspa.2023.0603
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XFEL Autonomous Experimentation and Analysis using Bayesian
Optimization
Julio Candanedo1

1(Presenting author underlined) Department of Physics, University of Wisconsin-Milwaukee,
53211, United States

In the last decade, two areas in physics that underwent rapid development were XFELs and
Machine-Learning. Naturally, one would inquire if these methods could be used together.
It is known that ultrafast time-series data-analysis, after a data-collection experiment, can be
achieved using Manifold-learning algorithms such as Diffusion-Map and Nonlinear-Laplacian-
Spectrum-Analysis. However, modern XFEL’s introduce an additional difficulty; a large amount
of generated data, much of which might not be useful. This is especially true, with the advent of
rapid 1 Million snapshots-per-second (1 MHz) rate of LCLS-II, 1 kHz snapshots-per-second in
the case of CXFEL, and the 20 kHz rate of the EuXFEL. Therefore the need for real-time, dur-
ing the experiment, data-analysis and autonomous-experimentation to alter experimental condi-
tions to form a complete data-set are desirable. Here we use Bayesian-Optimization techniques
to solve this issue within the manifold-learning; and the Gaussian-Process paradigm, building
on the work of Marcus Noack. In this work, we compare our results to random and low-
discrepancy sampling, to provide a benchmark on future work, on several classes of physically
motivated Random-Continuous-Functions. These include a continuous landscape of spectra
(generated by Random-Matrices) and diffraction-patterns, as a black-box ground-truth to test
our Bayesian-Optimization algorithm.
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Uncertainty representations in variational inference models of visual
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Josefina Catoni1, Enzo Ferrante1, Diego H. Milone1 and Rodrigo Echeveste1

1Research Institute for Signals, Systems and Computational Intelligence sinc(i),
CONICET-UNL, Santa Fe, Argentina

Bayes rule provides an optimal way to perform inference in probabilistic scenarios [1], and it
is hence a natural tool to understand perception in the context of uncertainty. Indeed, increas-
ing evidence indicates the brain is able to represent and operate with probability distributions
to (approximately) perform probabilistic inference in several scenarios [2, 3, 4]. While exact
Bayesian inference is often intractable, a popular choice to approximate the process is varia-
tional inference [5]. Variational Autoencoders (VAEs) [6] are a useful tool to learn internal
probabilistic representations in an unsupervised fashion. This procedure can be useful when
modeling an inference process where the generative model is unknown, since in VAEs the en-
coder and the decoder are simultaneously learned from the data. The encoder or inference model
maps inputs to the parameters of latent distributions, and the decoder or generative model maps
latent representations back to the original input space. This architecture provides a means to
model inference in the cortex by learning from the statistics of stimuli. Indeed, previous work
has shown that classical receptive fields emerge when training sparse VAEs [7].
Here we went beyond receptive fields and studied the properties of the posterior distributions of
those VAEs, finding a counterintuitive behavior. While the signal mean and signal variance in
the latent representations increase with the contrast of the images, as expected since the images
and orientations present in them become more and more distinguishable, the reported uncer-
tainty (noise variance) grows. This is counterintuitive as the uncertainty would be expected to
decrease as contrast increases, with a blank zero contrast image being maximally uninformative.
Taking inspiration from the Gaussian Scale Mixture (GSM) model [8], we incorporate a global
multiplicative contrast variable to the generative model of the VAE. The GSM has been shown
to capture basic properties of natural image statistics [8], and has been used as a model of corti-
cal visual processing[9, 10]. The hope with this explicit multiplicative variable is to capture the
explaining-away phenomenon observed in the GSM. We hence call this model explaining-away
VAE (EA-VAE). Our model fixes the aforementioned problems showing decreasing uncertainty
with contrast. Importantly, posteriors converge the prior for zero contrast, which in turn matches
the average posterior.
Finally, to test whether the EA-VAE had a broader scope of applications than natural images,
we studied VAEs for the classic MNIST dataset, as well as for Chest X-Ray images, showing
that our model consistently produces better uncertainty estimates, in different conditions, such
as interpolation between known examples, and even out of distribution detection.

[1] D.J.C. MacKay, Cambridge University Press (2003).
[2] A. Pouget et al., Nat. Neurosci. 16 (9), 1170-1178 (2013).
[3] J. Fiser et al., Trends Cogn. Sci. 14 (3), 119-130 (2010).
[4] W.J. Ma et al., Nat. Neurosci. 9 (11), 1432-1438 (2006).
[5] D.M. Blei et al., J. Am. Stat. Assoc. 112 (518), 859–877 (2017).
[6] D.P. Kingma, M. Welling, arXiv:1312.6114 (2022).
[7] F. Csikor et al., arXiv:2206.00436 5(2022).
[8] M.J. Wainwright, E. Simoncelli, Adv. Neural Inf. Process. Syst. 12 (1999).
[9] G. Orbán et al., Neuron 92 (2), 530-543 (2016).
[10] R. Echeveste et al., Nat. Neurosci. 23 (9), 1138-1149 (2020).
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A Restricted Boltzmann Machine (RBM) is a generative neural network consisting of one
layer  of  visible  neurons  fully  connected  to  a  second  layer  of  hidden  neurons,  with  no
connections within the same layer. They are commonly used for unsupervised learning, often
serving as an initial  or intermediate layer in deeper models.  Our investigation focuses on
RBMs to understand the impact of pruning on their generalization capacity—the ability of the
model to generate realistic and diverse samples that capture the underlying patterns of the
training  data.  Our  study  presents  outcomes  from  extensive  numerical  simulations  and
preliminary analytical findings. The focus is on understanding how pruning influences the
learning processes of RBMs and similar models, shedding light on optimizing their structure
for improved efficiency maintaining robust generalization capabilities.
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Nesterov acceleration despite very noisy gradients
Kanan Gupta1, Stephan Wojtowytsch2, and Jonathan Siegel2

1(Presenting author underlined) University of Pittsburgh
2Texas A&M University

Momentum-based gradient descent methods use information gained along the trajectory, in
addition to the local information from the gradient, in order to achieve an accelerated rate of
convergence. These methods have been well-studied for convex optimization. Computing the
gradient is often too expensive and it is approximated using stochastic gradient estimates in
practice. However, there’s a lack of theoretical analyses of accelerated methods in the setting
of stochastic gradient descent, even for the simple case of convex functions. We address this
gap with a novel descent algorithm which provably achieves the optimal convergence rate for
convex optimization. While the objective functions in deep learning training are non-convex,
they share many properties with convex functions. Empirical results show that our algorithm
outperforms the existing variants of stochastic gradient descent with momentum for training of
neural networks.

[1] Gupta K, Siegel J, Wojtowytsch S. Achieving acceleration despite very noisy gradients. arXiv
preprint arXiv:2302.05515. 2023 Feb 10.
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The advent of industrial revolution has resulted in massive emissions of carbon dioxide (CO2) leading 

to global warming [1]. An effective method to reduce the carbon footprint is the cyclic utilization of 

CO2 via sustainable development practices. Photosynthesis is one such process, but it has become 

infeasible due to the frequent deforestations while the CO2 emissions are still on a constant rise. 

Alternatively, artificial photosynthesis, or CO2 electrochemical reduction (CO2RR) is a reutilization 

process of converting CO2 gases present in the environment to value-added products such as fuel, 

methane, ethylene, formic acid, CO, Hydrogen and so on, using electrical energy [2]. However, the 

electric potential required to carry out CO2RR is extremely high and therefore, needs an efficient 

catalyst to reduce the reaction overpotential [3]. The discovery of viable catalysts for CO2RR is 

extremely complex since the reaction mechanisms are still under investigations and due to the 

complexity of catalytic processes and the rigorous requirements of ideal catalysts; for example, that 

they are highly efficient, environmentally benign, stable under working conditions and made of earth-

abundant elements. In practice, catalysts are discovered through trial-and-error approach paired with 

chemical intuition which is an extremely challenging and time-consuming task [4]. Traditional density 

functional theory (DFT) computations have been guiding the exploration of CO2RR electrocatalysts so 

far, but it is still challenging to efficiently search for viable electrocatalysts in a large chemical space 

using only the traditional DFT computations [5].  

The recent success of artificial intelligence (AI) in various research areas provides the motivation to 

utilize it for the prediction of viable electrocatalysts in this research [6, 7]. We propose to develop an 

AI-based framework to predict the optimal catalyst for the CO2RR. The framework would involve an 

investigation of the electronic and geometric properties of the CO2RR electrocatalysts to formulate a 

dataset which would be utilized to train a novel AI model for the prediction of the catalyst. The intended 

dataset would be collected and analysed via COSMO-RS software suite and the AI model would be 

developed via suitable machine learning or deep learning techniques. The resulting AI model for the 

prediction of CO2RR electrocatalysts will be validated against various industry and AI benchmark 

applications.  

This research would serve as a significant step towards the generation of value-added carbon products 

(fuel, methane, ethylene etc.) via renewable energy sources such as solar or wind power. Hence, it has 

the potential to guide the design of next-generation renewable energy materials and reduce the effect of 

global warming.  
 

[1] T. J. Wallington, J. Srinivasan, O. J. Nielsen, and E. J. Highwood, "Greenhouse gases and global warming," Environmental 

and ecological chemistry, vol. 1, pp. 36-63, 2009.  

[2] A. C. Benniston and A. Harriman, "Artificial photosynthesis," Materials Today, vol. 11, pp. 26-34, 2008.  

[3] R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, and M. T. Koper, "Catalysts and reaction pathways for the 

electrochemical reduction of carbon dioxide," The journal of physical chemistry letters, vol. 6, pp. 4073-4082, 2015.  

[4] Z. Li, S. Wang, and H. Xin, "Toward artificial intelligence in catalysis," Nature Catalysis, vol. 1, pp. 641-642, 2018.  

[5] X. Zhang and Z. Zhou, "Perspective on Theoretical Models for CO2 Electrochemical Reduction," The Journal of Physical 

Chemistry C, vol. 126, pp. 3820-3829, 2022.  

[6] V. Dignum, "AI is multidisciplinary," AI Matters, vol. 5, pp. 18-21, 2020.  

[7] Y. K. Dwivedi, L. Hughes, E. Ismagilova, G. Aarts, C. Coombs, T. Crick, et al., "Artificial Intelligence (AI): 

Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy," 

International Journal of Information Management, vol. 57, p. 101994, 2021.A. Author, B. Coauthor, J. Sci. Res. 13, 1357 

(2012). [2] A. Author, B. Coauthor, J. Sci. Res. 17, 7531 (2013). 
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Abstract 

 

Background: Sound source localization is a critical skill for animals to navigate their surroundings, 

detect potential threats, and locate prey [1]. In this study, we leverage Deep Reinforcement Learning 

(DRL) to address the challenge of localizing sound sources in natural animal environments [2]. Our 

approach involves training an agent to estimate the direction or location of sound sources using audio 

signals, while receiving rewards for achieving accurate localization [3]. Methods: To accomplish this, 

we employ a state-of-the-art DRL framework, enabling the agent to autonomously learn and adapt its 

localization strategies over time. The agent interacts with its environment, continually refining its sound 

source estimation based on audio cues. Through trial and error, the agent learns to optimize its actions, 

ultimately leading to more precise and reliable sound source localization. Expected Results and 

Conclusion: Our research has the potential to make significant contributions to the field of bioacoustics 

and animal behavior studies, as accurate sound source localization is crucial for understanding 

communication, predator-prey interactions, and overall animal ecology. Additionally, the application 

of DRL techniques to this problem domain highlights the potential for artificial intelligence to enhance 

our understanding of the sensory perception and decision-making processes of animals in complex 

natural environments. 

 

 

References  

[1] Rhinehart, T. A., Chronister, L. M., Devlin, T., & Kitzes, J. (2020). Acoustic localization of 

terrestrial wildlife: Current practices and future opportunities. Ecology and Evolution, 10(13), 6794-

6818. 

[2] Jekateryńczuk, G., & Piotrowski, Z. (2023). A Survey of Sound Source Localization and Detection 

Methods and Their Applications. Sensors, 24(1), 68.  

[3] Stowell, D. (2022). Computational bioacoustics with deep learning: a review and roadmap. PeerJ, 

10, e13152. 
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Predicting activity in brain areas associated with emotion processing using
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Lahoucine Kdouri1, Youssef Hmamouche1, Amal El Fallah Seghrouchni1, and Thierry
Chaminade2
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Modern artificial agents are expected to interact with humans and adaptively express emo-
tions relying on multimodal social integration, both in perception and production, in a more re-
alistic manner than present-day systems relying mainly on facial expressions. For such artificial
agents, such as humanoid robots, to mimic human behavior including emotional responsiveness,
the use of social cognitive neuroscience has become crucial. In this paper, we present a novel
approach to understanding emotions, the integration of a multimodal deep learning network to
predict brain activity in regions of interest related to emotion processing. The network takes
as input two categories of signals recorded synchronously with brain activity during conversa-
tions with a human or a robot: behavioural (video and audio) and physiological (blood pulse).
This approach allows us to (1) predict brain activity on the bases of multimodal behavioural
and physiological signals, and to (2) compute the performance of our system according to the
nature, human or robot, of the interlocutor and the localisation of the region of interest. The
results obtained demonstrate that, although the proposed architecture is simple in design, it out-
performs existing architectures. An ablation study evaluating subsets of the input modalities
shows that local brain activity prediction was reduced when one or two modalities were not
provided, but suggested that the visual information may be more dispensable than the others
to reach the best predictions when participants interacted with another human. It also demon-
strated the importance of the physiological data, the blood pulse, in predicting brain response,
emphasising the relevance of somatic markers in relation to the central nervous system process-
ing of social emotions.
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Requirement Elicitation (RE) is one of the most essential phase in software development 
process as it involves to understand the needs of users and stakeholders and turning them 
functional and non-functional requirements. One innovative way to gather requirements from 
users is to refer reviews given by user for a product or service and analyze it using NLP 
techniques like Aspect-based sentiment analysis (ABSA). ABSA of app reviews allows us to 
better understand the manner in which users experience and what they are seeking in terms of 
specific features of a system or product. This analysis of reviews helps the development team 
to elicit requirements much more effectively. Current literature on ABSA uses BERT based 
approaches which still lacks robustness in terms of performance and are totally black box in 
nature and are difficult to interpret. This work proposes an innovative approach to improve 
traditional BERT based ABSA with more robustness and better interpretability. The proposed 
approach is based on large pre-trained models like BERT and the integration of LIME an XAI 
(Explainable Artificial Intelligence). This approach is employed with overall goal to improve 
the requirements elicitation process by analysing 11323 app reviews from the benchmark 
dataset AWARE that is tailored specifically for the requirements elicitation process. This work 
fine-tunes the BERT model for the ABSA task and outperformed baseline and existing studies. 
This study also exploits LIME for results' explanations that helps to better visualize app review 
analysis. 
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In the context of Boron Neutron Capture Therapy (BNCT), the impact of the neutron beam em-
ployed for patient irradiation extends beyond the neutron capture reaction with the 10B isotope
associated with tumor cells. Various interactions involving neutrons or secondary photons with
other elements could potentially affect healthy tissues. Hence, meticulous treatment planning is
of paramount importance, ensuring that a given neutron beam configuration optimizes the prob-
ability of tumor control while minimizing adverse effects on healthy tissues. This optimization
is achieved through the calculation of dose maps over tumor and healthy tissues. Tradition-
ally, these dose maps are estimated using neutron transport simulations based on Monte Carlo
methods, which, while accurate, entail a substantial computational cost and demand high com-
putational power and long simulation times for convergence and low statistical errors [1]. This
complexity poses challenges for comprehensive studies on optimal treatment configurations for
individual patients and may impede the widespread adoption of this therapy in medical centers
aiming to treat multiple patients daily.

This study introduces a novel approach leveraging a neural network model designed to ex-
pedite the convergence of Monte Carlo simulations. The primary objective is to shift the time-
intensive aspect of simulations to the training of the neural network, a process performed only a
limited number of times. The proposed model is built upon a variant of the U-Net architecture.

The input data comprises the CT scan of a patient, divided in 4 channels corresponding to
the different materials present: air, bone, healthy tissue and tumor, along with 104 histories
simulations of various dose components (boron dose and dose due to neutrons and photons in
different tissues), as well as the error maps for each dose component. Given the relatively low
number of histories, these simulations are susceptible to statistical noise due to the algorithm’s
incomplete convergence. The neural network is trained to predict 108 histories simulations
(where convergence is achieved) for these dose components, which are then used to compute the
final dose map. The L1 norm between the neural network estimations and noise-free simulations
obtained through the traditional Monte Carlo approach serves as the cost function for parameter
tuning.

The proposed system underwent training using 80 different beam positions across 200 dif-
ferent patients from the Cancer Image Archive [2], resulting in a total of 16000 training in-
stances. For testing, an additional 2000 instances, corresponding to 25 patients, were employed.
Importantly, none of the patient data from the testing set was used during the training phase,
ensuring the model’s generalization to unseen data. Simulations were made using MCNP6.1
[3] and patients were modeled as 24x24x24 voxel arrays, where each voxel has sides of 1 cm.

Across the testing set, 96.9% of the voxels in the 3D dose maps estimated by the proposed
system exhibited absolute differences of less than 5% of the maximum dose calculated in dose
maps based on 108 histories Monte Carlo simulations. For reference, only 61.4% of the vox-
els of the 104 histories dose maps fulfilled the same requirement. Furthermore, the proposed
method achieved convergence with 104 less histories than the conventional approach, as infer-
ence time of the neural network is neglectable. This highlights its promise as a fast and reliable
approach for designing treatment plans within the context of BNCT.
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This paper studies an infinite horizon optimal control problem for discrete-time linear
systems and quadratic criteria, both with random parameters which are independent and
identically distributed with respect to time. A classical approach is to solve an algebraic
Riccati equation that involves mathematical expectations and requires certain statistical
information of the parameters. In this paper, we propose an iterative algorithm in the spirit of
Q-learning for the situation where only one random sample of parameters emerges at each
time step. The first theorem proves the equivalence of three properties: the convergence of
the learning sequence, the well-posedness of the control problem, and the solvability of the
algebraic Riccati equation. The second theorem shows that the adaptive feedback control in
terms of the learning sequence stabilizes the system as long as the control problem is well-
posed. Numerical examples are presented to illustrate our results.
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ABSTRACT  
Facial expression recognition is an important problem in the field of computer vision. Computer vision is an 
interdisciplinary scientific field that deals with how computers gain high-level understanding from digital images. 
The facial expression recognition process formation of three stages they are face detection, feature extraction, and 
recognizing expression. The idea of expression recognition is helpful for people with physically disabled like hard of 
hearing and dumb to identify human facial expressions through the help of image processing and computer vision. 
The system can identify seven several facial expressions: anger, disgust, fear, neutral, happy, sad, and surprise. In 
the end, the design and implementation of the system are explained. The proposed method is a custom Deep 
Convolutional Neural Network (DCNN) model with more CNN layers and ten-fold cross-validation which is used to 
train and test various facial expression images with Google Colab. This paper worked on Kaggle facial expression 
dataset. The better accuracy of the model acquired is 85.0%, precision 0.83, recall 0.83, and f1-score 0.83 on the 
testing dataset.  
 
Keywords: Convolutional neural network, Confusion Matrix, Cross-validation, deep learning, Facial expression, 

Feature extraction. 

INTRODUCTION 
The face is an essential part of an individual’s human body, which plays a vital role in the extraction of an 
individual’s emotional state. The face is responsible for communicating thoughts and ideas as well as emotions.  A 
facial expression is one or more movements or areas of the muscles below the skin of the face. Through facial 
expressions, people can express their emotions. Identifying facial expression exploration has the capability to give 
computers to realize human emotions like anger, disgust, fear, happiness, neutral, sadness, and surprise. In 
nonverbal communication, the expression of faces plays an important role, which defining the interaction between 
humans and animals.  

Deep learning is one kind of machine learning and artificial intelligence (AI) that follow the path of people getting 
particular categories of wisdom. It’s a crucial material of data science that contains data and prognostic modeling. 
It’s highly helpful to the scientists of data tasked with assembling, resolving, and understanding massive quantities 
of data; deep learning creates this method quicker and lighter. Sometimes deep learning is alluded to as deep neural 
learning or deep neural networking. Neural networks penetrate distinctly various forms, along with recurrent neural 
networks, convolutional neural networks, and artificial neural networks, and each has benefits for specific use cases. 
After 1960 this subject became more universal when a list of popular emotions was determined and several systems 
were recommended. There are seven basic popular emotions for humans. These are anger, disgust, fear, happiness, 
neutral, sad, and surprise.  

As computers come gradually extensive and their connection with user’s changes, they demand new materials to 
achieve a response from their correlations with those users and reciprocate appropriately. At present, there are 
various opportunities to derive responses from users like pulsation, articulation, gesture, visual communication, etc. 
But some of those opportunities are intrusive to users or do not allow sufficient or exact responses in order for a 
system to be dependable. After reviewing ten years of publications depending on Facial Expression Recognition 
build up a schematic diagram of the growth of research, where the x-axis denote the year and the y-axis denotes the 
total number of publications. The graphical representation of the growth of research is in figure 1. 

One humble choice that provides a rational amount of facial expressions. The expressions of the face have been 
deliberated as a great source of knowledge to control the accurate emotions of a character (Ekman, et al, 1997). 
Even before Charles Darwin guided “studies on how people recognize emotion in faces” (Jabr, 2010), venerable 
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minds like Aristoteles, learned the significance of the expressions of faces (Russell, et al, 1997). Even so, it was 
before Paul Ekman managed cross-civilization analysis near the world that a set of common emotions like anger, 
disgust, fear, neutral, happiness, sad, and surprise; were finally approved (Bettadapura 1998, Siegman, 1978). 

 

 

Figure 1: The graphical representation of the growth of research 

Facial expressions can demonstrate individual emotions and show personal intentions in social situations. It can 
carry various emotional states and detect various physiological reactions. At present, facial expression recognition or 
facial expression based on the computer has motivated significant research work because of its capability to imitate 
human cipher skills. I have also been motivated to penetrate the advantages of the physically disabled like hard of 
hearing and dumb. But if the facial expression detection system can recognize their necessity by observing their 
facial expression then it becomes a lot lighter for them to make the associate facial expression detection system 
understand their demands. Currently, there is a vast amount of solutions available but still no consensus on what is 
the best solution when applied to images, and uncertainty. 
 

LITERATURE REVIEW 
This experiment has categorized six different facial emotions, which assemble into individual global expressions: 
anger, disgust, fear, happiness, sadness, and surprise. There is multiple research work that uses many techniques to 
identify facial expressions. Now is the time to discuss the research work on facial expression recognition and its 
limitations. 
P. Liu, S. Han, Z. Meng, and Y. Tong (Liu. P, et al. 2014) proposed Boosted Deep Belief Network is operative for 
describing facial expression changes and appointed to form a boosted powerful classifier analytically by using a set 
of features. This framework can be learned from facial images’ extremely complicated features. Using that process 
they could classify the seven facial expressions and the classification rate is 41%. 
Emad Barsoum, Cha Zhang, Cristian Canton Ferrer, and Zhengyou Zhang (Emad Barsoum, et al, 2016), the deep 
convolutional neural networks (DCNN) estimate the efficiency of four different patterns to train emotion 
identification on crowd-sourced labels. Here also handle turbulent levels by using a deep convolutional neural 



network (DCNN) for recognizing faces and crowdsourcing used to accumulate place of truth labels. Using that 
process they could classify the eight facial expressions and the highest accuracy is 85%. 
Z. Meng, P. Liu, J. Cai, S. Han, and Y. Tong (Meng. Z, et al, 2017), proposed the identity-aware convolutional 
neural network (IACNN) process used training, expression, and recognition associated features are together assumed 
through a deep CNN scheme, which is collected from two duplicate CNN streams and prepared at the same time 
minimizing the categorization errors when maximizing the expression and recognize similarities. This method has 
been evaluated on two blatantly obtainable databases CK+ and MMI, the accuracies are 71.29% and 55.41%. 
S. K. Lalitha and J. Aishwarya, (Lalitha. S. K, et al, 2021) proposed a raw convolutional neural network (CNN) 
classifier model. The output layer contains feature maps that reflect the knowledge of the image. Haar cascade 
classifier is used to identify the faces from the image. By using the proposed method and different types of datasets 
the average accuracy is 67%. 
K. Chang, C. Chen and Y. Hung (Chang. K, et al, 2013) the diagram assesses the distinct predominance state of an 
expression depending on a single image. An effective descriptor spread covert, which is rendition invariant and can 
linearize deformation. For the ranking problem, this paper could not work on multiple image-based expression 
intensity estimations. Results describe that the diagram with dispersed change omits. The accuracy is 71.29%. 
According to the proposed work, the facial expression recognition problem has two main perspectives: validity and 
ability. Ability is counted in terms of time complexity, computational complexity, and space complexity. The targets 
of this research are to make a proposed method that has high accuracy and extreme computational complications. 
Here, ready an accurate set of data is a huge challenge. Another challenge is the process of creating an accurate 
extended CNN method for the emotional recognition of face purposes. Following the complications of the problem 
is necessary to be composed deep learning; the quantity of input is different.  
 

METHODOLOGY 
Deep learning current approaches are used for increasing the processing power of detailed datasets with results that 
overcome customary methods (Kaiming et al, 2015). The usual pipeline of deep learning for facial expression 
recognition systems comprises a preprocessing stage of the input image, which is organized by face alignment, data 
augmentation, and face normalization process. Those processed data are then passed to a neural network, mainly 
Convolutional Neural Network (CNN), Deep Belief Network (DBN), Recurrent Neural Network (RNN), Generative 
Adversarial Network (GAN), or Deep Autoencoder (DAE). After the features are turned out by the neural network 
those images are passed into a classifier that will classify the image. The overview of the facial expression 
recognition system is illustrated in figure 2. The facial expression recognition system includes the major stages such 
as image preprocessing, feature extraction, and expression classification.    

 

Figure 2: The architecture of the Facial Expression Recognition System 
 

The progress and popularity of computer vision with deep learning are guided by the Convolutional Neural 
Network (CNN) algorithm. Convolutional Neural Network (CNN) can receive input images, train itself by learning 
filters to characterize distinct features between images and be capable to distinguish one image from another 
(Saha. S, 2018). The initial goal of Artificial Intelligence (AI) is to provide a set of algorithms used to resolve 
problems that humans can solve by instinct and spontaneously but this is a more challenging task for computers 
(Rosebrock. A, 2018). On the other hand, machine learning deals with the area of the lesson which delivers 



computers to know except being detailed programmed (Samuel A. L, 1959). 
The proposed Deep Convolutional Neural Network model accepts an input image of 48 × 48 pixels and methods of 
various Convolution, Max-pooling, and Fully-connected layers giving the ultimate output of the other seven 
classes: anger, disgust, fear, happiness, sadness, surprise, and neutral. The flow diagram of DCNN is shown in 
figure 3. 

 
Figure 3: Flow Diagram of Deep Convolutional Neural Network 

In this system is a DCNN proposed method with 23 layers for training and testing facial images. It has 10 
convolution layers, from those two convolution layers, have a 5 × 5 size of the filter and the other convolution 
layers have a 3 × 3 size of the filter, and the pooling layers have a size of the pool is 2 × 2. After every convolution 
layer, an activation layer and batch normalization are included for gaining better accuracy. Every pooling layer is 
followed by the dropout layer for reducing the overfitting of the model. All the convolution layers are followed by 
two dense layers, every layer with 1024 hidden units, followed by a 60% dropout layer. The convolution-pooling 
batch is composed of convolution, activation, batch normalization, pooling, and dropout gradually. Every fully-
connected layer is composed of fully connected, activation, batch normalization, pooling, and dropout layers 
gradually. For classifying the image into the seven individual expressions of faces use a classifier that is softmax.  
Figure 4 shows the architecture of the implementation of a deep convolutional neural network. For the initial 
Convolution layer use the following equation: 
 

                             𝐵[𝑖, 𝑗] = ∑ ∑ 𝐴[𝑖 + 𝑘ଵ, 𝑗 + 𝑘ଶ]𝑊ଵ[𝑘ଵ, 𝑘ଶ]ଶ
௞మୀ଴

ଶ
௞భୀ଴                                                    4.1 

In equation 4.1, 𝑊ଵ is the filter, and 𝑘ଵ = 0: 2, 𝑘ଶ = 0: 2. Every convolution layer used the same zero padding at p = 
1 and stride s = 1. The same padding outline is used to develop the design of the architecture of networks more 
proficiently.   
This process uses a K fold cross-validation technique to assess vertical models by separating the main dataset into a 
training dataset and a test set to assess it in occurrence. In this, the main dataset is modified and randomly delivered 
among k identically sizes sub-datasets. The outputs of this process can be built to give a distinct calculation. All 
surveys are applied for training and validation and each survey is applied for validation only one time. Here, using 
10-fold cross-validation techniques. 



 

Figure 4: The architecture of the implementation of the Deep Convolutional Neural Network 

As a batch normalization using an optimization algorithm that is Adam for finding better results. The results can be 
arranged in a Confusion Matrix that differs the predicted values from the true values. True positive meaning that 
data points are correct and false-negative meaning that they are incorrect. Accuracy is the fraction between the 
number of right predictions and the total number of predictions. It is applied for calculating the number of right 
predictions.  

                                                   Accuracy = 
்୔ା୘

୲୭୲ୟ୪
                                                                                4.2       

Precision is the fraction between the number of right predictions and the total number of positive predictions. It is 
applied for calculating the ratio of right calculations between the positive ones.  

                                                   Precision = 
୘୔

୘୔ା
                                                                                4.3                                 

The Recall is the fraction between the number of right predictions and the total number of all predictions. It is 
applied for calculating the cost of false positives in the model. 

                                               Recall = 
୘୔

୘୔ା
                                                                                        4.4 

F1 score is the harmonic mean of precision and recall. It describes the number of correct predictions and the number 
of instances. 

                                                    F1 = 
ଶ .  ୔୰ୣୡ୧ୱ୧୭୬ .  ୰ୣୡୟ୪୪

୔୰ୣୡ୧ୱ୧୭୬ା୰ୣୡୟ
                                                                       4.5 

DATASET EXPLORATION 
The beginning of the experimental analysis of the proposed model uses different types of expression datasets. The 
size and color of human faces differ from each other. First, capturing the image using a camera or collecting the 
image from the internet. Then, the images are cropped in the face region and a face-alignment post-processing phase 
is directed. At last, the images are counted into similar communities of expressions. The dataset consists of a single 
.csv file bearing the column’s emotion, pixels, and Usage. Every image illustrated in the 48 × 48 vectors in pixels is 
labeled with an encoded expression. The datasets are divided into training and validation datasets. The inconsistency 
is performed by using data augmentation processes or growing a cost-sensitive loss function during training. 
Compared to other facial expression datasets, the FER dataset has more changes in the images, including facial 
repression, half faces, low-contrast images, and eyeglasses. The images were gathered using the Google image 
search API and resized as a result the face is high centered and holds about an equal amount of field in every image. 
The dataset is made of 28,709 training images, 3,589 validation images, and 3,589 test images with seven several 



emotions such as happiness, anger, fear, disgust, surprise, neutral, and sadness (Ian J, et al, 2013). The seven 
different expressions sample images from the FER dataset are shown in figure 5. 

 

Figure 5: Seven different samples images from the FER2013 dataset 

RESULTS 
From the FER dataset, the expression of faces is available so the total number of samples of faces is 35887 and this 
dataset is used to appraise the proposed method. Compare to other evaluations, could not find any work which 
computes the cross-validation with the FER facial expression dataset. So now computes ten-fold cross-validation 
with the proposed model using StratifiedKFold tool on this FER dataset. The proposed model is built using the 
Sequential Keras backbone, which gives grouping a linear stack of layers into a Keras model. The proposed network 
is trained up to 200 epochs with 10-fold cross-validation where the datasets are divided into ten folds using 
StraightKFold machine learning tool by placing the exchanging parameter, optimizing the cross-entropy loss using 
Adam optimizer. Adam optimization is a stochastic gradient descent method that depends on the adaptive estimation 
of first-order and second-order moments. Using the Adam algorithm the method is computationally efficient, has 
little memory requirement, is invariant to diagonal rescaling of gradient, and is well suited for problems that are 
large in terms of data. 
VGG19 (Simonyan, K, 2015) was one of the first architectures that used small kernel sizes and increased the depth 
of the network with 19 layers, which led to a reduction in the number of parameters. The training results illustrated 
in figure 6 are the accuracy and loss learning curves. By using the ten-fold cross-validation on this VGG19 model 
the validation accuracy is 62.43%.  

 

Figure 6: The VGG19 method accuracy, loss on the FER2013 dataset 

By using the extended CNN proposed method and ten-fold cross-validation the validation accuracy is 85%. The 
facial expression recognition (FER) dataset given its size and all faces are aligned in the images. The accuracy and 
loss learning curves and the confusion matrix of the FER validation set are illustrated in figure 7. 



 

Figure 7: The proposed method accuracy, loss, and confusion matrix on the FER2013 dataset 

According to the extended CNN model calculated the accuracy with Adam optimizers those easy to find by the 
result of precision, recall and f1-score of the dataset FER2013 validation set using ten-fold cross-validation. The 
classification report containing precision, recall, and F1-score for each class is shown in table 1. 

Table 1: Precision, Recall, and F1-score of the FER2013 validation set 

 

DISCUSSION & CONCLUSION 

After that, this experiment computes by splitting the dataset using 10-fold cross-validation. For getting better 
accuracy split the datasets into 10% training and 90% testing, 20% training and 80% testing, 30% training and 70% 
testing, 40% training and 60% testing, 50% training and 50% testing, and so on. The best validation accuracy with 
ten-fold cross-validation is 85% compared with the VGG19 model which gives the 62.43% accuracy value for 
recognizing the expression. Finally, the proposed extended CNN model with a ten-fold cross-validation process can 
classify facial expressions of humans i.e. happiness, anger, fear, disgust, neutral, sad, and surprise. Also, using the 
confusion matrix the model can be evaluated precision, recall, and f1- score. Using those different types of methods 
found the better accuracy of the model acquired is 85%, precision 0.83, recall 0.83, f1-score 0.83.  
In this thesis, the target is to sketch an extension of the convolutional neural network to identify expression 
recognition of faces which helps the physically disabled like those hard of hearing and dumb. The direction of 



identifying the expression of faces is according to a sketch and improvement of a Convolutional Neural Network 
(CNN) able to forecast human emotions of faces. The CNN model form of ten convolutional layers arranged on the 
highest in all with the number of kernels redoubling in every obstacle. The extended CNN model learned on the 
FER2013 dataset, which makes with descriptions holding images of various lighting strikingly situations.  
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Breast cancer is the most commonly diagnosed cancer type and one of the top leading causes 

of death in women worldwide [1]. Research indicates that most experienced pathologists can 

diagnose cancer with an accuracy of 79% while ML techniques may reach an accuracy of 91% 

[2]. However, using one single technique does not always guarantee a high level of accuracy 

under all circumstances since most of the ML techniques suffer from the problem of high 

variance or/and high bias, which motivates the use of ensemble learning techniques [3][4]. 

The main objective is to look into the effect of the type and number of base learners on the 

predictive capability of the bagging & boosting ensembles and to examine the impact of various 

feature extraction deep learning models on the performance of the ensembles. 

The empirical evaluations used: four classification performance criteria (accuracy, recall, 

precision and F1-score), the 5-fold cross-validation, Scott Knott statistical test to select the best 

cluster of the outperforming models, and Borda Count voting system to rank the best-

performing ones. 

The results demonstrated that combining CNNs for feature extraction with bagging and 

boosting ensembles is an effective and a promising approach for the automatic classification 

of histopathological breast cancer images. The ensemble methods consistently perform well 

over all the MFs in terms of their accuracy, sensitivity, recall and F1-score: The best bagging 

ensemble achieved a mean accuracy value of 93.98%, and was constructed using 3 base 

learners, 200× as MF, MLP as a classifier, and DenseNet201 as a feature extractor. The best 

boosting ensemble achieved an accuracy value of 92.52% and it was constructed using 

XGBoost with 200 trees and Inception V3 as feature extractor. Overall, bagging ensembles 

tend to outperform boosting ensembles for each feature extractor and MF. 
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Although different architectures of quantum perceptrons have been recently put
forward, the capabilities of such quantum devices versus their classical counterparts
remain debated. Here, we consider random patterns and targets independently
distributed with biased probabilities and investigate the storage capacity of a
continuous quantum perceptron model that admits a classical limit, thus facilitating
the comparison of performances. Such a more general context extends a previous
study of the quantum storage capacity where using statistical mechanics techniques
in the limit of a large number of inputs, it was proved that no quantum advantages
are to be expected concerning the storage properties. This outcome is due to the
fuzziness inevitably introduced by the intrinsic stochasticity of quantum devices. We
strengthen such an indication by showing that the possibility of indefinitely
enhancing the storage capacity for highly correlated patterns, as it occurs in a
classical setting, is instead prevented at the quantum level.
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Many challenges in astrophysics involve the task of constraining free parameters of a physical
model to match the observed reality. Often, these models are highly complex, making Bayesian
inference through traditional approaches impractical due to intractable likelihoods. To over-
come this issue we can use so-called simulation-based (or likelihood-free) inference (for a re-
cent review see [1]). This approach is particularly powerful when combined with deep learning,
wherein a neural network learns to map from the simulated data onto the posterior distribution of
the underlying parameters ([2]). In this presentation, I will explore the possibility of using one
of these techniques within the context of neutron star population synthesis. Neutron stars are
highly compact objects, born in the core-collapse supernovae of massive stars. Neutron stars are
characterized by their high magnetic fields and fast spinning. These extreme properties make
them perfect laboratories to study fundamental physics of ultra-dense and strongly magnetized
matter. However, although about a billion neutron stars are expected to exist in the Milky Way,
observational constraints limit us to only observing a few thousand. Pulsar population synthesis
bridges this gap by simulating the entire population and comparing it to the observed sample to
constrain neutron-star physics (e.g. [3], [4] and [5]). I will demonstrate how we can constrain
the physical properties of isolated Galactic neutron stars by combining population synthesis
with simulation-based inference. For this purpose, we implement a population-synthesis frame-
work able to simulate the stars’ dynamical and magneto-rotational evolution as well as their
radio emission and incorporate selection biases of typical radio surveys. We then generate a
dataset of mock pulsar populations to train and validate a mixture-density neural network. In
particular, I will present recent results that demonstrate how we successfully train neural net-
works on simulated data to infer the initial period distributions and magnetic-field properties of
neutron stars without assuming a simplified likelihood.
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Gaussian processes (GPs)[2] are powerful function approximators employed in regression
tasks. Compared to other methods, they benefit from analytical tractability, a non-parametric
nature, and the possibility of quantifying uncertainty. Still, all these advantages come at a cost.
Given a dataset with N entries, fitting the parameters of the kernel function and performing the
prediction requires a computational cost of O(N3) due to the GP’s covariance matrix.
The canonical approaches to tackle this limitation are based on approximations [1], which in-
duce artificial sparsity in the covariance matrix, making it easier to manipulate and cheaper to
store in memory.
This preliminary work attempts to contain this cost by reimplementing the approach proposed
in [3] using the distributed framework DASK [4]. Assuming that most points in a real dataset
are naturally uncorrelated, such an approach leverages well-defined kernel families that can
discover (hence not induce) the sparsity in the matrix, making this an exact approach at the
price of adding hyperparameters to the model. Our novel implementation improves over the
previous one, considering the combination of the proposed ”Sparsity discovering” kernel with
kernels that are more suitable for time-series data (e.g., periodic kernel). In particular, the poster
presents the code implementation and the extension of the time-series data analysis performed
in [3] on the average temperatures in the US for the past 30 years to a larger dataset of records
about the worldwide temperatures over 50 years.
We conclude by presenting our initial results obtained by choosing different hyperparameters
and discussing how the trade-off between the total number of hyperparameters introduced by
this approach and the accuracy of predictions behave in the case of estimating periodic function.
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Hidden Markov models (HMMs) and their extensions have proven to be powerful
tools for classification of observations that stem from systems with temporal depen-
dence as they take into account that observations close in time are likely generated
from the same state (i.e., class). When information on the classes of the observations
is available in advanced, supervised methods can be applied. In this paper, we provide
details for the implementation of four models for classification in a supervised learn-
ing context: HMMs, hidden semi-Markov models (HSMMs), autoregressive-HMMs,
and autoregressive-HSMMs. Using simulations, we study the classification performance
under various degrees of model misspecification to characterize when it would be impor-
tant to extend a basic HMM to an HSMM. As an application of these techniques we use
the models to classify accelerometer data from Merino sheep to distinguish between four
different behaviors of interest. In particular in the field of movement ecology, collection
of fine-scale animal movement data over time to identify behavioral states has become
ubiquitous, necessitating models that can account for the dependence structure in the
data. We demonstrate that when the aim is to conduct classification, various degrees
of model misspecification of the proposed model may not impede good classification
performance unless there is high overlap between the state-dependent distributions, that
is, unless the observation distributions of the different states are difficult to differentiate.
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Abstract
The integration of Deep Learning (DL) and the Internet of Things (IoT) has revolution-
ized technology in the twenty-first century, enabling humans and machines to perform 
tasks more efficiently. The combination of DL and the IoT has resulted in significant 
advancements in technology by improving the efficiency, security, and user experience of 
IoT devices and systems. The integration of DL and IoT offers several benefits, includ-
ing improved data processing and analysis capabilities, the ability for IoT devices to learn 
from data and adapt to changing conditions, and the early detection of system malfunctions 
and potential security breaches. This survey paper provides a comprehensive overview of 
the impact of DL on IoT, including an analysis of sensor data to detect patterns and make 
predictions, and the implications for various industries such as healthcare, manufacturing, 
agriculture, and smart cities. The survey paper covers topics such as DL models, frame-
works, IoT connectivity terminologies, IoT components, IoT service-oriented architecture, 
IoT applications, the role of DL in IoT, and challenges faced by DL in IoT. The study also 
presents quantitative achievements that highlight the potential impact of IoT and DL in 
environmental contexts such as precision farming and energy consumption. Overall, the 
survey paper provides an excellent resource for researchers interested in exploring the 
potential of IoT and DL in their field.

Keywords  Deep learning · Deep learning models · Strength of deep learning · Activation 
functions · IoT · IoT applications · IoT challenges in deep learning
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1  Introduction

For centuries, humans have dreamed of creating machines that could stimulate the human 
brain. Artificial Intelligence (AI) (Russell 2010) is the key solution that mimics the work-
ing of the human brain and incorporates all those functionalities of the human brain into 
machines to make machines think and respond like humans. AI is a field of computer sci-
ence that focuses on developing machines or systems capable of carrying out activities that 
would typically necessitate human intellect, including speech recognition, decision-mak-
ing, language translation, and visual perception. AI has the capacity to bring about a radi-
cal transformation in numerous industries and can alter our way of life and work. However, 
it also presents moral and social difficulties like privacy concerns and job displacement.

Machine learning (ML) is a subset of AI that involves creating algorithms and statistical 
models that allow machines to learn from data and make decisions or predictions without 
being explicitly programmed (Mitchell 2007). These algorithms can be trained on a variety 
of data sources, such as images, text, or sensor readings, to identify patterns and relation-
ships within the data. The main goal of ML is to create models that can make predictions 
or decisions that generalize well to new, unseen data. There are three primary types of ML 
algorithms: supervised learning (Cunningham et al. 2008), unsupervised learning (Celebi 
and Aydin 2016), and reinforcement learning (Sutton and Barto 2018). In supervised learn-
ing, the machine is provided with a labelled dataset and can learn to predict the output for 
a new input based on the examples in the dataset. For example, a supervised learning algo-
rithm could be trained to classify images of animals as either dogs or cats based on labelled 
examples of each. In unsupervised learning, the machine is given an unlabelled dataset 
and must find patterns or structures in the data on its own. This type of learning is often 
used for tasks such as clustering or anomaly detection, where the goal is to identify groups 
or anomalies in the data. Lastly, reinforcement learning involves the ML by interacting 
with an environment and receiving feedback in the form of rewards or penalties. These 
three types of ML algorithms play a significant role in enabling machines to learn, adapt, 
and improve their decision-making capabilities. With the increasing availability of data and 
computing resources, ML has become a critical component in many industries, including 
healthcare, finance, and transportation, among others. By allowing machines to learn from 
data, ML has the potential to transform how we interact with technology and solve com-
plex problems.

ML algorithms have a diverse range of applications, including image and speech recog-
nition, natural language processing (NLP), and detection of anomalies. The effectiveness 
of these algorithms is traditionally determined by the quality of the input data represen-
tation. A flawed representation can result in subpar performance compared to a superior 
representation. Additionally, ML may fail when dealing with vast amounts of data and may 
necessitate human involvement to improve and train. The growth of big data, the expansion 
of computational capacity, and the advancements in algorithms have enabled the creation 
of cutting-edge ML models, such as Deep Learning (DL) (Goodfellow et al. 2016), that can 
tackle complex tasks.

To manage large quantities of data and minimize human involvement, DL is cru-
cial. The roots of DL can be traced back to Aristotle’s associationism in 300 B.C., 
one of the earliest endeavours to comprehend the human brain. In 1943, the McCull-
och–Pitts (MCP) model (Hayman 1999) marked the beginning of the modern era of DL 
and served as the prototype for artificial neural networks (ANNs). Subsequently, the 
Hebbian theory (Brown and Milner 2003), originally applied to biological systems in 
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nature, was introduced. In 1958, the perceptron (Minsky and Papert 1988), the first elec-
tronic device in the field of cognition systems, was developed.

DL employs deep neural networks, also referred to as multi-layered neural networks. 
These networks are modelled after the human brain’s information processing and are 
particularly effective for tasks Examples of these include recognizing images and 
speech, processing natural language, and making decisions. DL models can be trained 
using extensive data and learn features and representations automatically from the data. 
The primary benefit of DL models is that they are capable of making predictions or 
decisions based on data without the need for human input or manual feature engineer-
ing. DL models are utilized predominantly in computer vision, NLP, speech recognition, 
recommendation systems and prediction. They can be trained through methods such as 
supervised, unsupervised and reinforcement learning, allowing them to execute tasks 
such as image/speech recognition, NLP, and decision-making.

DL models form the foundation of various cutting-edge methods and are widely 
applied across various industries, including finance, healthcare, transportation, retail, 
and more. The field is rapidly evolving, and researchers are constantly exploring new 
ways to improve the effectiveness of these models through new architectures and tech-
niques. DL algorithms empower computers to gain knowledge through experience and 
perceive the world through a hierarchy of concepts, each described in terms of its rela-
tionship to basic logic (Schmidhuber 2015). These methods have brought about dra-
matic improvements in the domains of speech recognition (Deng 2016) visual object 
recognition (Cichy et  al. 2016), object detection (Zhao et  al. 2019), and many other 
areas such as genomics and drug discovery.

The Internet of Things (IoT) (Wortmann and Flüchter 2015), is coming across as the 
next wave of revolution in the era of computing sensors or networks (Thakur et al. 2019). 
The ability to retrieve data from sensors and actuators embedded in our local environment. 
IoT technology allows devices to communicate with each other and with a central system, 
enabling the automation of various processes and the collection of data for analysis. This 
can lead to increased efficiency, cost savings, and improved decision-making in a wide 
range of industries such as manufacturing, transportation, healthcare, and home automa-
tion. IoT devices can be connected through wired or wireless networks, including a wide 
range of devices such as smart thermostats, security cameras, industrial machines, and 
wearable devices.

The IoT relies on several key technologies to function effectively. One of the most 
important is sensor technology (Gharibzahedi et al. 2022), which allows IoT devices to col-
lect data from the physical world. Sensors are capable of measuring a wide range of physi-
cal properties, including temperature, humidity, pressure, and motion. Another critical 
technology for IoT is wireless communication (Khanh et al. 2022), as devices must be able 
to communicate with one another and other systems. Bluetooth, Zigbee, and LoRaWAN 
are common wireless technologies used in IoT. Cloud computing (Phasinam et al. 2022) is 
also essential, as IoT devices generate vast amounts of data that require storage and anal-
ysis. Cloud computing provides a cost-effective solution to manage this data and offers 
scalability. Furthermore, big data technologies (Zhou 2022) and analytics are used to pro-
cess and analyze this data to extract insights and make decisions. As the volume of data 
produced by IoT devices grows, edge computing (Kong et  al. 2022) has become crucial 
technology, enabling data processing to take place closer to the source and reducing the 
amount of data that needs to be transmitted to the cloud.

The IoT is rapidly evolving and is expected to significantly impact many aspects of our 
lives, from how we live and work to how we travel and consume goods and services.
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1.1 � Duo of DL and IoT

The fusion of IoT and DL has led to a transformative shift in our interaction with 
machines and devices. DL, which is a subdivision of ML, involves instructing algo-
rithms to identify patterns in data. Meanwhile, IoT pertains to the interconnected net-
work of physical objects, structures, vehicles, and other devices fitted with sensors, soft-
ware, and connectivity for the purpose of exchanging data. The amalgamation of these 
two technologies has facilitated the development of intelligent machines and devices 
that can function independently and process vast amounts of information in real-time. 
The coupling of DL and IoT has the potential to revolutionize various industries, rang-
ing from healthcare to manufacturing, by enabling efficient decision-making, automa-
tion, and predictive maintenance.

DL integration into IoT enables devices to make decisions and predictions using data, 
through neural networks that mimic human brain processing. This integration leads to 
more intelligent devices capable of tasks such as object recognition, speech recognition 
and anomaly detection. It also results in more efficient and accurate data processing, 
improving overall IoT system performance.

DL is a critical technology in the IoT, and it has several key applications. One of the 
most important is object recognition (Salari et al. 2022), which uses DL algorithms to 
enable IoT devices to recognize and identify objects in images and videos. This can be 
used in applications such as security, surveillance, and robotics. DL algorithms can also 
be used for anomaly detection (Xia et al. 2022a), which can help identify potential prob-
lems with equipment or systems by analyzing sensor data. Another application is pre-
dictive maintenance (Achouch et al. 2022), where DL algorithms analyze sensor data to 
predict when equipment or systems are likely to fail, allowing for proactive maintenance 
to be performed. DL algorithms can also be used for speech recognition (Li 2022), 
allowing IoT devices to understand and respond to spoken commands in applications 
such as voice assistants and home automation. Additionally, DL enables IoT devices to 
process and understand natural language input (Khurana et al. 2023), which can be used 
in applications such as language-based interaction and personal assistance. Moreover, 
DL can be used to create recommender systems (Wu et al. 2022) that provide custom-
ized suggestions to users based on their preferences, past actions, and habits.

Overall, the integration of DL in IoT can improve the performance and functionality 
of IoT systems by allowing devices to make decisions and predictions based on data and 
also make them more intelligent and efficient. Moreover, DL algorithms can be used 
to analyze sensor data from IoT devices to make predictions or detect patterns, which 
can be used to improve the efficiency of IoT systems and automate decision-making. 
Additionally, DL can be used to improve the security of IoT systems by detecting and 
preventing cyberattacks. Some examples of DL in IoT include image recognition on 
cameras, voice recognition for smart speakers, and anomaly detection in manufacturing.

This paper is aimed at IoT researchers and developers who aim to create analytics, 
AI systems, and learning solutions using DL techniques for their IoT infrastructure. The 
paper makes the following contributions:

1.	 Identifies and discusses the importance of different DL frameworks required for estab-
lishing an IoT network, highlighting the strength of DL in handling large, complex 
datasets.
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2.	 Provides an in-depth explanation of the functioning of various DL models that can be 
used in an IoT network, showcasing the strength of DL in extracting patterns and features 
from raw data.

3.	 Presents a comprehensive overview of the different applications of IoT where DL can be 
integrated, including real-world examples, demonstrating the strength of DL in enabling 
predictive and prescriptive analytics for IoT systems.

4.	 Offers a detailed explanation of the components, layers, and terminology related to 
connectivity and communication technologies required for setting up an IoT network, 
emphasizing the strength of DL in enabling real-time decision-making and automation.

5.	 Examines the challenges and difficulties in integrating DL and IoT applications, includ-
ing issues related to data management, security, and privacy, highlighting the strength 
of DL in enabling effective and efficient data processing and analysis for IoT systems.

2 � Paper layout

The paper is organized in the following manner: Section 2 outlines the survey procedure. 
Section 3 discusses biological neurons, ANNs, perceptrons, and the functioning of neu-
ral networks. Section 4 discusses DL architectures, activation functions, and DL frame-
works. Section 5 provides a comprehensive overview of IoT characteristics, connectivity 
terms, components, service-oriented architecture, layers, communication technologies, 
and applications. Section 6 examines the application of DL in IoT devices and applica-
tions. Section 7 highlights the open challenges in IoT for DL. Section 8 concludes the 
paper with a summary. Figure 1 provides a visual representation of the paper’s overall 
structure, while Table 1 presents the same information in a tabular format.

Fig. 1   Visual representation of the layout of a research paper, including its sections, headings, and subhead-
ings
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3 � Research methodology

3.1 � Survey scope

In this survey, various DL models and deep neural network architectures are presented, 
which are suitable for use in IoT applications and devices have been reviewed. The main 
projection of this survey is to focus on the combined capabilities of two evolving tech-
nologies one in the field of AI that is DL and the second in the field of communication 
that is IoT. With the help of this survey, various researchers can attain knowledge about 
the role of DL in various fields of IoT.

3.2 � Research questions

The motive of this in-depth survey is to attain the answers to the following research 
questions (RQ):

Table 1   Tabular layout of paper

Section no. Section Sub section no. Sub section

1. Introduction 1.1 Duo of DL and IoT
2. Paper layout – –
3. Research methodology 3.1 Survey scope

3.2 Research questions
3.3 Source of information

4. Findings of the survey – –
5. Neural network 5.1 Biological neurons

5.2 ANNs
5.3 Perceptrons
5.4 Functioning of neural network

6. DL 6.1 Significance of DL
6.2 Activation functions
6.3 DL models
6.4 DL framework

7. IoT 7.1 Characteristics of IoT
7.2 Connectivity terminologies
7.3 IoT components
7.4 IoT service-oriented architecture
7.5 IoT layers
7.6 Communication technologies
7.7 IoT applications

8. Usage of DL in IoT applica-
tions and IoT devices

8.1 DL for IoT applications
8.2 DL in IoT devices

9. Challenges of IoT for DL – –
10. Conclusion – –
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•	 RQ1 What are the various frameworks for DL?
•	 RQ2 What are the various DL models which can be used in IoT data?
•	 RQ3 What are the IoT challenges for DL?
•	 RQ4 What will be the future direction for the usage of DL in IoT?
•	 RQ5 What are the computational limits of DL?
•	 RQ6 What are the strengths of DL in IoT?

3.3 � Source of information

Due to the extensive scope of research articles, it is recommended that various databases 
be utilized to survey the existing literature in the field of the role of DL in IoT, due to 
the broad range of research articles. Six research databases were therefore searched in this 
study, including:

•	 Google Scholar (https://​schol​ar.​google.​com/).
•	 IEEE (https://​www.​ieee.​org/).
•	 Springer (Home—Springer).
•	 Elsevier (https://​www.​elsev​ier.​com/​en-​in).
•	 Science Direct (https://​www.​scien​cedir​ect.​com/).
•	 ACM digital library (https://​dl.​acm.​org/).

The choice of six research sources in this study was made based on several factors.
Firstly, these six databases are some of the most widely used and respected sources of 

scientific literature in the field of computer science and engineering, with a vast collection 
of research articles related to DL and IoT. Secondly, searching these six databases ensures 
that the study covers a broad range of research articles, which is important given the exten-
sive scope of research in this field. Thirdly, these six databases offer a range of search func-
tionalities and options, which allowed for a comprehensive and focused search on the topic 
of DL in IoT. Finally, the choice of six research sources was also guided by practical con-
siderations such as time and resource constraints. Conducting a comprehensive search of 
all available databases would have been time-consuming and costly, and six databases were 
deemed to be a reasonable compromise between breadth and feasibility. Overall, the choice 
of these six research sources was based on their reputation, breadth of coverage, search 
functionality, and practical considerations, and was deemed to be appropriate for this study.

The following criteria’s were taken into consideration when choosing the six research 
sources:

•	 Relevance: the sources had to be relevant to our research questions and objectives.
•	 Credibility: we selected sources that were published by reputable academic publishers 

and peer-reviewed journals.
•	 Recency: we preferred sources that were recently published (within the last 5 years) to 

ensure that the information was up-to-date.
•	 Accessibility: we considered sources that were easily accessible to us, such as open 

access or available through our institutional library.
•	 Diversity: we aimed to include sources from a variety of publishers and journals to 

ensure a diverse range of perspectives.
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By using these criteria, we were able to identify six research sources that met our needs 
and provided a comprehensive and high-quality foundation for our paper.

4 � Findings of the survey

The IoT has emerged as one of the most transformative technologies in recent times, ena-
bling smart and interconnected systems that can operate autonomously and make intelli-
gent decisions based on data. With the increasing amount of data generated by IoT devices 
and the need for intelligent decision-making, DL algorithms provide the necessary tools to 
process and analyze this data in real-time. As such, there has been a rising trend in adopt-
ing DL in IoT devices and domains, with a broad range of practical applications. In this 
survey paper, we investigate the versatility of DL in the realm of IoT and provide insights 
into the role of DL frameworks, DL models, challenges in implementing DL in IoT, and 
future directions for DL in IoT. Our findings highlight the potential of DL to revolutionize 
IoT devices and applications and provide recommendations for organizations looking to 
adopt DL in their IoT systems.

One of the key aspects of DL is the use of frameworks, which provide an interface for 
developers to build, train, and deploy DL models. There are several popular frameworks 
available, including TensorFlow, PyTorch, Deeplearning4j, Microsoft cognitive toolkit, 
Keras, MXNet, and Caffe. Each of these frameworks has its own strengths and capabilities, 
making it important to choose the right one for a given project.

DL models are used in a variety of ways in IoT, including for anomaly detection, pre-
dictive maintenance, image and speech recognition, time-series forecasting, data compres-
sion and dimensionality reduction, decision-making, and more. Some of the most com-
monly used DL models include Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs), Autoencoders (AE), Generative Adversarial Networks (GANs), Long 
Short-Term Memory (LSTM) Networks, Variational Autoencoders (VAE), and others.

Implementing DL models in IoT devices can be challenging due to several factors, 
including limited computing power and memory, a lack of labelled data for training mod-
els, power consumption and energy constraints, limited bandwidth and connectivity, secu-
rity and privacy concerns, integration with legacy systems and protocols, scalability and 
management of many devices, and cost and deployment barriers. To overcome these chal-
lenges, organizations can adopt techniques such as edge computing, federated learning, 
transfer learning, and compatibility standards.

DL will play a crucial role in the future of IoT by enabling devices to make decisions 
based on data and perform tasks with minimal human intervention. Integrating DL into IoT 
will improve the efficiency of various applications such as predictive maintenance, smart 
homes, and autonomous vehicles. The future direction for DL in IoT will likely include 
edge computing, predictive maintenance, anomaly detection, computer vision, and NLP.

However, DL models also have several computational limits, including data require-
ments, computational power, overfitting, data privacy and bias, interpretability, conver-
gence, and generalization. It is important to consider these limitations when developing DL 
models for IoT applications.
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5 � Neural network

Neural networks imitate the functioning of the human brain, enabling computers to iden-
tify and predict patterns, as well as tackle complex challenges in the realm of ML and DL. 
Neural networks consist of interconnected processing units called neurons, which collabo-
rate to analyze and process information. They have proven to be highly effective in solving 
complex problems and are widely used in various applications, such as image and speech 
recognition, NLP, and autonomous systems. This section provides a summary of neural 
networks, ANNs, and the learning process of neural networks.

5.1 � Biological neurons

The whole idea behind DL is to have computers artificially mimic biological natural intel-
ligence. Before proceeding to neural networks, we should probably build a general under-
standing of how biological neurons works. Neurons are the basic functional units of our 
nervous system, they generate biological signals which help them to transmit information. 
All neurons have three main units as shown in Fig. 2 which are:

•	 Dendrites (Li et al. 2020a) are responsible for receiving incoming signals, they make 
neurons produce and stop output signals.

•	 Cell body (Soma) (Zou et al. 2008) A single neuron can receive thousands of incoming 
signals through multiple dendrites and whether or not a neuron generates an output sig-
nal depends on the sum of all excitatory and inhibiting signals. The processing of this 
information occurs inside the cell body (soma).

•	 Axon (Zaimi et al. 2018) The axon is responsible for transmitting output signals from 
the neuron to targeted cells. In the brain, a network of neurons connected through 
chemical and electrical impulses is referred to as a neural network. Neurons use elec-
trical signals or impulses to perform mental processes like thinking, memory recall, 

Fig. 2   Anatomy of a biological neuron showing input and output structures
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and learning. The neuron sends the electrical impulse along its axon or nerve fibre. 
The axon terminates in several branches called dendrites. When the impulse reaches the 
dendrites, neurotransmitters are released into the space between cells. The cells across 
this space have receptors that attach to the neurotransmitters, leading to changes in the 
cells.

5.2 � ANNs

ANNs are modelled on the architecture and operation of biological neurons in the 
human brain. In ANNs, the analogue of biological neurons are layers comprised of 
interconnected nodes that transmit signals to other nodes (Pantic et  al. 2022). In an 
ANN, each node is connected to other nodes with a weight and threshold value. When 
the output of a node surpasses the threshold, the node is activated and forwards infor-
mation to the next layer of the network. If not, no data transfer occurs. The structure of 
an ANN is depicted in Fig. 3 and consists of the following elements:

•	 Input layers, where the input data is entered from the outside world and then processed 
and categorized.

•	 Hidden layers, there are a lot of hidden layers in a neural network, where the processing 
of the input data takes place.

•	 Output layers, where the response is generated and delivered, in one output node the 
output is found to be either 0 or 1.

Every node takes data input and assigns a weight to it. The node with more weight con-
tributes more to the output than the node with less weight. Some of the ANNs models in 
practice are CNN, Multi-Layer Perceptrons (MLP) and RNN.

Fig. 3   Schematic diagram of an ANNs, highlighting its layers and connections
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5.3 � Perceptrons

The concept of perceptron was introduced by American psychologist, Frank Rosenblatt 
(https://​news.​corne​ll.​edu/​stori​es/​2019/​09/​profe​ssors-​perce​ptron-​paved-​way-​ai-​60-​years-​
too-​soon) in 1957 at Cornell Aeronautical Laboratory. Perceptrons are basic functional 
units of ANNs. They are mathematical functions which take some set of inputs along 
with parameters and generate output. Each perceptron has three basic functions:

•	 Take inputs.
•	 Associate weights with inputs and sum them up.
•	 Pass the sum in some function to generate output.

Perceptrons consist of a single node, or neuron, that receives input, processes the input 
through a set of weights and biases, and produces a single output. The weights and 
biases are adjustable, allowing the perceptron to learn from the input–output pairs it is 
presented with during training. Perceptrons are considered to be the building blocks of 
more complex neural networks and are often used for binary classification problems, 
where the goal is to separate the input into two distinct classes based on the output.

A single perceptron cannot learn complex systems, but a multi-layered perceptron, 
also known as a neural network, can. This is achieved by connecting multiple percep-
trons and using the output of one as input for the others, enabling the network to learn 
about the interactions and relationships between features. Figure 4 illustrates the func-
tioning of a multi-layered perceptron model. The functionalities of different layers are:

•	 The first layer in a neural network is the input layer, which receives the input vector “x” 
for the network to learn from. The input layer has the same number of neurons as the 
entries in the input vector, with each neuron corresponding to a specific entry.

•	 The final layer in a neural network is the output layer, which can contain multiple neu-
rons. The output layer produces the vector “y,” representing the result generated by the 
network.

Fig. 4   Perceptron model depicting its key components: inputs, weights, bias, and output
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The layers between the input and output layers in a neural network are referred to as the 
hidden layers. These layers perform mathematical operations to generate a prediction vec-
tor “y”.

Here is how the perceptron model operates:

•	 Input values are fed to the model.
•	 The input values are multiplied by the weights to calculate the weighted sum and a bias 

term is added.
•	 The procured result decides whether the perceptron will activate or not. If the result is 

above the threshold then the perceptron will fire, otherwise, it will not.

The perceptron is considered to be working well if the predicted output is close to the 
actual output for a given input. To minimize the impact of these errors on future predic-
tions, the weights need to be adjusted if there is any discrepancy between the expected 
and actual results. The correct weights and biases in a perceptron are determined through 
a process called training. During training, the model is presented with a set of input–out-
put pairs, and the weights and biases are adjusted to minimize the error between the pre-
dicted and actual outputs. This adjustment of weights and biases is done iteratively until 
the model produces an acceptable level of accuracy. Common training algorithms include 
gradient descent, stochastic gradient descent, and backpropagation.

5.4 � Functioning of neural network

Neural networks learn by adjusting the connections between their artificial neurons in 
response to input data. This process is called training, and it involves feeding the network 
large amounts of labelled examples so that it can gradually improve its ability to make pre-
dictions or decisions. During training, the network uses a mathematical algorithm called 
backpropagation to calculate the error or loss between its predictions and the actual labels. 
It then uses this error signal to adjust the weights of its connections, in a way that reduces 
the overall error. Over time, with enough training data and iterations, the network learns to 
recognize patterns and relationships in the data, and can make accurate predictions even on 
new, unseen examples. This ability to generalize from training data is what makes neural 
networks so powerful and versatile for tasks such as image recognition, language transla-
tion, and decision making.

A neural network learns by modifying its weights and biases through a training pro-
cess that involves several steps. The first step is forward propagation, where the input data 
is processed and used to generate a prediction for the output. The loss function is then 
used to measure the difference between the predicted output and the actual output, and 
this is minimized through a process called backpropagation. During backpropagation, the 
network adjusts its weights and biases based on the error calculated by the loss function. 
Gradient descent is used to update the weights and biases in a direction that minimizes the 
loss, and this process is repeated until the minimum loss is achieved. This cycle of forward 
propagation, loss calculation, backpropagation, and gradient descent is repeated multiple 
times until the network converges to a set of weights and biases that result in accurate pre-
dictions. By learning the underlying patterns in the data, the neural network can improve 
its predictions over time.

The forward propagation process (Tang et al. 2015) in a neural network involves tak-
ing input X and using it to calculate a prediction vector Y. This is done by multiplying the 
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input vector X and weight matrix W between two layers to produce a vector Z. The activa-
tion function is applied to convert Z into the output of the perceptron and fed to the next 
layer. In a multi-layer neural network, this process is repeated using different weight matri-
ces for every two consecutive layers. The value of a perceptron in a layer is a linear com-
bination of activations from the previous layer and some weights. During training, these 
weights are adjusted to improve the accuracy of the predictions. After making predictions, 
the neural network is evaluated using a loss function to measure the difference between the 
prediction and actual value (Li et al. 2019). Equation 1 shows the mathematical expression 
for evaluating the loss value. Where L is the loss, ypred is the predicted value, and y is the 
actual value

Minimizing the loss function leads to more accurate predictions, with two of the most com-
monly used loss functions being Mean Squared Error and Cross-Entropy. To minimize the 
loss function and improve the predictions, gradient descent is used, which consists of for-
ward propagation to calculate the prediction vector and backpropagation to fine-tune the 
weights and bias terms. Backpropagation involves travelling from the output layer to the 
input layer, adjusting the weights and bias terms using the gradient of the loss function. 
This process continues until the optimal weights are reached and the neural network is 
capable of making desired predictions.

6 � Deep Learning

Deep Learning (DL) is a branch of AI that emulates the human brain in processing data 
and generating patterns that are valuable in decision-making. The term ‘Deep’ refers to 
the multiple layers in the model, while ‘Learning’ refers to the ability to learn from these 
layers. In this way, DL models analyse input data to extract high-level abstractions across 
multiple layers. The goal of DL is to educate computers to learn through examples and 
previous experiences.

DL focuses on creating ANNs with multiple layers, referred to as deep neural networks. 
These networks are designed to automatically learn from large amounts of data and make 
predictions or decisions based on input data. DL has proven to be highly effective in solv-
ing complex problems in various domains, such as image and speech recognition, NLP, 
and self-driving cars. This success is due to the ability of DL algorithms to model high-
level abstractions and representations of data, allowing them to make highly accurate 
predictions.

DL models offer high accuracy in recognizing patterns in real-life scenarios by being 
fed a training set of labelled data. During the training phase, data is provided to the com-
puter to learn from, while during the testing phase, the trained system is given new data 
and asked to predict the label. Deep neural networks consist of three layers: input, hid-
den, and output. Each layer contains multiple units called neurons, which receive multiple 
inputs, calculate a weighted sum of these inputs, and produce an output through an activa-
tion function. Each neuron has a weight and bias that are optimized during training.

DL is playing a crucial role in several cutting-edge technologies such as driverless cars 
(Kuutti et al. 2020), voice assistants (Andics et al. 2010), sentiment analysis (Zhang et al. 
2018a), healthcare (Esteva et al. 2019), agriculture (Kamilaris and Prenafeta-Boldú 2018) 

(1)L =
1

2
(ypred − y)2
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and many more. According to LeCun et al. (2015a), DL has made significant progress in 
solving complex problems that have challenged AI for many years. It is particularly adept 
at uncovering intricate patterns in high-dimensional data and is therefore applicable to 
numerous fields including engineering, science, business, and agriculture. DL has shown 
outstanding results for various tasks in NLP, sentiment analysis, question answering and 
language translation.

A strong advantage of DL is feature learning (Li et al. 2014), i.e. DL extracts the fea-
tures automatically from raw data. More complex problems can be easily solved by DL in a 
fast manner with the help of a powerful computer system. DL is a rapidly growing field in 
AI that focuses on learning high-level representations of data. It uses hierarchical architec-
tures to identify patterns and relationships in complex data and has seen successful appli-
cation in various domains, including semantic parsing (Quispe and Pedrini 2019), trans-
fer learning (Shao et al. 2014), NLP (Otter et al. 2020), computer vision (Alyamkin et al. 
2019), and more. With its increasing popularity and proven effectiveness, DL is expected 
to continue advancing and expanding into new areas in the future.

In this section, we will provide an overview of several key aspects of DL, including 
the significance of this rapidly advancing field, the importance of activation functions, and 
various DL models such as CNN, RNN, AE, VAE, and GAN. Additionally, we will explore 
DL frameworks and their role in enabling the development and implementation of complex 
models in a more efficient and streamlined manner. By gaining an understanding of these 
important components, we can appreciate the significant impact that DL is having across 
numerous industries and fields, and its potential for continued growth and innovation in the 
future.

6.1 � Significance of DL

Before the surge in the popularity of DL, conventional ML algorithms such as SVM, Lin-
ear Regression, and Logistic Regression were utilized. These algorithms faced a challenge 
in that they were not capable of processing raw data directly, instead requiring a labori-
ous and knowledge-intensive step known as Feature Extraction. However, Neural Networks 
became sought after due to their capability of automatically extracting features from raw 
data without the need for pre-processing, a process known as Feature Learning. The abun-
dance of data is another factor contributing to the rise of DL. With vast amounts of infor-
mation available, there are numerous opportunities for advancements in this field, leverag-
ing the power of big data to drive innovation.

Dr Andrew Ng (https://​schol​ar.​google.​com/​citat​ions?​user=​mG4im​MEAAA​AJ&​hl=​
en&​oi=​ao) is a renowned professor and AI expert who has compared DL to rocket science. 
He has stated that DL models are like rocket engines and the large amounts of data fed 
to them serve as fuel, which helps to propel the models towards their intended goal. This 
comparison highlights the importance of having large amounts of data to train DL algo-
rithms and the complexity involved in designing and building these models.

The key advantage of DL models is that they can learn to make predictions or decisions 
based on the data without human intervention or feature engineering. The models can be 
trained using large amounts of data, and they automatically learn features and representa-
tions from the data, allowing them to perform feature extraction without the need for pre-
processing steps. The rise of DL is also attributed to the availability of vast amounts of 
data, which provides opportunities for innovation in the field. With advancements in tech-
nology, DL is being widely used in industries such as finance, healthcare, transportation, 
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and retail, and is continuously advancing with researchers developing new architectures 
and techniques to improve performance. The future looks bright for DL, with many chal-
lenges and opportunities to improve and bring it to new frontiers.

6.2 � Activation functions

The activation functions (Liu and Wang 2008) are essential components in neural net-
works, serving a critical role in their operations. They generate the output of the network, 
which ranges from 0 to 1 or − 1 to 1 depending on the activation function used. These 
functions are divided into two categories: Linear functions and Non-Linear functions. Lin-
ear functions do not limit the output of the network to any specific range, while non-linear 
activation functions are the most commonly used and their outputs are confined to certain 
ranges. The following listed are the activation functions that are mostly used:

•	 Linear (Agostinelli et  al. 2014): The output of this function is not confined. It sim-
ply returns the input as the output, without applying any transformation to it. In other 
words, it performs a simple linear transformation on the input data. Equation 2 is the 
mathematical equation of the linear activation function:

•	 Sigmoid (Langer 2021): Function is differentiable, commonly used in binary classifica-
tion problems, where the output of the network should represent the probability of the 
input belonging to one of two classes. Equation 3 is the mathematical equation of the 
sigmoid activation function:

•	 Tanh (Karlik and Olgac 2011): It is preferred over the sigmoid activation function for 
some problems because it has a wider range of output values and is zero-centred, which 
can help with optimization during training. Equation 4 is the mathematical equation of 
the Tanh activation function:

•	 ReLu (Schmidt-Hieber 2020): ReLU has become a popular activation function in DL 
due to its ease of computation and ability to prevent the vanishing gradient problem 
associated with functions such as sigmoid and tanh. Despite its advantages, ReLU is 
prone to the “dying ReLU” problem, in which a neuron’s output becomes stuck at zero 
and cannot learn during training. Equation 5 is the mathematical equation of the ReLu 
activation function:

•	 Leaky ReLu (Xu et al. 2020a): The Leaky ReLU (rectified linear unit) activation func-
tion is a variation of the traditional ReLU function utilized in ANNs. It addresses the 
issue of “dying ReLU”, where a neuron’s output can become zero for negative inputs, 
by having a slight negative slope for inputs below zero, determined by the constant 

(2)f (x) = x

(3)S(x) =
1

1 + e−x

(4)tanh =
2

1 + e−x
− 1

(5)f (x) = max(0, x)
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alpha (usually set to 0.01). Equation 6 is the mathematical equation of the Leaky ReLu 
activation function:

•	 ArcTan (Zhang et al. 2018b): Also known as the inverse tangent activation function. It 
is a smooth, non-linear activation function that can be used as an alternative to popular 
activation functions like ReLU, sigmoid, and tanh in ANNs. Equation 7 is the math-
ematical equation of the arctan activation function:

•	 Softmax (Chen et  al. 2018): Function gives out probabilities of the states of input 
classes, it has the properties of converting the input vector into a probability distribu-
tion, ensuring that the outputs for all classes sum to 1, and representing the confidence 
of the model’s prediction for each class. Equation 8 is the mathematical equation of 
the softmax activation function, where “z” is a vector of real numbers representing the 
input to the activation function, and “k” is the number of elements in the vector.

•	 Swish (Ramachandran et  al. 2017): The Swish activation function offers advantages 
over conventional activation functions, such as a smoother gradient and reduced satu-
ration for large inputs. Some research has also indicated that the Swish function can 
result in better performance than ReLU and other activation functions in specific neural 
network configurations. Equation 9 is the mathematical equation of the swish activation 
function, where “x” represents the input to the activation function. It can be a scalar 
value, a vector, or a tensor, depending on the input to the neural network.

Table 2 presents the category and output range of various activation functions.

(6)f (x) = max(�x, x)

(7)f (x) = tan−1(x)

(8)
ez(i)

∑k

j=1
ez(j)

(9)f (x) = x × sigmoid(x)

Table 2   Category and output range of various activation functions

Activation function Category Output range

Linear (Agostinelli et al. 2014) Linear − ∞ to ∞
Sigmoid (Langer 2021) Non-linear 0 to 1
Tanh (Karlik and Olgac 2011) Non-linear − 1 to 1
ReLU (Schmidt-Hieber 2020) Piecewise linear (Rebennack and Krasko 

2020)
0 to ∞

Leaky ReLU (Xu et al. 2020a) Piecewise linear − ∞ to ∞
ArcTan (Zhang et al. 2018b) Non-linear −

∏

2
to

∏

2

Softmax (Chen et al. 2018) Non-linear 0 to 1
Swish (Ramachandran et al. 2017) Non-monotonic (Misra 2019) 1 to ∞
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6.3 � DL models

DL models find extensive use in diverse industries for resolving intricate issues. For 
instance, in computer vision, they assist with image classification, object detection, and 
segmentation. Similarly, in the domain of NLP, DL models come in handy for tasks like 
language translation, text classification, and sentiment analysis. In healthcare, DL models 
are utilized for image analysis, diagnosis, and drug discovery. In finance, they are used for 
fraud detection and algorithmic trading. DL models can also be applied in areas such as 
speech recognition, recommendation systems, and autonomous vehicles. Their ability to 
learn from large amounts of data and perform complex tasks has made DL a key player in 
the advancement of AI and ML. DL models play a crucial role in IoT data processing and 
analysis by allowing:

•	 Anomaly detection: DL models can identify patterns in large amounts of IoT data and 
flag any data points that deviate from these patterns as anomalies.

•	 Predictive maintenance: DL models can be trained on IoT data to predict when a device 
is likely to fail, allowing maintenance to be performed proactively.

•	 Image and speech recognition: CNNs and RNNs can be used to process and analyze 
image and speech data generated by IoT devices.

•	 Time-series forecasting: LSTMs and other RNN models can be used to analyze time-
series data generated by IoT devices and make predictions about future trends.

•	 Data compression and dimensionality reduction: AE and other DL models can be used 
to reduce the size of IoT data and remove any redundant information.

•	 Decision-making: Reinforcement learning can be used to train models that make deci-
sions based on IoT data, for example, in the case of an autonomous vehicle or industrial 
control system.

In this section, a comprehensive overview of the most commonly used DL algorithms has 
been provided.

6.3.1 � CNN

A CNN is a DL algorithm that excels in analysing image pixels and recognizing patterns in 
images, audio, and signals. It is widely used for various purposes, including medical imag-
ing, audio processing, object detection, and generating synthetic data. A CNN operates by 
accepting an image as input, determining the significance of various objects or elements 
within the image through adjustable weights and biases, and differentiating between them. 
It accomplishes this by utilizing filters that can effectively identify spatial and temporal 
relationships within an image. The CNN structure is optimized for image data, as it reduces 
the number of parameters and recycles weights. The ultimate goal of a CNN is to extract 
higher-level concepts from image information through the application of multiple non-lin-
ear layers. CNNs have demonstrated exceptional results in various fields related to pattern 
recognition (Wu et al. 2018), image processing (Han et al. 2020), speech recognition (Noda 
et al. 2015), and more. CNNs are a specific type of DL model that have made significant 
contributions to the field of computer vision and image analysis. The architecture of CNN 
is classified into two main parts:



	 D. Thakur et al.

1 3

•	 Feature extraction: this is a tool that separates and recognizes the different features of 
the image for processing/analysis.

•	 Classification: output generated from the convolutional process is utilized by a fully 
connected (FC) layer and prediction of the class of the image is done based on the fea-
tures extracted in the previous stage.

CNNs are known for their accuracy, especially in the field of image analysis and target 
detection. Two challenges in training CNNs are the number of training examples and the 
duration of training. To obtain an accurate CNN model, it is crucial to have a substan-
tial number of examples in the training dataset. The features learned by a CNN model are 
highly accurate and superior to manually crafted features. Fortunately, the availability of 
pre-trained CNN models on popular image datasets simplifies the process of setting up or 
adjusting CNN models for computer vision tasks. A commonly used CNN architecture was 
first proposed by LeCun (https://​schol​ar.​google.​com/​citat​ions?​user=​WLN3Q​rAAAA​AJ&​
hl=​en&​oi=​ao) and his colleagues for handwriting recognition, which now has become a 
benchmark for DL models. Table 3 provides the list of various available CNNs models.

The architecture of a CNN is illustrated in Fig. 5, consisting of convolution layers, pool-
ing layers, and FC layers. Arranging these layers in a specific sequence creates the CNN 
architecture. Along with these three layers, CNNs also include two crucial components: the 
dropout layer and the activation function.

Table 3   Available CNNs models Model Year

LeNet-5 (LeCun et al. 2015b) 1998
AlexNet (Alom et al. 2018) 2012
VGG-16 (Simonyan and Zisserman 2014) 2014
Inception-v1 (Szegedy et al. 2015) 2014
GoogLeNet (Ballester and Araujo 2016) 2014
Inception-v3 (Szegedy et al. 2016) 2015
ResNet (He et al. 2016) 2015
Inception-v4 (Szegedy et al. 2017) 2016
Xception (Chollet 2017) 2016
ResNext-50 (Xie et al. 2017) 2017

Fig. 5   CNN architecture, featuring specialized convolutional and pooling layers, and FC layers
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•	 Convolutional layer: the initial stage of a CNN structure is the convolutional layer, 
which extracts different features from the input image by applying mathematical convo-
lution operations, creating a feature map that contains image information.

•	 Pooling layer: the pooling layer helps to decrease the computational cost by decreasing 
the size of the feature map obtained from the convolutional layer. This is accomplished 
by cutting down the connections between layers and processing each feature map sepa-
rately. Different pooling methods can be utilized to enhance the efficiency of the model, 
including:

–	 Max Pooling (Ma et al. 2019a).
–	 Average Pooling (Wang et al. 2017).
–	 Sum Pooling (Liu et al. 2016).

•	 FC layer: the FC layer is composed of neurons, weights, and biases that link neurons 
across different layers. It is commonly located just prior to the output layer, serving as 
the final component of a CNN structure. The input image obtained from the preceding 
layers is converted into a flattened shape and channeled into the FC layer. The resulting 
flattened vector undergoes mathematical operations as it advances through subsequent 
FC layers, signifying the start of the input image’s categorization or classification pro-
cedure.

•	 Dropout: when assessing a model, it is important to consider the issue of overfitting 
in the training dataset. Overfitting can occur when a model performs very well on the 
training data but does not generalize well to new data. To tackle this issue, a dropout 
layer can be added to the model. The dropout layer excludes or “drops out” specific 
units or neurons from the model during training in a random manner, thereby decreas-
ing the model’s complexity and minimizing the chances of overfitting.

•	 Activation function: activation functions are an essential hyperparameter in CNN mod-
els. They are used to learn and approximate complex relationships between variables in 
the network and add non-linearity to the network. The most commonly used activation 
functions were discussed in Sect 6.2.

Table 4 provides information about the work done by various researchers using CNN.

6.3.2 � RNN

A RNN is a state-of-the-art neural network algorithm that is specialized in dealing with 
sequential data. They are commonly used in NLP (Cambria and White 2014) tasks due to 
their ability to handle text and other successive information. They are utilized in technolo-
gies such as Apple’s Siri and Google’s voice search (Park et al. 2019). RNNs are particu-
larly useful because they have an internal memory which allows them to retain informa-
tion from previous steps, making them well-suited for AI problems that involve sequential 
data. They are considered to be among the most powerful algorithms in the history of DL 
advancements in recent years.

In RNN nodes are connected in a way that forms cycles, meaning the output of a node 
can influence the output of another node. The output from the previous step is incorporated 
as part of the input in the current step. This neural network is commonly used in applica-
tions where the previous output is necessary to determine the output puts. For example, in 



	 D. Thakur et al.

1 3

Ta
bl

e 
4  

U
sa

ge
 o

f C
N

N
s i

n 
va

rio
us

 ty
pe

s o
f r

es
ea

rc
h

A
ut

ho
r(

s)
W

or
k 

do
ne

M
od

el

Le
e 

et
 a

l. 
(2

01
8)

Ex
tra

ct
 th

e 
ch

ar
ac

te
ris

tic
s o

f i
m

ag
es

, a
nd

 th
en

 u
til

iz
e 

th
e 

A
da

B
oo

st 
m

et
ho

d 
to

 c
on

str
uc

t a
 c

la
ss

ifi
er

 fo
r i

de
nt

ify
-

in
g 

th
e 

im
ag

es
C

N
N

M
a 

et
 a

l. 
(2

01
9b

)
de

ve
lo

pe
d 

a 
m

od
el

 c
al

le
d 

Lu
ng

B
R

N
 fo

r i
de

nt
ify

in
g 

re
sp

ira
to

ry
 il

ln
es

s
Re

sN
et

Sh
ar

m
a 

et
 a

l. 
(2

01
7)

Pr
op

os
ed

 a
 m

od
el

 fo
r g

et
tin

g 
la

nd
 c

ov
er

 in
fo

rm
at

io
n 

th
ro

ug
h 

re
m

ot
e 

se
ns

in
g 

im
ag

es
C

N
N

K
ha

n 
et

 a
l. 

(2
01

9)
A

na
ly

se
 R

es
N

et
 a

nd
 G

oo
gl

eN
et

 m
od

el
s f

or
 th

e 
de

te
ct

io
n 

of
 m

al
w

ar
e

Re
sN

et
, G

oo
gl

eN
et

Li
u 

et
 a

l. 
(2

01
9a

)
Fr

ui
t d

et
ec

tio
n 

on
 R

G
B

 a
nd

 N
IR

 im
ag

es
V

G
G

16
W

en
 e

t a
l. 

(2
02

0)
Pr

op
os

ed
 a

 m
od

el
 fo

r f
au

lt 
di

ag
no

si
s u

si
ng

 tr
an

sf
er

 le
ar

ni
ng

Re
sN

et
-5

0
Lu

 e
t a

l. 
(2

01
9)

Su
gg

es
te

d 
a 

D
L 

m
od

el
 th

at
 a

ut
om

at
ic

al
ly

 d
et

ec
ts

 p
at

ho
lo

gi
ca

l b
ra

in
 in

 M
ag

ne
tic

 R
es

on
an

ce
 Im

ag
es

 (M
R

I)
A

le
xN

et
Sh

an
th

i a
nd

 S
ab

ee
ni

an
 (2

01
9)

Pr
op

os
ed

 a
 m

od
el

 fo
r e

ar
ly

 d
et

ec
tio

n 
of

 d
ia

be
tic

 re
tin

op
at

hy
 d

is
ea

se
A

le
xn

et
Zh

an
g 

et
 a

l. 
(2

01
7a

)
D

en
oi

si
ng

 o
f i

m
ag

es
 u

si
ng

 th
e 

D
L 

m
od

el
D

nC
N

N
B

al
og

lu
 e

t a
l. 

(2
01

9)
D

ev
el

op
ed

 a
 m

od
el

 fo
r d

et
ec

tin
g 

m
yo

ca
rd

ia
l i

nf
ar

ct
io

n 
(h

ea
rt 

at
ta

ck
) u

si
ng

 E
C

G
 le

ad
 si

gn
al

s
D

ee
pC

N
N

K
ol

lia
s a

nd
 Z

af
ei

rio
u 

(2
02

0)
Pu

t f
or

w
ar

d 
a 

ne
w

 C
N

N
-R

N
N

 a
pp

ro
ac

h 
ut

ili
zi

ng
 v

ar
io

us
 fe

at
ur

es
 o

f C
N

N
 fo

r r
ec

og
ni

zi
ng

 su
bt

le
 fa

ci
al

 e
xp

re
s-

si
on

s o
f h

um
an

 e
m

ot
io

ns
C

N
N

, R
N

N

M
ao

 e
t a

l. 
(2

02
0)

Fo
r t

he
 e

ffe
ct

iv
e 

cl
as

si
fic

at
io

n 
of

 F
ac

ia
l A

ttr
ib

ut
es

, a
 m

ul
ti-

la
be

l m
od

el
 b

as
ed

 o
n 

C
N

N
 h

as
 b

ee
n 

pr
op

os
ed

C
N

N
Ta

o 
et

 a
l. 

(2
02

0)
Re

co
gn

iti
on

 o
f e

m
ot

io
ns

 b
as

ed
 o

n 
el

ec
tro

en
ce

ph
al

og
ra

ph
y 

(E
EG

) a
nd

 a
tte

nt
io

n-
ba

se
d 

C
on

vo
lu

tio
na

l R
ec

ur
re

nt
 

N
eu

ra
l N

et
w

or
k

A
C

R
N

N

Li
 e

t a
l. 

(2
02

1a
)

Re
co

gn
iti

on
 o

f e
m

ot
io

ns
 b

as
ed

 o
n 

EE
G

R
N

N
Jia

 e
t a

l. 
(2

02
0)

D
ev

el
op

ed
 a

 sy
ste

m
 fo

r u
nd

er
st

an
di

ng
 u

se
r b

eh
av

io
r t

ha
t u

til
iz

es
 c

on
ta

ct
le

ss
 R

ad
io

 F
re

qu
en

cy
 (R

F)
 te

ch
no

lo
gy

 
an

d 
le

ve
ra

ge
s t

he
 W

iF
i C

ha
nn

el
 S

ta
te

 In
fo

rm
at

io
n 

(C
SI

)
C

N
N

M
a 

et
 a

l. 
(2

02
1)

Re
co

gn
iz

es
 fa

ci
al

 e
xp

re
ss

io
ns

C
N

N
X

u 
et

 a
l. 

(2
02

1)
Pr

ed
ic

t s
ec

ur
ity

 p
er

fo
rm

an
ce

 fo
r I

oT
-b

as
ed

 h
ea

lth
ca

re
 n

et
w

or
ks

C
N

N
Zh

an
g 

et
 a

l. 
(2

02
1a

)
C

la
ss

ify
 h

yp
er

sp
ec

tra
l i

m
ag

es
 (H

SI
) a

nd
 li

gh
t d

et
ec

tio
n 

an
d 

ra
ng

in
g 

(L
iD

A
R

) d
at

a
C

N
N

Jia
 e

t a
l. 

(2
02

2)
Pr

op
os

ed
 a

 re
so

ur
ce

 o
pt

im
iz

at
io

n 
ap

pr
oa

ch
 in

 E
dg

e 
C

om
pu

tin
g 

En
vi

ro
nm

en
t

C
N

N
K

im
 e

t a
l. 

(2
02

0)
Pr

op
os

ed
 a

 C
N

N
 a

cc
el

er
at

or
 th

at
 u

til
iz

es
 fe

at
ur

e 
sk

ip
pi

ng
 to

 im
pr

ov
e 

en
er

gy
 e

ffi
ci

en
cy

 in
 m

ob
ile

 d
ev

ic
es

 fo
r f

ac
e 

re
co

gn
iti

on
 ta

sk
s

C
N

N



DeepThink IoT: The Strength of Deep Learning in Internet of Things﻿	

1 3

sentence auto-completion, previous words are taken into consideration before the neural 
network can provide suggestions to complete the sentence.

RNNs use memorization to store information from previous steps that have already been 
calculated. They use the same parameters every time to operate on the input or the hid-
den layers. This is different from traditional neural networks that have independent lay-
ers and do not store previous outputs in memory. RNNs use dependent activations, which 
means they use the same weights and biases for all hidden layers, reducing the complexity 
of increasing parameters by remembering the outputs that are fed as input to the next layer. 
Equation 10 is the formula for calculating the current hidden state is:

where Ht is the current state, Ht − 1 is the previous state and At is the input. Now that the 
hidden state is calculated, we can find out the output by the following formula:

where Bt is the output, Wt is the weight at the output layer, and Ht is the previously cal-
culated hidden state. Figure 6 shows the architecture of RNN. In a RNN, the nodes from 
multiple layers are condensed into a single layer.

The network’s parameters are represented by F, G, and H. In this context, “X” repre-
sents the input layer, “A” represents the hidden layer, and “Y” represents the output layer. 
The network parameters F, G, and H are utilized to optimize the model’s output. At a given 
time step “t”, the current input is a combination of the input at X(t) and the previous input 
X(t − 1). The output at any given time is fed back into the network to improve its perfor-
mance. In RNN, the information flows in a loop back to the intermediate hidden layer. The 
input layer “X” processes and receives the input for the neural network and transfers it to 
the middle layer. The middle layer “A” can comprise multiple hidden layers, each with its 
own set of activation functions, weights, and biases. If the parameters of the various hid-
den layers are not impacted by previous layers, meaning the network does not have mem-
ory, then a RNN can be used. The RNN standardizes the activation functions, weights, 
and biases across all hidden layers, making them all have the same parameters. Instead of 

(10)Ht = f [
(

Ht − 1
)

+ AT ]

(11)Bt = [W0 + Ht]

Fig. 6   Schematic representation of a RNN, emphasizing its recurrent connections and hidden state
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multiple hidden layers, it creates a single layer and repeats it as necessary. Advantages of 
RNNs include:

•	 Memory: RNNs have an internal memory that allows them to retain information from 
previous steps, making them well-suited for AI problems that involve sequential data.

•	 Handling sequential data: RNNs are specialized in dealing with sequential data, mak-
ing them commonly used in tasks such as NLP and speech.

•	 Predictions: RNNs are useful for providing predictions, such as stock price prediction 
and auto-complete features in various word processing software.

•	 Image processing: RNNs can be used in conjunction with CNNs to extend the effective 
pixel neighbourhood, such as extending images or removing objects from an image.

•	 Real-time processing: RNNs can process data in real-time, which makes them useful in 
applications such as speech recognition and machine translation.

•	 Handling long-term dependencies: RNNs are capable of handling long-term depend-
encies, which makes them useful in tasks such as language modelling and time series 
prediction.

Disadvantages of RNNs include:

•	 Training difficulty: training an RNN can be difficult due to the complex nature of the 
network and the need to handle sequential data.

•	 Vanishing and exploding gradients: when the gradient is too large or too small, it can 
make it difficult for the network to learn.

•	 Limited ability to process long sequences: if activation functions such as read or tanh 
are used, RNNs may have difficulty processing very long sequences.

•	 Large computational cost: RNNs can be computationally expensive, particularly when 
working with large datasets or when multiple layers are used.

•	 High memory requirements: RNNs require large amounts of memory to store the infor-
mation from previous steps, which can be a limitation when working with large data-
sets.

•	 Inability to parallelize: RNNs are inherently sequential and it’s difficult to parallelize 
their computations, which can slow down the training process.

•	 Limited interpretability: the internal workings of RNNs can be difficult to interpret, 
making it hard to understand how the network is making its predictions.

Table 5 provides information about the work done by various researchers using RNN.

6.3.3 � LSTM

LSTM is a type of RNN that is specifically designed to handle long sequences of data. It 
is particularly useful for training models on time series data, where the order of the data 
points is important. One of the main challenges with training RNNs on long sequences is 
the problem of vanishing gradients, where the network struggles to learn patterns in the 
data. LSTM addresses this problem by using a memory cell, which allows the network to 
decide when to erase certain information and keep other information. This allows LSTM 
to effectively learn temporal dependencies in sequences. However, LSTMs still have dif-
ficulty learning long-term dependencies in very long sequences. To address the problem of 
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learning long-term dependencies in very long sequences, the attention mechanism can be 
used in conjunction with LSTMs (Karim et al. 2017). The attention mechanism allows the 
network to focus on specific parts of the input sequence, rather than processing the entire 
sequence as a whole. This helps the network to learn the dependencies in the data more 
effectively.

An LSTM network has an input layer, an output layer and some hidden layers, as 
shown in Fig. 10. The main idea of LSTM is that the memory cells present in the hid-
den layer can retain their state and the non-linear gating components control the flow of 
data into and out of the cell (Greff et al. 2016). Each LSTM layer contains a memory 
cell, input gates, output gates and forget gates. This structure allows LSTM to manage 
the flow of information, determining which information should be forgotten and which 
should be remembered.

There are different variations of LSTM such as PC-LSTM (Rao et al. 2018), CIFG-
LSTM (Ji et al. 2018), GRU (Gao et al. 2020), and Bi-LSTM (Yu et al. 2020). These 
variations have been proposed to improve the performance of LSTM on long sequences. 
The cell state acts as a transport highway that transfers relevant information down the 
sequence chain. In this way, LSTM can improve the performance of long sequences.

Some of the advantages of LSTM are:

•	 Handling of long-term dependencies: one of the main advantages of LSTM is its 
ability to handle long-term dependencies in sequences. It can learn patterns in the 
data that span over a long period.

•	 Handling of sequential data: LSTM is specifically designed to handle sequential 
data, making it suitable for tasks such as speech recognition, language modelling, 
and time series forecasting.

•	 Handling of missing data: LSTM can handle missing data, by selectively choosing 
which information to retain and which to discard.

•	 Robustness to noise: LSTM is robust to noise in the input data, due to its ability to 
selectively retain relevant information and discard irrelevant information.

•	 Variety of architectures: LSTM has a variety of architectures such as PC-LSTM, 
CIFG-LSTM, GRU, and Bi-LSTM which can be used to improve the performance of 
the model depending on the task and data.

•	 Attention Mechanism: LSTM can be combined with an attention mechanism which 
helps to focus on specific parts of the input sequence, thus allowing the network to 
learn the dependencies in the data more effectively

Some of the disadvantages of LSTM are:

•	 Computational complexity: LSTM networks can be computationally expensive, as 
they have more parameters and require more computation than traditional RNNs.

•	 Difficulty in parallelization: LSTM networks are difficult to parallelize, which can 
make training on large datasets time-consuming.

•	 Overfitting: LSTM networks can be prone to overfitting, especially when trained on 
small datasets.

•	 Difficulty in handling very long sequences: LSTM networks can have difficulty 
handling very long sequences, as the information stored in the memory cells may 
become irrelevant over time.
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•	 Difficulty in interpreting the model: LSTM networks can be difficult to interpret, as 
it is not always clear how the network is using the stored information to make pre-
dictions.

•	 Vanishing Gradients: LSTM networks suffer from the problem of vanishing gradients 
when learning through long data sequences, which makes it difficult to train the net-
work.

Table 6 provides information about the work done by various researchers using LSTM.

6.3.4 � GANs

GANs are a form of neural network that can learn intricate and high-dimensional distri-
butions by instructing two networks, namely a generator and a discriminator, to compete 
against each other (Xu et al. 2020b). The generator produces fresh examples that aim to 
imitate actual data, whereas the discriminator endeavors to differentiate between the genu-
ine and generated samples. Over time, the generator enhances its capacity to create realistic 
samples, and the discriminator improves its ability to identify counterfeit ones. Neverthe-
less, one of the predicaments encountered with GANs is the phenomenon of mode col-
lapse, wherein the generator produces a restricted set of data variations. To surmount this 
issue, researchers have developed techniques like conditional GANs (Iqbal and Ali 2018; 
Jiang et al. 2019), which employ supplementary information to guide the generator’s out-
put. GANs find wide-ranging utility in several applications, including image synthesis, 
text-to-speech, and anomaly detection.

Figure 7 shows the architecture of a GAN; A GAN consists of a generator and a dis-
criminator. The generator’s task is to create realistic data, which is then used as fake exam-
ples for the discriminator to distinguish from real data. The discriminator’s goal is to iden-
tify the generator’s fake data and penalize it for producing unrealistic results. At the start 
of training, the generator produces easily recognizable fake data, which the discriminator 
quickly learns to identify. As training continues, the generator improves and becomes bet-
ter at creating convincing fake data that the discriminator finds difficult to distinguish from 
real data. Eventually, if the generator is trained effectively, the discriminator may start mis-
taking fake data as real and its accuracy will decline. Both the generator and discriminator 

Fig. 7   Illustrating the architecture of a GANs, consisting of a generator network that generates new samples 
and a discriminator network that evaluates their authenticity
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are neural networks, with the generator’s output directly connected to the discriminator’s 
input. The discriminator’s classifications provide feedback to the generator through back-
propagation, which the generator uses to adjust its weights.Advantages of GAN:

•	 High-dimensional data generation: GANs can generate high-dimensional data such as 
images, videos, and audio.

•	 Unsupervised learning: GANs can be trained in an unsupervised manner, which means 
that the model does not require labelled data to learn.

•	 Flexibility: GANs can be used for a wide range of applications, such as image genera-
tion, super-resolution, and text-to-speech synthesis.

•	 Handling mode collapse: GANs can handle mode collapse, which is a common prob-
lem in generative models where the generator produces only a limited number of varia-
tions of the data.

•	 Conditional GANs: by using conditional GANs, the generator can generate specific 
types of data based on the given conditions.

Disadvantages of GAN:

•	 Training instability: GANs can be difficult to train due to the instability of the training 
process, which can lead to poor performance or complete failure.

•	 Mode collapse: GANs can suffer from mode collapse, which is a common problem in 
generative models where the generator produces only a limited number of variations of 
the data.

•	 Requires a large amount of data: GANs require a large amount of data to train effec-
tively.

•	 Requires powerful computing resources: GANs require powerful computing resources 
to train due to the complexity of the model.

•	 The complexity of the architecture: GANs have complex architecture which is difficult 
to understand and interpret the results.

Table 7 provides information about the work done by various researchers using GAN.

6.3.5 � AE

AE are a type of unsupervised ANN that aim to learn an efficient way to compress and 
encode data, and then convert it back to a form that is similar to the original. The key fea-
ture of an AE is its encoder–decoder architecture, which is used to train a representation 
code. This representation code is typically smaller than the input code and can be con-
sidered a compressed version of the original data, useful for other data mining tasks. AE 
architectures typically have three layers: an input layer, a hidden layer, and an output layer. 
The input layer is where the raw data is fed in, the hidden layer is where the compression 
and encoding occur, and the output layer is where the data is reconstructed to be similar to 
the original input. The output and input layers of an AE have the same number of neurons. 
An example of this can be seen when providing an image of a handwritten number to the 
AE, it first compresses the image into a lower resolution and then tries to determine the 
hidden representation to reconstruct the original image. AE use an unsupervised learning 
algorithm that continues to train itself by setting the target output to match the input, this 
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forces the small coding layer to reduce the dimensionality and reconstruct the input. The 
design of the AE is depicted in Fig. 8. Here are the terms utilized in the architecture of AE:

•	 Encoder (Wang et al. 2016): the encoder component in a neural network uses both con-
volutional and pooling layers to condense and convert the input information into a sim-
plified form. The resulting encoded information is then sent to the bottleneck layer for 
additional handling.

•	 Latent Space Representation (Yu and Principe 2019): Latent Space is the space where 
the data lies after it has been compressed and encoded by the encoder in the bottleneck. 
The bottleneck is an important module in the model that compresses the input data to 
a lower dimension while retaining the most important features. The decoder then uses 
this compressed, encoded data to reconstruct the original input. The main purpose of 
the bottleneck is to extract useful features from the input data and discard less impor-
tant information, making the data more compact and easier to process.

•	 Decoder (Irsoy and Alpaydın 2017): The decoder module is responsible for converting 
the compressed, encoded data from the bottleneck back to its original representation. It 
typically consists of multiple layers of transposed convolutional layers, also known as 
“deconvolutional” layers, which help to effectively “up sample” the data and restore the 
lost information. The goal of the decoder is to generate an output that is as similar as 
possible to the original input. In the case of image reconstruction, the decoder aims to 
rebuild the lost original image from the compressed data.

•	 The Reconstruction Loss (Wang et al. 2019): Reconstruction loss in an AE is a measure 
of how well the AE can reconstruct its input. It is typically calculated as the difference 
between the original input and the output of the decoder portion of the AE, and I used it 
as a training objective to minimize during training. Common choices of reconstruction 
loss include mean squared error and cross-entropy.

There are mainly seven types of AE, and their usage is mentioned in Table 8.
The advantages of Autoencoder are:

Fig. 8   Autoencoder architecture, consisting of an encoder network that compresses the input data and a 
decoder network that reconstructs it back to its original form
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•	 Dimensionality reduction: AE can be used to reduce the dimensionality of high-dimen-
sional data while preserving the essential features and relationships.

•	 Data compression: AE can be used as a lossy data compression method as they can 
learn to reconstruct data with a lower number of features, thus making the data more 
compact.

•	 Data denoising: AE can be trained to remove noise from data by learning to reconstruct 
the original input from a noisy version of it.

•	 Data generation: AE can be used for generating new samples of data by sampling in the 
latent space and decoding it back to the original space.

AEs have several disadvantages:

•	 They may suffer from overfitting, particularly if the dataset is small or the encoder and 
decoder architectures are too complex.

•	 AEs may struggle to learn useful features from the data if the encoder and decoder 
architectures are not appropriately designed.

•	 AEs are computationally intensive, especially for large datasets or high-dimensional 
data.

•	 AEs may fail to capture the underlying structure of the data, particularly if the data is 
highly structured or non-linear.

•	 AEs are not generally considered as good as GANs and VAEs for generating new, pre-
viously unseen samples from the data distribution.

•	 AEs are not designed for adversarial scenarios, where the goal is to generate samples 
that are difficult to distinguish from real data.

•	 AEs are not suitable for tasks where the data is highly irregular or unstructured.

Table 9 provides information about the work done by various researchers using AE.

Table 8   Types of AE

Type of Autoencoder Features

Denoising Autoencoder (Vincent 2011) It generally reduces the loss function between the output 
and the aged node

Sparse Autoencoder (Xu et al. 2015) It takes very high-performance values in the hidden layer 
and removes zero from all other hidden nodes

Deep Autoencoder (Hong et al. 2015) It is majorly used for real-valued datasets
Contractive Autoencoder (Lv et al. 2018) It is used to learn how to enter input in a small area for 

results
Under complete Autoencoder (Thies and 

Alimohammad 2019)
This does not need to be redone as it increases the chances 

of data rather than copying the output input
Convolutional Autoencoder (Chen et al. 2017) It can remove audio from an image or re-create missing 

parts
Variational Autoencoder (Xie et al. 2020b) It gives us a significant control, i.e. how we want to model 

our hidden distribution which other AE can’t do
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6.3.6 � VAE

A VAE is a DL model consisting of two main components: an encoder and a decoder. The 
encoder of a VAE compresses the input data into a compact representation referred to as 
the latent space, and the decoder recreates the original data from this compressed repre-
sentation. VAEs are commonly utilized in unsupervised learning and have the capability to 
generate new images by sampling from the latent space (Kingma and Welling 2019). The 
optimization of the VAE model is achieved by balancing the reconstruction error and the 
divergence between the encoded representation and a target distribution, which is measured 
using the Kullback–Leibler divergence (Joyce 2011). The continuous nature of the latent 
space in VAEs allows for seamless random sampling and interpolation. Unlike traditional 
input representations as fixed vectors, VAEs represent inputs as probability distributions 
utilizing two carriers: one carrying the meaning of the distribution and the other indicating 
the general deviation of the distribution. The VAE model is trained to minimize both the 
reconstruction error and the Kullback–Leibler divergence. VAEs have a continuous latent 
space, which enables easy random sampling and interpolation, making them effective in 
generating new images.

An Autoencoder transforms an input into a compact vector representation by minimiz-
ing the reconstruction loss between the input and the reconstructed image. A VAE, in con-
trast, generates its output by minimizing both the reconstruction loss and the KL Diver-
gence loss, which measures the difference between the actual and observed probability 
distributions. This KL Divergence is a symmetrical score and distance measure between 
two probability distributions, and it ensures that the distribution learned by the VAE is not 
far from a normal distribution.

The architecture of VAE is depicted in Fig.  9, When input data X is fed through the 
encoder, it outputs the latent state distributions (mean μ and variance σ), from which a vec-
tor Z is sampled. The assumption is made that the latent distribution is always Gaussian. 
The encoder compresses the input X into a smaller dimension, known as the bottleneck 
or latent space. Random data is sampled from this space, which is then decoded by the 
decoder by backpropagating the reconstruction loss to generate a new output.

VAE has several advantages, including:

(12)DKL(P ∥ Q) =
∑

x∈X

P(x)log
P(x)

Q(x)

Fig. 9   VAE architecture, consisting of an encoder network that maps the input to a probabilistic latent 
space, a decoder network that reconstructs the output, and a sampling layer that generates latent variables
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•	 Generating new data: VAEs can generate new data samples that are similar to the train-
ing data, which can be useful in a variety of applications, such as image synthesis, text 
generation, and drug discovery.

•	 Compact representation: VAEs can learn a compact representation of the data, called 
the latent code, which can be used for tasks such as data compression and dimensional-
ity reduction.

•	 Handling missing data: VAEs can handle missing data by learning a probabilistic dis-
tribution over the data, which allows them to impute missing values.

•	 Outlier detection: VAEs can be used for outlier detection by identifying data samples 
that are unlikely under the learned probabilistic model.

•	 Anomaly detection: VAEs can be used for anomaly detection by identifying data sam-
ples that have a low likelihood under the learned probabilistic model.

•	 Flexible modelling: VAEs can be used to model a wide variety of data types, including 
continuous, discrete, and mixed data.

The disadvantage of VAEs is that they can be difficult to train, as the optimization objec-
tive is a lower bound on the likelihood of the data. Additionally, VAEs can produce blurry 
reconstructions and samples, since the model is trained to approximate a continuous latent 
space, rather than producing discrete outputs. Another disadvantage of VAEs is that they 
are not able to handle discrete data, such as text or categorical data, as well as other gen-
erative models such as GANs or autoregressive models like PixelCNN. Table 10 provides 
information about the work done by various researchers using VAEs.

6.4 � DL framework

The enhancement in the use of DL architecture in various areas has been supported by the 
introduction of several DL frameworks in recent years. Mostly used frameworks are:

•	 Tensor Flow (https://​www.​tenso​rflow.​org): TensorFlow is an open-source platform for 
building and deploying ML models, particularly DL models. It was developed by the 
Google Brain team in 2015 and supports multiple programming languages including 
Python, C++, and R. TensorFlow’s flexible architecture allows for easy deployment on 
a variety of devices, including CPUs, GPUs, and TPUs

•	 PyTorch (https://​pytor​ch.​org): PyTorch is an open-source ML library developed by 
Facebook’s AI Research lab in 2016. It is written in Python, C++, and CUDA and 
provides strong GPU acceleration for tensor computation. PyTorch is primarily used 
for creating deep neural networks and supports various DL models. It is known for its 
simplicity and ease of use, making it popular among researchers and practitioners.

•	 Deeplearning4j (https://​deepl​earni​ng4j.​kondu​it.​ai): is an open-source DL frame-
work developed in 2019 that is written in Java for the Java Virtual Machine (JVM) 
also known as DeepJava Library (DJL). It is the only DL framework that relies on the 
widely used programming language Java. DJL is useful for Java programmers as it 
allows them to train DL models in a familiar programming environment. DJL aims to 
provide a simple, high-level API and support for a wide range of DL models and plat-
forms.
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•	 The Microsoft cognitive toolkit (https://​learn.​micro​soft.​com/​en-​us/​cogni​tive-​toolk​it/): 
Microsoft’s Cognitive Toolkit (CNTK), which is a DL framework that allows for the 
training and execution of neural networks. It is open-source and written in C++, and it 
uses directed graphs to define neural networks as a series of computational steps. It was 
first released in 2019.

•	 Keras (https://​keras.​io): Keras is a high-level neural networks API, written in Python 
that is capable of running on top of TensorFlow 2.0. Keras is a popular choice for cre-
ating DL models because it offers a simple and user-friendly interface, making it eas-
ier for developers to quickly prototype and build models. It follows best practices for 
reducing cognitive load by providing consistent and simple APIs and minimizing the 
number of actions required for common use cases. Keras also offers a wide range of 
pre-built, commonly-used layers and models, allowing developers to focus on building 
their models rather than implementing low-level functionality.

•	 Open Neural Network Exchange (ONNX) (https://​onnx.​ai): ONNX  is an open-source 
format for representing DL models. It was developed to enable AI developers to easily 
transfer models between different frameworks, by providing a common set of operators 
and data types. ONNX uses a computation graph model to describe the structure of a 
DL model, with nodes in the graph representing the various mathematical operations, 
and edges representing the data flowing between them. ONNX is designed to be exten-
sible, allowing for the addition of new operators and data types as needed. This allows 
for greater flexibility and interoperability across different frameworks and tools, mak-
ing it easier for developers to use their preferred framework while still being able to 
share and use models created in other frameworks.

•	 Mxnet (https://​mxnet.​apache.​org/​versi​ons/1.​9.1/): MXNet is an open-source DL frame-
work that was developed by the Apache Software Foundation. It was first released in 
2015. MXNet is designed to be fast, flexible and efficient, making it well-suited for 
both research prototyping and production use. It supports multiple programming lan-
guages, including C++, Python, R, Java, Julia, JavaScript, Scala, Go, and Perl. MXNet 
is known for its ability to scale to multiple GPUs and distributed systems, making it 
well-suited for large-scale, computationally intensive DL tasks. Additionally, it pro-
vides a high-level, easy-to-use API for specifying neural network models, allowing 
developers to quickly prototype and experiment with new models.

•	 Caffe (https://​caffe.​berke​leyvi​sion.​org): Caffe was developed by the Berkeley Vision 
and Learning Center (BVLC) and by community contributors in 2013. It is a DL frame-
work that is written in C++ with a Python interface. It is known for its speed and its 
ability to process images and videos quickly, making it a popular choice for computer 
vision tasks. Caffe offers an expressive architecture and extensible code, which allows 
developers to easily customize and experiment with new models. It has been widely 
used in industry and academia for image classification, feature extraction and many 
other DL tasks.

7 � IoT

The IoT is a network of connected devices, such as sensors and cameras, that gather and 
share data through the Internet. The term “Internet” in IoT refers to the global network 
that facilitates connection and data sharing between users, while “Things” refers to the 
devices that collect and transmit information in various forms. IoT allows these devices to 
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communicate with each other, and as of 2021, there are an estimated 9 billion connected 
devices worldwide. The use of sensors and connected devices allows for data collection 
and sharing in real time. IoT relies not only on hardware but also on software, which plays 
a crucial role in connecting and controlling these devices. As a result, users can remotely 
manipulate the behaviour of connected devices without the need for direct contact.

The IoT is important because it has the potential to revolutionize the way we live, 
work, and interact with the world around us. The IoT is a rapidly growing field that has 
the potential to greatly impact our daily lives. By connecting everyday objects and devices 
to the internet, IoT can improve efficiency, increase safety, and provide new opportuni-
ties for businesses. Through automation and real-time data analysis, IoT has the potential 
to increase productivity and make processes more efficient. Additionally, IoT can enhance 
customer experiences through personalized services and real-time information. By provid-
ing data-driven insights, IoT can improve decision-making and lead to better outcomes. In 
terms of safety, IoT-connected devices can provide real-time monitoring and help prevent 
accidents or other harmful events (Li et al. 2015). On a larger scale, IoT can promote sus-
tainability by reducing waste and promoting the efficient use of resources. Finally, IoT is 
also opening up new business opportunities by creating new products and services. Over-
all, IoT represents a significant shift in how we interact with technology and the world 
around us.

7.1 � Characteristics of IoT

IoT has been rapidly expanding and is expected to continue growing in the coming years. 
IoT devices such as smart speakers, smart home systems, and wearable devices have 
become more common and have made it easier for people to control and automate their 
homes and devices. Some of the key characteristics of IoT include:

•	 Intelligence: the IoT network is made up of a combination of hardware devices, algo-
rithms, and software. These components work together to collect and transmit data, 
allowing for the automation and remote control of devices. Ambient intelligence is a 
concept that refers to the ability of IoT networks to respond intelligently to different 
situations.

•	 Connectivity: having a reliable connection between devices on a network is impor-
tant for ensuring a high rate of data transfer. This can be achieved through a variety 
of methods, such as using wired connections, implementing network redundancy, and 
using network protocols that are designed for efficient data transfer. Additionally, main-
taining strong signal strength and minimizing interference can also help to improve the 
reliability of a network connection.

•	 Efficient: efficiency is a critical aspect of IoT networks. In terms of power consump-
tion, it is important to use low-power devices and protocols to minimize the amount of 
energy required for communication. Additionally, using sleep modes and other power-
saving techniques can help to further reduce energy consumption. In terms of data gen-
eration, it is important to use sensors and devices that are designed to generate minimal 
amounts of data while still providing accurate information. Additionally, implementing 
data compression and aggregation techniques can help to minimise the quantity of data 
that needs to be transmitted. Ensuring that the sensor works efficiently is also impor-
tant. This can be achieved by using high-quality sensors that are designed for specific 
applications, and by regularly maintaining and calibrating the sensors to ensure their 
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optimal performance. Overall, designing IoT networks with efficiency in mind can help 
to reduce power consumption, minimize data generation, and ensure that the sensors 
are working properly.

•	 Scalable: IoT networks are designed to be scalable, allowing users to easily add or 
remove devices as their needs change. This scalability allows for flexibility in terms of 
the number of devices that can be connected to the network and makes it easy to adapt 
the network as new devices or technologies become available. Additionally, it allows 
users to easily expand their network as their needs change, whether that means adding 
more devices to increase capacity or removing devices to reduce costs.

•	 The abundance of sleeping nodes: using sleep modes on sensors can be an effective 
way to reduce power consumption in an IoT network. When a sensor is not actively 
being used, it can be placed in sleep mode to conserve energy. This can be especially 
useful in  situations where certain sensors may only be needed occasionally, such as 
environmental sensors that are used to monitor air quality or temperature. Implement-
ing sleep modes also helps to extend the battery life of the sensors, which can be ben-
eficial for sensors that are placed in remote or hard-to-reach locations. Additionally, it 
can also help to reduce the amount of data that needs to be transmitted, by only sending 
data when a sensor wakes up from sleep mode. Overall, using sleep modes on sensors 
can be an effective way to conserve energy and extend battery life in an IoT network, 
while still providing the necessary data when required.

•	 Smart sensing: sensors play a crucial role in providing smart sensing functionalities in 
IoT networks. For example, infrared (IR) sensors can be used to identify the existence 
of objects or materials in a designated region and provide information about the loca-
tion and size of the object (Gorostiza et al. 2011). This can be useful in a wide range 
of applications, such as security systems, industrial automation, and robotics. Motion 
sensors, on the other hand, can be used to detect the presence of people or objects in a 
specific area, and can be used to trigger different actions based on the detected motion. 
Additionally, other types of sensors can provide different smart sensing functionalities, 
like temperature sensors, humidity sensors, pressure sensors, and many more. These 
can be used in different industries like agriculture, healthcare, transportation and many 
more. Overall, sensors are an essential part of IoT networks, providing smart sensing 
functionalities that can be used to automate different processes, improve security, and 
make systems more efficient.

•	 Dynamic nature: one of the main functions of IoT is to gather and transmit data from 
its environment through the use of various devices. These devices are crafted to detect 
and gather information regarding the condition and circumstances of their environment, 
such as temperature, location, speed, and more. The state of these devices can change 
dynamically, depending on various factors such as the device’s power usage, connec-
tion status, and surrounding conditions. For example, a device may be in sleep mode to 
conserve power but will wake up and start collecting data when it detects a change in 
its environment. Similarly, a device may connect or disconnect from a network depend-
ing on its location and proximity to other devices. The number of devices in a given 
environment can also change dynamically, depending on the person, place, and time. 
For example, a person may have a different set of devices in their home than at work, or 
the number of devices in a given location may change depending on the time of day or 
the presence of certain individuals. Overall, the ability to gather and transmit data from 
the environment through the use of dynamic and adaptive devices is a key feature of IoT 
and enables a wide range of applications and use cases.
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7.2 � Connectivity terminologies

IoT connectivity technologies are the foundation for connecting IoT devices and facilitat-
ing communication within an IoT network. IoT connectivity terminologies are classified 
into five categories that are IoT LAN (Hashida et al. 2019), IoT WAN (Sanchez-Iborra and 
Cano 2016), IoT Node (Cerchecci et al. 2018), IoT Gateway (Kang and Choo 2018), and 
IoT Proxy (Jin and Kim 2018) as shown in Fig. 10. These building blocks include IoT LAN 
for short-range communication, IoT WAN for wide-area communication, IoT Node for con-
necting different nodes in a LAN, IoT Gateway for transferring data between IoT LAN and 
IoT WAN, and IoT Proxy for active application layer functions between IoT nodes.

7.3 � IoT components

IoT components are the major key elements of any IoT network. IoT consists of both hard-
ware and software elements. The hardware elements consist of sensors, actuators, and 
devices that gather, handle, and transmit information. The Software components include 
the IoT platforms, middleware, and applications that provide the ability to manage, analyse, 
and act on the data collected by the Hardware components. Together, these components 
make up the infrastructure of an IoT network, enabling communication and data exchange 
between devices and systems. They are accountable for complete IoT system operation, 
from data acquisition to evaluation and response. The following are the IoT components:

•	 Devices: devices are a key hardware component of IoT networks and play a crucial role 
in data gathering and transferring. Devices can be a wide range of hardware such as 
routers, sensors, computers, towers, and many other types of equipment. They gather 
and quantify information from the physical environment and transmit it to the IoT 
system for further analysis and interpretation (Meneghello et  al. 2019). The type of 
device used depends on the specific application and the type of data being collected. 
For example, a temperature sensor would be used to collect temperature data, while 
a camera would be used to collect image data. These devices are connected to the IoT 
network and communicate with the other components of the system to provide real-
time data and insights.

Fig. 10   IoT connectivity terminologies
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•	 Local network: the network is a key component of IoT systems, connecting all the 
different nodes or hardware components. The network enables communication and 
data exchange between devices and systems. It can be either wired or wireless and 
can range from a simple local area network (LAN) to a wide-area network (WAN) 
spanning multiple locations (Stiller et  al. 2020). The network infrastructure is 
responsible for connecting all the devices and allowing them to communicate with 
each other and with the IoT platform. It also provides the necessary security, reli-
ability, and scalability to support a large number of devices and the large amounts of 
data that are generated in an IoT system. The network infrastructure includes various 
technologies such as Zigbee, Z-wave, LoRa, Sigfox, and many more, which help the 
data communication between the devices and the Gateway, which further sends the 
data to the cloud or the data centre for further processing and analysis.

•	 Internet: The Internet plays a crucial role in connecting and sharing information 
between various nodes in an IoT network. The internet allows the devices and sys-
tems in an IoT network to communicate with each other and with other systems and 
services beyond the local network. This enables the data collected by the devices 
to be transmitted to the IoT platform, where it can be analyzed and acted upon. The 
internet also allows users to access the data and insights generated by an IoT sys-
tem, regardless of their location. Internet connectivity also helps in remote monitor-
ing and controlling of the devices and systems, which makes the IoT system more 
efficient and cost-effective. The internet also enables the integration of various IoT 
systems and services, allowing them to share data and resources and creating new 
opportunities for innovation. It is important to note that, for secure and reliable com-
munication, the devices and systems need to be connected to the internet via secure 
protocols and have robust security measures in place to protect against cyber threats.

•	 Backend services: backend services act as a bridge between the user and the hard-
ware devices in an IoT system. These services are responsible for processing and 
analysing the data collected by the devices, and for providing the necessary func-
tionality to manage and control the devices (Saidi et al. 2022). The backend services 
are typically hosted on cloud servers or data centres and can include various compo-
nents such as:

–	 IoT platform: this is the core component of the backend services and provides the 
ability to manage and control the devices, collect and process the data, and provide 
APIs and SDKs for developers to build applications on top of the platform.

–	 Middleware: this component sits between the IoT platform and the devices, and pro-
vides the necessary functionality to connect, manage, and control the devices.

–	 Analytics and Business Intelligence (BI) tools: these tools are used to analyse the 
data collected by the devices and provide insights and intelligence to the users.

–	 Database management systems: this component is responsible for storing and man-
aging the data collected by the devices.

–	 Security and Identity Management: this component is responsible for ensuring the 
security and protection of the data and devices, and for managing the identities of 
the users and devices.

	   The backend services work together to provide a seamless experience for the user, 
by responding to the outcomes generated from the hardware components, making it 
easy for the user to interact with the system, monitor it, and make decisions based 
on the data generated by the system.
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•	 Applications: applications play a vital role in IoT networks, providing users with a user 
friendly interface to interact with the ongoing process of the network. Applications can 
be built for a wide range of devices and platforms, such as smartphones, tablets, lap-
tops, and web browsers, and can be used to access and control devices, view and ana-
lyse data, and receive alerts and notifications. The applications can be categorized into 
two types:

–	 Web-based applications: these are web-based applications that can be accessed 
through a web browser. They provide users with the ability to access and control the 
devices, view and analyse the data, and receive alerts and notifications, from any-
where with an internet connection.

–	 Native applications: these are applications that are developed specifically for a par-
ticular device or platform, such as iOS or Android. They can be downloaded and 
installed on the device and provide users with a more seamless and responsive expe-
rience.

The applications can be developed using a wide range of programming languages and 
frameworks and can be integrated with various IoT platforms and services. They can be 
also integrated with third-party services such as social media, messaging, and location ser-
vices to provide more functionality and value to the users. In summary, Applications are 
an important part of IoT systems, providing users with an easy way to interact with the 
network and access the information generated by the system, making it more user-friendly 
and efficient.

7.4 � IoT service‑oriented architecture

Service-Oriented Architecture (SOA) refers to a design methodology for software architec-
ture that uses service calls within the layers of architecture to develop applications. SOA 
has two major roles: providing services and consuming services. As a service provider, 
SOA acts as a maintainer of the service and the organization that makes one or more ser-
vices available for others to use. As a service consumer, SOA locates the metadata of a 
service in a registry and creates the necessary user components to bind and use the service 
(Mishra and Sarkar 2022). In IoT systems, SOA plays a vital role in providing a flexible 
and scalable infrastructure for developing IoT applications. It allows different layers of the 
system to communicate and interact with each other through well-defined interfaces and 
protocols. The layers involved in IoT-based service-oriented architecture include:

•	 Sensing Layer: this layer is responsible for sensing the data and sending it to the net-
work layer for further processing.

•	 Network Layer: this layer is responsible for processing the data and transmitting it to 
the service layer.

•	 Service Layer: this layer deals with service delivery in the form of a repository, service 
division, and integration to support the functionality of the IoT system.

•	 Interface Layer: this layer provides the interface for interacting with the system.
•	 Security Layer: this layer is spread across all the layers to provide secure data commu-

nication and protect the system from cyber threat

In summary, SOA plays a crucial role in IoT systems by providing a flexible and scal-
able architecture for developing IoT applications, allowing different layers to communicate 
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and interact with each other through well-defined interfaces and protocols, and also provid-
ing security to the system. Figure 11 shows the schematic diagram of IoT service-oriented 
architecture.

7.5 � IoT layers

The different layers of the IoT play a critical role in enabling the seamless flow of data 
between physical devices and end-users. Each layer provides unique functions that are nec-
essary for the overall functioning of the IoT system. In this section, Fig. 12 depicts the lay-
ered design of the IoT and a brief about each layer is described as follows:

•	 Perception Layer (Zhang et al. 2017b): the perception layer in IoT refers to the physical 
devices and components that collect and transmit data within the network. Examples of 
hardware in this layer include sensors, routers, and other devices that gather and trans-
mit information. This layer serves as the foundation for the rest of the IoT system by 
providing the raw data that is used to make decisions and perform actions.

•	 Connectivity Layer (Ullah et al. 2019): the connectivity layer in IoT refers to the tech-
nology and protocols used to establish and maintain connections between devices in 
the network. This layer is responsible for allowing devices to communicate with each 
other and with the outside world. Examples of connectivity technologies in this layer 
include WiFi, Bluetooth, Zigbee, and cellular networks. This layer is critical for the 
proper functioning of the IoT system, as it enables the flow of data between devices, 
and allows for remote monitoring and control of devices.

Fig. 11   IoT service-oriented architecture
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•	 Network Layer (Bello et al. 2017): the network layer in IoT manages the delivery and 
transmission of information between devices. It facilitates inter-device communication 
and guarantees smooth data flow. This layer is responsible for the management of the 
network and its resources, such as IP addressing, routing tables, and data encryption. 
Examples of technologies in this layer include IPv6, 6LoWPAN, and MQTT. This layer 
plays a crucial role in the smooth operation of the IoT system as it facilitates inter-
device communication, and network administration, and safeguards data security and 
consistency.

•	 Application Layer (Karagiannis et al. 2015): the application layer in IoT refers to the 
software and user interfaces that enable interaction with the network and data collec-
tion. This layer provides the framework for users to access and control the devices con-
nected to the network, as well as to view and analyse the data. Examples of applications 
in this layer include smartphone apps, web interfaces, and dashboards that allow users 
to monitor and control devices remotely. This layer is important as it provides an easy-
to-use interface for users to interact with the IoT system, and enables them to make use 
of the data collected by the network to make decisions and perform actions.

7.6 � Communication technologies

Communication technologies in IoT play a crucial role in transmitting and receiving 
data between devices in the network. These technologies enable the flow of information 
between devices, allowing them to communicate with each other and with the outside 
world. Different communication technologies have different characteristics, such as range, 
power consumption, and data transfer rates, which make them suitable for different types 
of IoT applications. The choice of specific communication technology is influenced by fac-
tors such as the device and sensor types employed, the necessary reach and speed of data 
transfer, and the complete network desirous communication technologies are useful in IoT 
networks some of them are:

Fig. 12   Layers of IoT
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•	 Wi-Fi (Ma et  al. 2019c): Wi-Fi, based on the IEEE 802.11 standard (https://​www.​
ieee8​02.​org/​11/), uses radio frequency to transmit and receive data and operates on the 
2.4 GHz frequency band. It is a crucial communication technology in IoT, with a trans-
mitting range of up to 50 m, making it popular in IoT devices due to its high speeds and 
long range.

•	 Bluetooth (Bisdikian 2001): Bluetooth, based on the IEEE 802.15 standard (https://​
www.​ieee8​02.​org/​15/), is low-power-consuming device that operates on the 2.4 GHz 
frequency band. It has a data transmission range of up to 10  m, with a transmitting 
power ranging from − 20 to + 20 dBm. It’s widely used in IoT to connect devices such 
as smart speakers and wearables.

•	 ZigBee (Muthu Ramya et al. 2011): ZigBee is an open global standard wireless tech-
nology created to address the low-cost and low-power requirements of IoT networks. 
It is founded on the IEEE 802.15.4 standard (https://​stand​ards.​ieee.​org/​ieee/​802.​15.4/​
7029/) and operates on the 2.4 GHz frequency band. Compared to other communica-
tion technologies, it is a low-cost and low-power device that ensures secure data trans-
mission. The data transmission range of ZigBee ranges between 10 and 100 m.

•	 WiMAX (Andrews et  al. 2007): Worldwide Interoperability for Microwave Access 
(WiMAX) is a long-distance communication technology that uses the IEEE 802.16e 
standard (https://​www.​ieee8​02.​org/​16/​tge/), providing a network capacity of up to 80 
Mbps.

•	 6LoWPAN (Mulligan 2007): 6LoWPAN stands for “IPv6 over Low power Wireless 
Personal Area Networks,” and it is a protocol that enables low-power and low-cost 
devices to communicate using Internet Protocol (IP), facilitating the establishment of 
IoT networks. The protocol is founded on the IEEE 802.15.4 standard that works on the 
2.4 GHz frequency band.

7.7 � IoT applications

The IoT is a term used to describe the network of connected physical objects such as home 
appliances, vehicles, and other devices. Equipped with sensors, electronics, and software, 
these objects can gather and exchange data, facilitating real-time interaction among them-
selves and with humans. IoT applications range from smart homes, industrial automation, 
and wearable technology, to healthcare and transportation. By enabling real-time commu-
nication and data exchange, IoT applications are transforming traditional industries and 
creating new opportunities for innovation and growth. The benefits of IoT applications 
include increased efficiency, improved decision-making, cost savings, enhanced safety and 
security, improved customer experience, predictive maintenance, and remote monitoring 
and control. IoT has a wide range of applications across various industries, including:

•	 Smart homes: IoT devices such as smart thermostats, lighting, and security systems can 
be used to automate and control various functions in a home, making it more energy-
efficient and secure (Samuel 2016).

•	 Smart cities: IoT-enabled sensors and devices can be used to monitor and control vari-
ous functions in a city, such as traffic flow, air and water quality, and waste manage-
ment (Arasteh et al. 2016).

•	 Healthcare: IoT-enabled devices such as wearables and remote monitoring systems can 
be used to track and manage patients’ health, enabling doctors to provide more person-
alized care (Selvaraj and Sundaravaradhan 2020).
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•	 Agriculture: IoT-enabled sensors and devices can be used to monitor and control vari-
ous aspects of farming, such as soil moisture, temperature, and crop growth (Thakur 
et al. 2020).

•	 Industrial automation: IoT-enabled sensors and devices can be used to monitor and con-
trol various aspects of industrial processes, such as equipment performance and energy 
consumption (Park and Park 2016).

•	 Retail: IoT-enabled devices such as sensors and RFID tags can be used to track inven-
tory, monitor customer behaviour, and improve the shopping experience (Caro and 
Sadr 2019).

•	 Transport and Logistics: IoT-enabled devices such as GPS tracking and telematics can 
be used to track and monitor vehicles, and cargo and improve the efficiency of the sup-
ply chain (Sicari et al. 2019).

In this section, we will delve into some of the most significant and promising applications 
of IoT that are rapidly emerging and transforming various industries. These applications 
span multiple domains, including Healthcare, Agriculture, Smart Cities, and Smart Homes. 
Each of these applications leverages the unique capabilities of IoT devices, such as real-
time data collection, connectivity, and automation, to deliver significant benefits such as 
increased efficiency, improved decision-making, cost savings, enhanced safety and secu-
rity, improved customer experience, predictive maintenance, and remote monitoring and 
control. By exploring these emerging applications of IoT in-depth, we will gain a better 
understanding of the potential of this technology and how it is shaping our world.

7.7.1 � Healthcare

IoT technology has revolutionized the healthcare industry by enabling real-time monitoring 
and data management of patient’s health status. IoT devices such as sports watches, medi-
cal alert bracelets, and wearable sensors can collect a range of biometric data, including 
heart rate, blood pressure, oxygen levels, and more. This data is then analyzed and man-
aged to provide doctors and healthcare professionals with real-time insights into patients’ 
health status, enabling them to make informed decisions and provide prompt and effec-
tive treatment. Additionally, IoT-enabled remote monitoring and telemedicine solutions 
allow patients to receive medical care from the comfort of their homes, reducing the need 
for hospital visits and reducing healthcare costs. The impact of IoT on healthcare is only 
set to grow, and researchers are continuously exploring new and innovative ways to har-
ness its potential. The study by Kim and Kim (2018) explores the user perspective of IoT 
healthcare applications and their usefulness in managing lifestyle diseases. The study by 
Baker et al. (2017) provides an in-depth analysis of the various technologies, challenges, 
and opportunities involved in integrating IoT into smart healthcare. Farahani et al. (2018) 
propose a fog-driven model for IoT eHealth, while Parthasarathy and Vivekanandan (2020) 
develop a framework for regular monitoring of arthritis using a time-wrapping algorithm 
based on an IoT-based architecture. These studies demonstrate the various ways in which 
IoT is transforming the healthcare industry and highlight the importance of continued 
research and innovation in this field. The IoT has the potential to revolutionize healthcare 
by improving patient outcomes, increasing efficiency, and reducing costs. Here are a few 
examples of how IoT is being used in healthcare:
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•	 Remote monitoring: IoT-enabled devices such as wearables, sensors, and telemedicine 
equipment can be used to monitor patients’ vital signs and health status remotely. This 
can enable doctors to provide more personalized care and reduce the need for hospital 
visits

•	 Medication management: IoT-enabled devices such as smart pill bottles and medication 
dispensers can be used to remind patients to take their medication, track usage, and 
alert caregivers if there are any issues.

•	 Clinical decision-making: IoT-enabled devices can be used to collect and transmit large 
amounts of data, which can then be analyzed to identify patterns and trends. This can 
help doctors make more informed decisions about patient care.

•	 Clinical trials and research: IoT-enabled devices can be used to collect and transmit 
data from patients participating in clinical trials and research studies, which can lead to 
new treatments and cures.

•	 Medical Equipment Management: IoT-enabled devices can be used to monitor the 
usage, performance and maintenance of medical equipment, which can help with pre-
ventive maintenance and reduce downtime.

These are just a few examples of the many ways in which IoT is being used in healthcare to 
improve patient outcomes, increase efficiency, and reduce costs. As the technology contin-
ues to evolve, new applications and use cases for IoT in healthcare will likely emerge.

7.7.2 � Agriculture

IoT has always helped in solving various problems which require constant monitoring 
and controlling. Therefore, its applications in the field of agriculture are numerous. IoT-
based sensors and devices help in reducing human effort and save time for many farmers 
around the world. IoT technology is being increasingly used in the agriculture industry to 
improve crop yields, reduce waste, and optimize resource utilization. IoT devices such as 
sensors, drones, and smart irrigation systems can collect real-time data on soil moisture, 
temperature, and other environmental factors, and use this information to optimize crop 
growth. IoT-enabled precision agriculture techniques, such as variable rate fertilization and 
planting, can improve crop yields and reduce waste by using data to determine the optimal 
amount of resources required for each area of a field. In addition, IoT devices can be used 
to monitor livestock, track and manage farm machinery, and improve food safety through 
traceability systems. These technologies are helping farmers to increase productivity, 
reduce costs, and improve the sustainability of their operations, making IoT a key driver of 
innovation and growth in the agriculture industry. Popović et al. (2017) conducted a study 
on an IoT-based platform for precision agriculture, examining various platforms involved. 
Tzounis et al. (2017) gave an extensive rundown of the function of IoT in agriculture and 
current advancements in IoT for agriculture. Lakhwani et al. (2019) reviewed multiple IoT 
applications that support precision agriculture. Muangprathub et al. (2019) put forward an 
automatic watering system using IoT and sensor networks to irrigate agricultural lands and 
reduce water waste, utilizing sensors and mobile applications. The benefits of using IoT in 
agriculture include:

•	 Increased crop yield and quality: IoT devices can collect data on soil moisture, temper-
ature, light, and other important factors, which can then be used to optimize growing 
conditions and increase crop yield and quality.
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•	 Efficient resource management: IoT devices can help farmers monitor and control water 
usage, fertilization, and other resources in real-time, reducing waste and increasing effi-
ciency.

•	 Improved decision-making: with access to real-time data, farmers can make informed 
decisions about planting, harvesting, and other critical activities, leading to improved 
yields and lower costs.

•	 Predictive maintenance: IoT devices can detect and diagnose issues with machinery, 
alerting farmers to potential problems before they become critical.

•	 Enhanced food safety: IoT devices can be used to monitor food production, storage, and 
distribution, helping to ensure food safety and reduce waste.

•	 Improved animal monitoring: IoT devices can be used to monitor animal health, feed 
intake, and behaviour, helping to improve animal welfare and productivity.

7.7.3 � Smart cities

The IoT technology constitutes of sensors, devices and applications which monitor, con-
trol and communicate with each other and use the data beneficially collected by them. 
To develop smart cities using IoT, various sensors, monitors, and smart devices are to be 
installed throughout the city and connect to achieve tracking, monitoring, controlling, and 
intelligent recognition. The recent growth in smart cities and IoT applications has opened 
doors for a lot of opportunities for researchers. Smart cities along with smart homes are 
the most prominent applications of IoT in today’s time. The declined cost of sensors and 
various other equipment has also been a reason for the growth of smart cities. The growing 
population of the world results in many cities being overpopulated, many of them being in 
India. This calls for resource utilisation as power consumption in these cities is enormous. 
The benefits of using IoT in smart cities include:

•	 Improved traffic management: IoT devices can be used to monitor and control traffic 
flow, reducing congestion and improving safety.

•	 Increased energy efficiency: IoT devices can be used to monitor and control energy 
usage in buildings and infrastructure, reducing waste and saving resources.

•	 Enhanced public safety: IoT devices can be used to monitor public safety, including 
air and water quality, crime, and natural disasters, allowing for rapid response and 
improved outcomes.

•	 Improved waste management: IoT devices can be used to optimize waste collection and 
disposal, reducing waste and improving sustainability.

•	 Better public services: IoT devices can be used to improve public services, such as pub-
lic transportation, healthcare, and education, by allowing for real-time monitoring and 
improved decision-making.

•	 Increased citizen engagement: IoT devices can be used to engage citizens in the man-
agement and development of their city, improving civic participation and community 
spirit.

7.7.4 � Smart homes

The IoT is transforming the way we live in our homes. Smart homes use IoT devices to 
automate and control various systems, such as lighting, heating, cooling, security, and 
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entertainment. With the ability to connect and communicate with these devices through 
a central hub, such as a smartphone or tablet, homeowners can easily control their home’s 
environment and security from anywhere, at any time. IoT devices can also gather data 
on energy usage and consumption patterns, allowing homeowners to optimize their energy 
usage and reduce their carbon footprint. Additionally, IoT devices can help to enhance the 
overall comfort and convenience of the home, by allowing for customized settings and 
automating routine tasks, such as adjusting the temperature or turning off the lights when 
no one is home. The integration of IoT in smart homes is revolutionizing the way we live, 
work, and play, by providing greater comfort, security, and control over our daily lives. The 
benefits of IoT in smart homes include:

•	 Energy efficiency: automated control of devices, such as HVAC systems, lights, and 
appliances, leads to optimized energy consumption and reduced bills.

•	 Convenience: remote control of devices and monitoring through a smartphone or tablet 
offers greater convenience for homeowners.

•	 Improved safety: the use of sensors and monitoring systems can alert homeowners to 
potential safety hazards, such as gas leaks or fires.

•	 Better health: smart homes can monitor and control indoor air quality, ensuring a 
healthier living environment.

•	 Increased home value: the integration of IoT technology can increase the value of a 
home.

•	 Peace of mind: monitoring systems and remote access provide peace of mind when 
homeowners are away from their property.

8 � Usage of DL in IoT applications and IoT devices

The IoT has rapidly emerged as a transformative technology that connects various physi-
cal objects, appliances, and devices to the internet, enabling them to exchange data and 
communicate with each other. This has resulted in an explosive growth of IoT devices and 
applications, ranging from smart homes and cities to industrial automation and health-
care. DL, with its ability to learn from large-scale data and make accurate predictions, has 
become a critical enabler for a wide range of IoT applications. In this section, we will dis-
cuss the various applications of DL in IoT devices and systems, including IoT-enabled sen-
sors, edge computing, and network optimization.

8.1 � DL for IoT applications

DL is a powerful tool for IoT applications, as it allows for the analysis of large amounts of 
data and can be used to make predictions and decisions based on that data. Some examples 
of DL for IoT applications include:

•	 Predictive maintenance: using DL algorithms to analyze sensor data from industrial 
equipment, such as machines in a factory, to predict when maintenance is needed.

•	 Anomaly detection: DL models can identify patterns in large amounts of IoT data and 
flag any data points that deviate from these patterns as anomalies.

•	 Time-series forecasting: LSTMs and other RNN models can be used to analyze time-
series data generated by IoT devices and make predictions about future trends.
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•	 Decision-making: reinforcement learning can be used to train models that make deci-
sions based on IoT data, for example, in the case of an autonomous vehicle or industrial 
control system.

•	 Smart homes: using DL to analyze sensor data from smart home devices, such as ther-
mostats and security cameras, to make decisions about heating, lighting, and security.

•	 Autonomous vehicles: using DL to process sensor data from cameras, LIDAR, and 
radar to make decisions about steering, braking, and accelerating.

•	 Surveillance: using DL algorithms to analyze video footage from surveillance cameras 
to detect suspicious behaviour or objects.

•	 Healthcare: utilizing IoT devices with DL algorithms to predict and prevent illnesses 
and monitor patients remotely.

Overall, the use of DL for IoT applications allows for the analysis of large amounts of 
data, making predictions and decisions based on that data, and the ability to automate 
many tasks. In this section, a comprehensive examination of the utilization of DL in vari-
ous developing applications of IoT has been provided.

8.1.1 � DL in agriculture

DL and IoT can be used in agriculture to improve crop yields, reduce costs, and increase 
efficiency. For example, using IoT sensors and cameras to collect data on soil moisture, 
temperature, and crop growth, and then using DL algorithms to analyze the data and pre-
dict future crop yields. Additionally, DL can be used to classify images of crops, detect 
pests and diseases, and even control irrigation systems. By automating these tasks, farmers 
can make more informed decisions, improve crop yields and reduce costs. Agriculture is a 
crucial sector for the economies of both developing and developed countries and the main 
source of income for over 50% of a country’s population. Farmers aim to maximize their 
agricultural output each harvest season. However, factors such as environmental changes, 
intrusion attacks, plant diseases, and others can impact crop productivity. Integrating DL 
models is crucial in addressing these factors, just as biological substances and chemicals 
are. Detection and classification of plant diseases are key factors in reducing crop produc-
tion and quality. To address this issue, researchers have proposed various DL-based solu-
tions. The use of CNN based DL models in image detection and classification offers effec-
tive and efficient solutions due to its capability to condense the image and extract crucial 
information. There are various CNN architectures, such as AlexNet, GoogleNet Inception 
V3, VGG Net, and Microsoft ResNet, that can accurately detect and classify plant diseases. 
When deploying DL in agriculture, it is necessary to incorporate IoT components such as 
sensors, cameras, and UAVs to gather data, as manually collecting data in large agricul-
tural fields in challenging terrain is not feasible. The collected data is then processed using 
DL. Table 11 presents a summary of the efforts made by various scientists in the field of 
agriculture utilizing DL.

8.1.2 � DL in healthcare

DL and IoT can also be used together in healthcare to enhance the capabilities of medi-
cal diagnosis and treatment. IoT refers to the interconnections of physical devices, such 
as sensors and actuators, that collect and transmit data over a network. In healthcare, IoT 
devices can be used to gather data on a wide range of systems, such as vital signs, medical 
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imaging, and patient-generated data. DL, on the other hand, can analyse large and complex 
datasets, such as those generated by IoT devices. By using DL algorithms, it is possible to 
extract insights and make predictions from the data collected by IoT devices. Together, DL 
and IoT can enable a wide range of applications in healthcare, such as:

•	 Medical imaging: analysing medical images such as X-rays, CT scans and MRIs to 
detect diseases and aid in diagnosis.

•	 Predictive analytics: analysing patient data to predict the likelihood of certain health 
outcomes and provide early warning for potential health issues.

•	 Telemedicine: monitoring patients remotely using IoT devices to gather data on vital 
signs and other health metrics.

•	 Personalized medicine: using DL algorithms to analyse patient data and create person-
alized treatment plans.

Overall, the combination of DL and IoT in healthcare can help to improve the efficiency, 
accuracy and effectiveness of medical diagnosis and treatment by providing insights from 
large and complex data sets. Health emergencies such as heart attack, cancer, mental ill-
ness, and various illnesses are significant worries in people’s lives. Without adequate 
healthcare, society cannot progress. Just as medicine, physical activity, and yoga are cru-
cial for good health, integrating DL into healthcare is crucial for better healthcare. DL has 
numerous applications in healthcare, including disease identification and diagnosis, medi-
cal imaging, disease forecasting, intelligent medical records, customized medical treat-
ment, and more.

DL functions similarly to the human brain, creating new neurons and learning from fed 
information through algorithms and neural networks to produce more precise outcomes. 
In medical image analysis, DL is divided into classification, segmentation, detection, and 
others. In classification, images are categorized into the presence or absence of disease. 
Object classification can be used to identify specific parts of an image for more accurate 
classification. Detection is the following step in classification and a crucial step in segmen-
tation, where important features such as organs can be extracted. Segmentation is then used 
for image processing of organs, such as brain scans. DL algorithms have been successful 
in classifying and predicting disease patterns and treatment options for patients. Table 12 
summarizes the contributions of numerous researchers in the field of healthcare through 
the use of DL.

8.1.3 � DL in smart vehicle

DL and IoT can join forces in smart vehicles to improve autonomous driving and ensure a 
safer and more comfortable driving experience. IoT is a network of physical devices, vehi-
cles, home appliances, and other items embedded with electronics, software, sensors, and 
connectivity which enables these objects to collect and exchange data. In a smart vehicle, 
IoT devices can be used to gather data on a wide range of systems, such as navigation, 
engine performance, and vehicle safety. By using DL algorithms, it is possible to extract 
insights and make predictions from the data collected by IoT devices. Combined, DL and 
IoT can facilitate numerous uses in intelligent automobiles, including:
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•	 Autonomous driving: analysing sensor data from cameras, lidar, radar, GPS, and other 
sources to navigate and make decisions on the road.

•	 Predictive maintenance: analysing sensor data to predict when maintenance is needed 
and schedule it at the most convenient time.

•	 Vehicle safety: analysing sensor data to detect potential hazards and act to avoid acci-
dents.

•	 Advanced driver-assistance systems (ADAS) (Tigadi et  al. 2016): Using sensors and 
DL algorithms to assist drivers in navigating, braking, and steering.

The combination of DL and IoT in smart vehicles can help to create a more convenient, 
safe and efficient driving experience by automating many of the tasks that human drivers 
currently perform.

Table 13 condenses the input of various experts in the smart vehicle sector utilizing DL.

8.1.4 � DL in smart homes

DL and IoT can also be used together in smart homes to enhance the capabilities of home 
automation and create a more convenient and efficient living experience for residents. In 
a smart home, IoT devices can be used to gather data on a wide range of systems, such as 
lighting, heating, and appliances. By using DL algorithms, it is possible to extract insights 
and make predictions from the data collected by IoT devices. Together, DL and IoT can 
enable a wide range of applications in smart homes, such as:

•	 Smart lighting: adjust lighting levels and colour temperature based on the preferences 
of the residents and the current time of day.

•	 Smart heating and cooling: automatically adjust the temperature based on the weather 
forecast and the preferences of the residents.

•	 Smart appliances: automatically controlling appliances such as washing machines, dry-
ers, and ovens based on the preferences and routines of the residents.

•	 Home surveillance: monitoring the home using IoT cameras and DL algorithms to 
detect suspicious behaviour and improve security.

Overall, the combination of DL and IoT in smart homes can help to create a more conveni-
ent, efficient and secure living environment for residents. Table 14 summarizes the input 
from various experts in the smart home sector using DL.

8.2 � DL in IoT devices

DL in IoT devices refers to the integration of deep neural networks in the IoT environment. 
IoT devices generate vast amounts of data that can be used to train DL models, enabling 
the development of smart and autonomous systems. DL algorithms are capable of learning 
patterns and relationships in large amounts of data and are widely used for various applica-
tions such as image recognition, NLP, and predictive analytics. By incorporating DL into 
IoT devices, it becomes possible to enable real-time decision-making and automate com-
plex tasks, leading to improved efficiency and reduced human intervention. Some examples 
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of IoT devices that use DL include smart homes, wearable devices, and autonomous vehi-
cles. However, there are still some challenges in implementing DL in IoT devices such as 
limited computational resources, power constraints, and data privacy and security issues. 
Despite these challenges, the integration of DL in IoT devices holds great promise for the 
future and is poised to revolutionize the way we interact with technology. Here are a few 
examples of IoT devices that use DL:

•	 Smart home devices: these devices use DL to analyse data from sensors and cameras to 
automatically control lighting, temperature, and security systems.

•	 Wearable devices: fitness trackers and smartwatches use DL algorithms to analyse data 
such as heart rate, sleep patterns, and physical activity to provide personalized health 
insights.

•	 Autonomous vehicles: DL algorithms are used in self-driving cars to detect and 
respond to road conditions, traffic signals, and other vehicles in real-time.

•	 Industrial IoT devices: DL algorithms are used in manufacturing and production envi-
ronments to optimize production processes and improve efficiency.

•	 Healthcare IoT devices: DL algorithms are used in medical devices such as smart insu-
lin pumps and continuous glucose monitoring systems to provide personalized health 
insights and recommendations.

These are just a few examples of how DL is being integrated into IoT devices. With the 
continuous advancement of technology, we can expect to see more innovative applications 
of DL in IoT devices in the future

9 � Challenges of IoT for DL

This section delves into the difficulties encountered by DL when processing IoT data or 
using IoT devices. The challenges are outlined below:

•	 Lack of dataset: in DL, a large dataset is needed to train the model and improve its 
performance. The lack of datasets for IoT applications can be a hurdle for integrating 
DL models in IoT. Researchers often have to create their datasets and work with limited 
data. This can be a time-consuming and challenging process, particularly for datasets 
related to human health or other sensitive areas. There are a few platforms that provide 
IoT datasets, but they are often limited in scope. This is one of the reasons why there is 
a need for more robust and diverse IoT datasets to be made available to researchers.

•	 Pre-processing: preparing and pre-processing data for training DL models is a crucial 
step in the process. Raw data from IoT devices often need to be cleaned and trans-
formed to be in the appropriate format for the model. This includes tasks such as 
removing outliers, handling missing values, and scaling the data. In addition, the data 
needs to be split into training, validation, and test sets for the model to be properly 
trained and evaluated. Without this step, the model may not perform well or may be 
prone to overfitting.

•	 Security and privacy: data security and privacy are important considerations when 
working with DL models, particularly when it comes to IoT data. As you mentioned, 
IoT datasets are often created by researchers for specific research projects, which can 
make them valuable targets for data breaches or hacking attempts. Additionally, the 
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data collected by IoT devices may contain sensitive information about individuals, such 
as personal health data or location information, which must be protected to maintain 
privacy. Several steps can be taken to secure and protect IoT data, such as:

–	 Encrypting the data both in transit and at rest
–	 Using secure protocols for communication between devices and servers
–	 Regularly updating software and firmware to address any known vulnerabilities
–	 Implementing access controls and authentication mechanisms to limit who can 

access the data.
–	 Conducting regular security audits and vulnerability assessments.
–	 Anonymizing or de-identifying data before using it for training models

•	 Challenges of 6V’s: the massive volume of data can pose significant challenges for 
DL models, particularly in terms of computational complexity and the need for large 
amounts of labelled data. The high number of parameters and attributes in voluminous 
data can result in complex DL models with long run time complexity, and noisy or 
unlabelled data can negatively impact model accuracy. Managing the variety of data 
received from different IoT devices can also be a challenge, as conflicts in data man-
agement can lead to errors in the DL model. Additionally, the high velocity of data 
can be a concern as it can overwhelm the DL model and cause it to crash if it is not 
able to process the input data quickly enough. The veracity of IoT-generated data is 
also important, as data from untrustworthy sources can compromise the security of the 
system. In addition to this, proper data filtering is important in online streaming data, 
as it can vary, which might cause different inputs to the model and lead to poor perfor-
mance.

•	 Model interpretability: DL models can be difficult to interpret due to their complex-
ity and the use of non-linear functions. This can make it challenging to understand the 
reasoning behind the model’s decisions and to identify potential biases in the data. This 
can be a significant issue for IoT applications, as decisions made by these models may 
have real-world consequences, and end users need to understand the reasoning behind 
these decisions. Researchers have developed methods such as saliency maps, feature 
visualization, and LIME to help interpret the decision of DL models

10 � Conclusion

In this research, the versatility of DL is investigated in the IoT realm. It’s noted that there is 
a rising trend in adopting DL in IoT devices and domains, with a broad range of practical-
ity. DL has shown great potential in revolutionizing IoT devices and applications. With the 
increasing amount of data generated by IoT devices and the need for intelligent decision-
making, DL algorithms provide the necessary tools to process and analyse this data in real-
time. As technology advances, DL will likely play a critical role in shaping the future of 
IoT and unlocking new possibilities in various areas. The significant impact of this litera-
ture, as outlined in the designed research questions in Sect. 2.2, on the scientific commu-
nity is outlined below.

RQ1 The role of DL frameworks is to provide an interface for developers to build, train, 
and deploy DL models. As discussed in Sect. 6.4, different frameworks for DL are avail-
able, and each has its working capabilities. The Trending and most usable frameworks are 



DeepThink IoT: The Strength of Deep Learning in Internet of Things﻿	

1 3

TensorFlow, which offers a comprehensive ecosystem for building and deploying ML mod-
els. PyTorch provides an easy-to-use interface for building and training dynamic neural 
networks. Deeplearning4j, A Java-based framework for building and deploying DL mod-
els for production environments. The Microsoft cognitive toolkit, A Microsoft-developed 
framework for building and deploying DL models on a variety of platforms. Keras, A high-
level API that enables the quick and easy building of neural networks. MXNet, A flexible 
and efficient framework for building and deploying DL models, particularly for large-scale 
distributed systems. Caffe, A fast, lightweight framework for building and deploying DL 
models.

RQ2 DL models play a crucial role in IoT data processing and analysis by allowing 
Anomaly detection, Predictive maintenance, Image and speech recognition, Time-series 
forecasting, Data compression and dimensionality reduction, Decision-making, and more. 
CNNs, RNNs, AE, GANs, LSTM Networks, VAE, and more DL models frequently used to 
handle IoT data and efficiently manage IoT networks.

RQ3 IoT devices pose several challenges for implementing DL models, including 
Limited computing power and memory on IoT devices, Lack of labelled data for training 
models Power consumption and energy constraints, Limited bandwidth and connectivity, 
Security and privacy concerns, Integration with legacy systems and protocols, Scalability 
and management of many devices, Cost and deployment barriers. To overcome IoT chal-
lenges for DL, organizations can adopt techniques such as edge computing to reduce data 
transfer, federated learning to improve privacy and security, transfer learning to reduce data 
labelling requirements, and ensure device interoperability through compatibility standards. 
Organizations can also invest in powerful computing resources and implement data protec-
tion measures to ensure data privacy and security.

RQ4 DL will play a crucial role in the future of the IoT by enabling devices to make 
decisions based on data and perform tasks with minimal human intervention. It will allow 
IoT devices to process and analyse large amounts of data in real-time, making accurate 
predictions and enhancing their decision-making abilities. Integrating DL into IoT will 
improve the efficiency of various applications such as predictive maintenance, smart 
homes, and autonomous vehicles. The future direction for DL in IoT will be focused on 
making devices more intelligent, secure, and efficient in data processing, communication, 
and decision-making. The future direction for using DL in IoT will likely include Edge 
computing, where DL models will be deployed directly on IoT devices for real-time deci-
sion-making. DL algorithms will be used to predict equipment failures in predictive main-
tenance. Anomaly detection in IoT data to improve system performance and security. Com-
puter vision for object detection and recognition in IoT applications. NLP for voice-based 
interaction with IoT devices.

RQ5 The computational limits of DL include, Data Requirements: DL models neces-
sitate ample amounts of information to attain substantial precision. Computational Power: 
Training large models requires significant computational resources, including memory and 
processing power. Overfitting: DL models are prone to overfitting, meaning they perform 
well on the training data but not on new, unseen data, Data Privacy and Bias: Collect-
ing and using large amounts of personal data for training can raise privacy concerns, and 
models may also perpetuate existing biases. Interpretability: DL models can be difficult to 
interpret and understand, making it challenging to debug or analyse errors. Convergence: 
DL models can be difficult to train, and convergence is not guaranteed. Generalization: DL 
models can have difficulty generalizing to new, unseen data.

RQ6 DL has shown great potential in the field of IoT due to its ability to learn from 
large and complex datasets, and to make accurate predictions based on this learning. DL 
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algorithms can help in extracting meaningful insights from massive amounts of data gen-
erated by IoT devices, thereby enabling smarter decision-making and predictive mainte-
nance. DL algorithms are also highly adaptable and can learn from data in real-time, which 
is essential for managing the dynamic and ever-changing nature of IoT environments. 
Additionally, DL can help in reducing power consumption and optimizing resource utiliza-
tion in IoT systems, thus improving their efficiency and reliability. Overall, DL provides 
a powerful tool for realizing the full potential of IoT and can help in solving many of the 
challenges faced in IoT, making it a highly desirable technology for future IoT applications.
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Nature provides a variety of examples of how collective behavior can be observed in diverse 
animal groups. Yet it remains a difficult challenge to extract from these large groups  
individual interactions and to assess their roles in such collectives, and vice versa. This 
challenge is compounded further when performing in-silico studies of such complex systems, 
as one must consider a combinatorial number of interactions as the size of a system increases.  
To tackle this problem, here we use a rule-based, formal language, KappaLanguage [1], to 
explore a preliminary case study of a thermotaxis collective behavior observed in juvenile 
honeybees [2]. Further, we discuss notions of heterogeneity in our case study and argue that 
KappaLanguage can capture such phenomenon in an intuitive manner, which can potentially 
facilitate the model construction process and analysis of collective systems. 

[1] P. Boutillier, M. Maasha, X. Li, H. F. Medina-Abarca, J. Krivine, J. Feret, I. Cristescu, A. G. 
Forbes, W. Fontana, Bioinformatics 34, 13, (2018).
[2] M. Szopek, T. Schmickl, R. Thenius, G. Radspieler, K. Crailsheim, PLoS ONE 8, 10 (2013).
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STRUCTURE OF DARK MATTER HALO AND GALAXY
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Several cosmological models indicate that the fine structure of the universe that we observe
today comes from the gravitational amplification of non-linearities of the cosmic matter field.
Many of the recent developments in its understanding have risen from the study of N-body
cosmological simulations, of which a fair share involve the use of machine learning techniques
for a variety of tasks. These techniques allow the identification of multi-dimensional correla-
tions that isn’t possible through conventional methods. Our work probes the cosmological trace
contained in the non-gaussian nature of the morphological structure of dark matter halo and
galaxy distributions deduced from the Quijote[3] and CAMELS[2] simulation suites. We study
the high order correlation property from several graph representations of these distributions
and isolate through the construction of the graph’s minimum-spanning (MST), the cosmolog-
ical information thus contained. We use Bayesian optimised multi-layer perceptron networks
to predict the parameters of the cosmological framework in which the set of simulations are
realised, including the establishment of error limits using the Monte Carlo dropout method. We
show that an increase in the non-linearity and thus the non-gaussianity of the halo and galaxy
distributions allows for significantly better prediction of the cosmology. Through a comparative
study of halo and galaxy distributions of the Quijote and CAMELS simulation suites respec-
tively, we discuss the accessibility of cosmology by the different structural parameters of the
MST at different length scales [1]. The extensions of our work include other descriptions of
graphs, other methods of isolation of their non-gaussian character and also the effect of the
presence of modified gravity beyond General Relativity.

[1] Anirudh Shankar and Jean-Michel Alimi. “Cosmology Inference from the morpho-
logical structure of the minimal spanning tree of dark matter halos and galaxies distri-
butions”. In: to be submitted to the Astronomy and Astrophysics journal (2024).

[2] Francisco Villaescusa-Navarro et al. “The camels project: Cosmology and astro-
physics with machine-learning simulations”. In: The Astrophysical Journal 915.1
(2021), p. 71.

[3] Francisco Villaescusa-Navarro et al. “The quijote simulations”. In: The Astrophysical
Journal Supplement Series 250.1 (2020), p. 2.
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In the rapidly evolving field of spatial analysis, the application of Artificial Intelligence 
technologies has emerged as a critical tool for understanding and managing the complex 
dynamics of rural-urban transformation. This study introduces a novel approach to spatial 
analysis through the integration of AI SegFormer, a state-of-the-art transformer model, into 
the investigation of rural and urban area transformations. The findings will underscore the 
effectiveness of AI SegFormer in enhancing the precision and depth of spatial analyses, this 
approach facilitates informed decision-making and policy formulation aimed at sustainable 
urban planning and rural development. 
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The number of training parameters and the computational costs have grown exponentially with 

the increased efficiency of large language models [2]. These large language models (LLMs) 

have remarkable linguistic and generative abilities that can be leveraged using fine-tuning to 

optimize their performance across specific tasks. Fine-tuning involves training with fewer 

parameters, making it more effective over certain domains, and it also utilizes various 

approaches to cater for varied outputs as required by the particular task. Fine-tuning is a 

significant technique in the context of current advancements in NLP, with contributions like 

multilingual chatbots, personalized healthcare assistants, combating misinformation, and 

shaping the future with few-shot learning and multimodal fine-tuning, thus improving their 

performance and applicability in real-world scenarios. Reviews of fine-tuning strategies for 

large language models offer insights into challenge mitigation, prompt engineering, 

regularization methods, computational efficiency, and techniques like retrieval-augmented 

generation (RAG) [3], enhancing the performance and applicability of these models. This 

poster comprehensively dives deep into eight prominent fine-tuning strategies, including 

instruction tuning [4], transfer learning, basic hyperparameter tuning, retrieval-augmented 

generation (RAG), parameter-efficient tuning (PEFT) [1], reward modelling, preference 

learning, and proximal policy optimization (PPO), which significantly enhances the efficiency, 

scalability, and interpretability of LLMs, followed by a conclusion and future prospectus. Each 

approach has been reviewed for its unique advantages, challenges, and working methodology 

for fine-tuning the LLMs. 
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In International Conference on Machine Learning, pages 2790–2799. PMLR, 2019. 

 

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, 

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-

shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 

 

[3] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval 

augmented language model pre-training. In International conference on machine learning, pages 

3929–3938. PMLR, 2020. 

 

[4] Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham Neubig, Xi 

Victoria Lin, Wen-tau Yih, and Srinivasan Iyer. Instruction-tuned language models are better 

knowledge learners. arXiv preprint arXiv:2402.12847, 2024. 

P25



Fast Online Few-Shot Object Detection via Prototype Fusion 

Weikai Li 1 , Yanlai Wu1 , and Yuan Li 2 

1 School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, 400074, 

China 
2 China Science IntelliCloud Technology, Co., Ltd., Anhui, 230000, China 

 

Few-shot object detection (FSOD) remains a significant challenge in computer vision, where 

the majority of existing methods focus on fine-tuning the backbone network to accommodate 

novel categories. However, these approaches often struggle due to the challenges posed by 

domain/category shift and limited sample sizes in real-world scenarios, which can limit their 

performance. To address such issues, three core components are conducted: dual-level multi-

scale information integration, support image mask processing, and online prototype 

refinement. Our unique approach fuses information across network layers and image scales, 

enhancing discriminative capabilities. We introduce a mask processing mechanism, 

leveraging segmentation from other models, to effectively utilize support context during 

training and inference. Moreover, our prototype refinement technique dynamically updates 

prototypes based on query images, alleviating distribution shift. Our method outperforms 

existing SOTA approaches on multiple benchmarks, demonstrating significant performance 

improvements in few-shot object detection. 

 

P26


