
Reinforcement Learning
A crash course on the Deterministic Policy Gradient

Emanuele Panizon @ AreaSciencePark 31/5/2024

A “strange” tutorial: Deep Deterministic Policy Gradient

The shortest course.

What is RL?

How do I define an
environment?

What is RL trying
to learn?

A way to solve it!
How to define the
optimization problem?

Reinforcement Learning: the 3rd wheel.

Supervised Unsupervised Reinforcement
Learning

Data with label.
“Extend” information.

- image recognition
- force fields
- LLMs
...

Data without label.
“Extract” information.

- clustering
- ID extraction
...

Sequences of causal
data.
Optimize “policy”.

- games
- resource management
- “reverse engineering”
to understand behavior
…

≠ supervised:
there is no “list of good actions” to look-up.

≠ unsupervised:
the task/objective/reward is given.

Reinforcement Learning: the 3rd wheel.

Q: What is the right choice of “action”?

The fundamental building block is the concept of Markov Decision Process:
an agent interacting with a (rewarding) environment.

“State” s ∊ S: is the well defined state of the environment. countable/uncountable

“Action” a ∊ A: is what the agent can do to change the state. discrete/continuous

“Transition” t(s’|s,a): encodes the dynamics of the environment. stochastic/deterministic

The environment: part I.

“Reward” r(s,a,s’) : is the immediate gain the agent has being in a state/doing an
action: reward at time t is rt

“Discount” 𝜸: is the discount for future reward (1/𝜸 is the time horizon)

“Return” : is the accumulated discounted reward from one time-step onwards.
R = ∑k𝜸k

 rt+k

The environment: part II.

“Policy” 𝞹(a|s): is what tells the agent what action to take next, given the “state”.
(𝞹(a|s) = probability to take action a, from state s)

The agent.

𝞹(a|s) means p(← |)

policy can be
stochastic &

discrete

policy can be
deterministic
& continuous

𝜇 = 𝞹(s)

Value Functions

“Value” V𝞹(s): is some estimated of all future rewards, starting from a state s
and following the policy 𝞹.

V𝞹(s) = E𝞹[∑k𝜸k
 rt+k | s = st]

Recursion

V𝞹(s) = E𝞹[rt + 𝜸V𝞹(st+1) | s = st]

Q𝞹(s,a) = E𝞹[rt + 𝜸V𝞹(st+1) | s = st, a = at]

“Value is what I expect to get from this state following this policy:

the immediate reward + all I will get afterwards”

“Quality is what I expect to get from this state doing this first
action and only then following this policy:

the immediate reward + all I will get afterwards”

V𝞹(s) = E𝞹[rt + 𝜸V𝞹(st+1) | s = st]

Q𝞹(s,a) = E𝞹[rt + 𝜸V𝞹(st+1) | s = st, a = at]

The objective / score function

“Objective J(𝞹)”: is the “overall goodness” of the policy.

 J(𝞹) = E𝞹[∑t𝜸
t rt | s0 ~ ⍴0]

 = E𝞹[V(s0) | s0 ~ ⍴0]

A conceptual map of RL

Do I know the world? (explicit form of dynamics t(s’|s,a) and reward r(s,a,s))

Do
 I

kn
ow

 w
he

re
 I

st
an

d?

(f
ul

l o
bs

er
va

bi
lit

y
of

 s
ta

te
)

Useful because
Markovianity!

I can plan without trial&error!

I need to “explore” the env!

dim
 of s

pac
e?

Model - free Evaluation

Model- free: gather trajectories from interactions.
collect (lots of) 𝝉 = {s0, a0, r1, s1, a1, r2, s2, a2, r3, … , rT}

Qexp
𝞹(s0,a0) = r1 + 𝜸Qw

approx
𝞹(s1,a1)

One needs to have an approximated evaluation of the value, generally
based on some parameters w:

Qw
approx

𝞹(s, a)

each time I visit a state I have some new “experimental” info

Q𝞹(s,a) = E𝞹[rt + 𝜸Q𝞹(st+1,at+1) | s = st, a = at]

Model - free: function approximation

1) choose:

how do I update Qw
approx

𝞹(s,a)?

Qexp
𝞹(s,a) =

∑t𝜸
t rt+1

MonteCarlo

r + 𝜸Qw
approx

𝞹(s’,a’) SARSA

r + 𝜸 maxaQ
w

approx
𝞹

(s’,a)
Q-Learning

… … …

2) update w:
 loss = (Qw

approx
𝞹(s,a) - Qexp

𝞹(s,a)) = δQ2

∇wloss

How to solve RL in practice?

Policy iteration cycle (not exactly, but…)

Qw
approx

𝞹(s,a)𝞹𝜃(s,a)

“is evaluated by”

“helps improving”

Introducing the Deep into the Deep Reinforcement Learning

frame

p1
p2
p3
p4
p5
p6

let’s fix a parameterized policy:
𝞹𝜃(s,a)

→
←
↑
↓
A
B

it is associated to a score:
J(𝞹𝜃(s,a))

hic sunt parameters
(NN)

Soft M
ax

Policy Gradient Theorem

expected value
of that action

change of prob to take the
action I really took

Neural Network weights are changed not to minimize loss,
but to maximise objective!

𝛁𝛉 J(𝞹) ∼ E[𝛁𝛉 log 𝞹𝛉(a | s) ⨉ (Q𝞹(s,a) - V𝞹(s))]𝛁𝛉 J(𝞹) ∼ E𝞹[𝛁𝛉 log 𝞹𝛉(a | s) ⨉ (Q𝞹(s,a) - V𝞹(s))]]

General scheme of actor/critic algorithm

Initialize 𝞹𝜃(s,a), Qw
approx

𝞹(s,a)
loop over episodes

- select a ~ 𝞹𝜃(s,a)
- perform action and get s’, r’
- compute Qexp(s,a) e.g. r’ + 𝜸 maxa’Q(s’,a’)
- evaluate gradient for critic weights w

∇w (Q
w

approx
𝞹(s,a) - Qexp(s,a))2

- evaluate gradient for actor weights 𝜃
∇𝜃 J ~ 𝛁𝛉 log 𝞹𝛉(a | s) ⨉ (Q𝞹(s,a) - V𝞹(s))

- update weights

What about continuous actions?

𝞹𝛉(a | s) a = 𝞵𝛉(s)

 𝛁𝛉 log 𝞹𝛉(at | st) ?

Discrete Stochastic
Policy

Deterministic Policy

𝛁𝛉 J ~ 𝛁𝛉 log 𝞹𝛉(a | s)
⨉ (Q𝞹(s,a) - V𝞹(s))

???!?!?

“semi”-deterministic
policies (PPO)

 a ~ 𝞵𝛉(s) + N(0,σ)
𝞹𝛉,σ(a|s)
etc. etc.

!

Our task today.

State

Actions

A new Policy Gradient.

Policy gradient for deterministic policies.

∇𝜃 J (𝞵) = E𝞹 [𝛁𝛉 Q
𝞹(s, 𝞵𝛉(s))]

= E𝞹 [𝛁𝛉 𝞵𝛉(s) 𝛁a Q
𝞹(s, a)|a=𝞵𝛉(s)]

Magically simple.
The gradient for the overall score is the (weighted) gradient for the quality function.

𝛁a Q
𝞹(s, a)|a=𝞵𝛉(s) x 𝛁𝛉 𝞵𝛉(s)

“How much the quality changes
around the chose action”

“How much the action changes wrt
the parameters”

What about learning the critic?

loss = (r + 𝜸 maxaQ
w’

approx
𝞹(s’,a) - Qw

approx
𝞹(s,a)

)2

loss = (r + 𝜸 Qw
approx

𝞹(s’, 𝞵𝛉(s’)) - Qw
approx

𝞹(s,a))2

stochastic

deterministic (in a sense, 𝞵𝛉(s’) is implicitly supposed to maximize Q)

And now: the technical problems.

1) How to explore with a deterministic policy?

Add noise! Trajectories are constructed with an exploration policy

𝞵’(s) = 𝞵𝛉(s) + Ɲ

[Why is it not a problem to be off-policy? Thanks to Q-Learning!]

Gaussian

Ornstein-Uhlenbeck

Part II. Technical problems!

2) Deeply unstable.

2a) Experience is very correlated.

Solution: memory/replay buffer!

Experience is stored in a “database” and learning
is done selecting random times in the (even long)
past, not only last experience.

exp = (s, a, r, s’, done)

2b) NN are chasing their own tails.

loss = (r + 𝜸 Qw
approx

𝞹(s’, 𝞵𝛉(s’)) - Qw
approx

𝞹(s,a))2

Solution: split critic Q into two:
 critic Qw , learns by stochastic gradient descent

and target_critic Qw’, updates its parameters w’ by (slowly) copying w
does not enter in the gradient calculation.

∇
w

∇
w

Part II. Technical problems!

∇ w

∇ w

∇
w

∇
w

loss = (r + 𝜸 Qw’
approx

𝞹(s’, 𝞵𝛉(s’)) - Qw
approx

𝞹(s,a))2

Deep Deterministic Policy Gradient

Here at last!

The Maximization bias.

loss = (r + 𝜸 maxaQ
w’

approx
𝞹(s’,a) - Qw

approx
𝞹(s,a)

)2

3) Q-Learning update suffers from maximization bias.

the max over a noisy variable has always a positive bias!

Solution(s):
1) make two independent copies of the critic (and their targets) Q1

w1 , Q2
w2

new target = r + min1,2 [𝜸 Qi
wi

approx
𝞹(s’, 𝞵𝛉(s’))]

2) evaluate the Qi
wi not exactly at the “optimal” action, but with some error, so

that artificial peaks get smoothed out

Twin Delayed DDPG - TD3

Last but not least!

hidden layer (400)

hidden layer (300)

Q (1)

state (24)

actions (4) +

actions (4) +

Critic - TD3/DDPG(same)

linear + batch norm + ReLU

linear + batch norm + ReLU

linear

hidden layer (400)

hidden layer (300)

actions (4)

state (24)

Actor TD3/DDPG(same)

linear + ReLU

linear + ReLU

linear + Tanh

The end.

