

B-CRATOS Wireless Brain-Connect inteRfAce TO machineS

Machine Learning for BCIs

Paolo Viviani, PhD Senior Researcher, Advanced Computing - LINKS Foundation paolo.viviani@linksfoundation.com		
ICTP - ADVANCED SCHOOL ON APPLIED MACHINE LEARNING		

- Theoretical physics Msc University of Torino
- Computer Science PhD University of Torino
 - Distributed training of DL models before it was cool
- A couple of years in CAE industry doing numerical/ML stuff
- Now I'm back to research at Advanced Computing, Photonics and Electromagnetics research domain of LINKS Foundation, in Torino
 - HPC (and some ML)
 - Quantum Computing

Background – B-Cratos project

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

• Applied Data Science: focus on application \rightarrow context of research in a larger project

The goal is to develop a closed-loop BCI and to validate it with NHPs (Non-Human Primates), with the following technical objectives:

- 1. Proof-of-concept, high-speed, wireless brain implant capable of two-way communication without battery
- 2. General-purpose, high-speed intra-body communications technology (Fat-IBC)
- 3. HPC based ML models deployed on embedded board for low-power inference and control
- 4. Improvements of biomechatronic hand prothesis
- 5. High-resolution sensorized skin

TORINO

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

March 2021 – February 2025 FET-OPEN 4.7M EU funding

Partners from 5 countries Coordinated by University of Uppsala

What is a BCI?

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

The New York Times

Despite Setback, Neuralink's First Brain-Implant Patient Stays Upbeat

2 days ago • Christina Jewett

Bloomberg

Podcast: What Neuralink's First Patient Is Thinking

3 days ago • Reyhan Harmanci

WIRED

Neuralink's First User Is 'Constantly Multitasking' With His Brain Implant

2 days ago • Emily Mullin

- Brain-Computer Interface
 - A device that enables communication and control without movement (BNCI Roadmap, Horizon 2020)
 - i.e., readout of brain activity
 → action/control signals
- "Closing the loop": providing feedback to the brain
 - E.g., tactile stimulation

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Why are we discussing BCIs in an ML school?

- To translate brain signals into commands for a computer/prosthesis, we need some kind of model
- The typical approach in neuroscience is to use very simple models (linear classifiers, Kalman filters, etc.) because neuroscientists want interpretable models
 - to understand how the brain works
 - because they work for their purposes
- ML can play a role \rightarrow Neural decoding
- "The man was able to train his mind to use the device"
 - https://www.technologyreview.com/2022/03/22/1047664/locked-in-patient-bci-communicate-in-sentences/
- The goal of BCIs is to improve the life of patients, more sophisticated models can improve the experience and go in the direction of reversing this paradigm

Neural Decoding for Neuroprosthetics

- Goal: translate the signal from brain implants into commands for a prothesis
- Main steps
 - Brain electrodes pick up analogue signals from large neuron populations
 - Post-processing is applied to convert the signal to "spike-trains": multi-channel time series of binary data
 - Decoding algorithm is applied to convert the signal to command for the prothesis

From C. Pandarinath and S. J. Bensmaia, "The science and engineering behind sensitized brain-controlled bionic hands," Physiological Reviews, p. physrev.00034.2020, Sep. 2021 doi: 10.1152/physrev.00034.2020. **Edited.**

- Off-line decoding is well understood, real-time decoding is challenging
- State-of-the-art models are simple: Patient "learns to drive" the model
 - Also reflects neuroscientist's need for explainability
- Neural signal changes over time and requires daily re-training of models
- B-Cratos aims to improve the overall accuracy of models and to re-use information across sessions
 - Lower effort for patient, easier adoption, more natural usage
 - Modern machine learning techniques can support this goal

Enough talking, let's get to the ML

• No online data yet, but reference dataset was available

- Focused on a reference dataset provided by a partner (German Primate Center)
- Monkey trained for a grasping task
- Neural recording from multiple cortex regions
- Monkey grasping objects presented in sequence
- Objects grouped by shape and size, presented randomly
- 2 monkeys, 6 recording sessions (i.e., different days)
- Learning Tasks

TORINO

- Grasping phase detection
- Object classification

S. Schaffelhofer, A. Agudelo-Toro, and H. Scherberger, "Decoding a Wide Range of Hand Configurations from Macaque Motor, Premotor, and Parietal Cortices," *Journal of Neuroscience*, vol. 35, no. 3, pp. 1068–1081, Jan. 2015, doi: <u>10.1523/JNEUROSCI.3594-14.2015</u>.

Dataset structure

<u> </u>				
0	Recording	sessions,	trials,	metadata

Recording sessions

NHP identifier	Dataset identifier	# Channels	# Trials
	MRec40	552	745
M	MRec41	568	757
	MRec42	554	653
	ZRec32	391	687
Z	$\operatorname{ZRec35}$	388	724
	$\operatorname{ZRec50}$	369	610

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Each trial discretised in bins of 40ms

- Results in dense matrix
 - channels x time_bins
 - Each bin contains the number of spikes
- Time stamps associated to a bin
- Each matrix is Associated to object id

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

20%	
16%	
	64%

1. Classes are **de-duplicated** (i.e., same object in different groups)

- 2. Dataset is split by trial
 - 1. 80% training + validation, 20% test)
 - 2. stratified by class
- 3. Split is stratified by class
- 4. Under-represented class are removed (i.e., less than 3 trials per session)
- 5. Total of 39 classes left

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	
0	0	0	
0	0	0	
0	0	0	Dro-processing
0	0	0	ric-piùcessing
0	0	0	
0	0	0	Sequence extraction

TORINO

ECML PKDD 2023

Goal: simulate real-time decoding

- Sliding windows extract sub-sequnces of 12 bins
- Grasp phase classification includes all data labelled with 0 (no grasp) and 1 (grasp)
- Object classification includes only the sub-sequences in the grasp phase, labelled with object ID

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

- LSTMs demonstrated good performance in literature
- Started from there (quite naïve in fact)
- Bidirectionality proved to be very effective
- Lots of dropout to prevent heavy overfitting
- Hyperparameter optimization

Hyperparameter	Values	Sel	ected
	(L1=0.01, L2=0.01)	M	Z
LSTM layers	$ \{ 1, 2, 3, 4 \}$	2	1
Hidden units	$\{ 16, 32, 40, 64 \}$	40	40
Dropout	$\{0, 0.2, 0.4, 0.6, 0.7, 0.8\}$	0.8	0.7
Kernel regularisation	$\{ None, L1, L2, L1 + L2 \}$	L2	L2
Recurrent regularization	$\{ \text{ None, L1, L2, L1 + L2} \}$	L2	L1+L2
Initial learning rate	$\{ 10^{-3}, 2 \cdot 10^{-4}, 10^{-4} \}$	$ 10^{-3}$	10^{-3}

TORINO ECML PKDD 2023

TORINO

- Significant class imbalance here, with no grasp class ~10 times more represented than grasp class
- LSTM model reaches an accuracy of at least 98% for all datasets, the F1 score is always greater than 0.95
- Result relevant for a finite-state prosthesis control scenario
 - Each 40ms time step: predict prosthesis status (grasp vs. no-grasp)
 - 1% of unwanted movement for each time step
 - 0.1% of unresponsive prosthesis

(b) Grasping phase detection accuracy metrics.

Dataset id	Accuracy	F1 score
MRec40	99%	0.96
MRec41	99%	0.96
MRec42	99%	0.97
ZRec32	99%	0.96
ZRec35	98%	0.96
ZRec50	98%	0.95

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Top 1% accuracy ranging from 61% to 74% across different sessions
- Neighbouring classes referred to similar objects
 - Relaxed accuracy defined as misclassification by 1 class (i.e., distance 1 from diagonal)

This project has received funding from the European Horizon 2020 research and innovation programme under GA No 965044

samples

10¹

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

• • • Object classification - comparison with state of the art

Results

TORINO

Animal	Metric	Present work	Schaffelhofer, 2015	Fabiani, 2021
M	Accuracy	$\left 69.7 \pm 4\% \right.$	$62.9\pm3.6\%$	n/a
	Accuracy	$62.3 \pm 1.2\%$	$61.4\pm4.1\%$	n/a
Global	Accuracy Relaxed accuracy	$\begin{array}{c} 65.9 \pm 4.9\% \\ 94.4 \pm 3.1\% \end{array}$	$62\% \\ 86.5\%$	$22\% \\ 59\%$

- Schaffelhofer et al. report an average accuracy for the hold phase of 62% over a total of 10 recording sessions (against the six available for this work)
 - Offline naive bayesian classifier applied to the whole hold phase vs. sligding window
 - Validated with a leave-one-out (LOO) approach
 - Dataset fraction used for training was significantly higher
 - Significantly better (M) and slightly better (Z)

accuracy results in a harder set-up. Significantly better relaxed accuracy

- Fabiani reported offline and online accuracy figures
 - This work outperforms both cases, despite the use of similar LSTM architechtures
 - Improvement likely due to bidirectional networks and stronger regularization

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Results

TORINO

Robustness to reduction of training data

- Real life scenario involves frequent retraining, also during recording sessions
- Neuroscientist's requirement is to limit training to a minimum, and let the model work for most of the time
 - Even more relevant for patients
- Smaller training sets were evaluated
- The model is still outperforming the previous SotA down to 40% of training data

$Training + validation \ set$	Accuracy	Relaxed accuracy
80%	74.1%	98.3%
70%	70.1%	97.1%
60%	69%	93.7%
50%	62.8%	94%
40%	63.8%	92.8%
$30\%^*$	59.2%	87.5%
$20\%^{**}$	51%	81%

 * validation is 30% of training set to ensure at least one representative per class

 ** validation is 40% of training set

Remarks and future work

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- LSTM can match and outperform previous approaches on a known dataset
 - More accurate prosthesis control can be enabled by modern architectures, at the expense of some explainability
- Results for relaxed accuracy are very promising for the final application
 - Continuous control of few degrees of freedom (regression on few variables)
 - Finite-state control of 5-6 grasp types (classification on fewer classes)

Future work

- Neural data evolves with time: robustness/adaptability of models is key to reduce patients and physicians effort
- Fine-tuning with limited data already proven effective
- Semi-supervised training with usage data is an open problem, inputs from the community are welcome!

Thanks for your attention!

Acknowledgments

