Reinforcement Learning

A crash course on the Deterministic Policy Gradient

Emanuele Panizon @ AreaSciencePark 31/5/2024 .

A “strange” tutorial: Deep Deterministic Policy Gradient

The shortest course.

What is RL?

What is RL trying
to learn?

We study reinforcement learning and control problems in

which an agent acts in a stoch envi by seq
tially choosing actions over a sequence of time steps, in
order to maximise a lati d. We model the

problem as a Markov decision process (MDP) which com-
prises: a state space S, an action space A, an initial state
distribution with density p, (s,), a stationary rransition dy-
namics distribution with conditional density p(s;.1|s¢. a;)
satisfying the Markov property p(s¢41/s1,a1,.... 8¢, a¢) =
P(ses1]se,ar), for any trajectory s1,a1,s2,az,..., 8T, a1
in state-action space, and a reward functionr : S x A — R.

A policy 1s used to select actions in the MDP. In general
the policy is stochastic and denoted by 7 : S — P(A).
where P(A) is the set of probability measures on A and
@ € R" is a vector of n parameters, and 7g(as|s;) is
the conditional probability density at a; associated with

the policy. The agent uses its policy to interact with the
MDP to give a trajectory of states, actions and rewards,
hir = si,a1,7...,s7,ar,77 over S x A x R. The
return 77 is the total discounted reward from time-step ¢
onwards, 1} = 377, v*tr(sk,ar) where 0 < y < 1.
Value functions are defined to be the expected total dis-
counted reward, V™ (s) = E[r]|S) = s;7]and Q" (s,a) =
E[r]|S: = s,A; = a;7]." The agent’s goal is to obtain a
policy which maximises the cumulative discounted reward
from the start state, denoted by the performance objective
J(7) =E[r]|=].

We denote the density at state s’ after transitioning for ¢
time steps from state s by p(s — s’,t, 7). We also denote
the (improper) discounted state distribution by p”(s') :=
JsX 17 'p(s)p(s — s',t,m)ds. We can then write
the performance objective as an expectation,

J(7r9)=[Sp”(s)Arg(s.a)r(s.a)dads

= Eswp",afvxo [r(s.a)] (D

where E,_, [-] denotes the (improper) expected value with
respect to discounted state distribution p(s).> In the re-
mainder of the paper we suppose for simplicity that 4 =
R™ and that S is a compact subset of R,

How do | define an
environment?

How to define the
optimization problem?

Policy gradient algorithms are perhaps the most popular
class of continuous action reinforcement learning algo-
rithms. The basic idea behind these algorithms is to adjust
the parameters ¢ of the policy in the direction of the perfor-
mance gradient V.J(my). The fundamental result underly-
ing these algorithms is the policy gradient theorem (Sutton
etal., 1999),

Vo) = /s 7 (s) /A Vomo(als)Q" (s, a)dads
=]Esrvp",a:v‘ng [V9 108 ﬂg(als)Q’”(S, tl)] (2)

The policy gradient is surprisingly simple. In particular,
despite the fact that the state distribution p™(s) depends on
the policy parameters, the policy gradient does not depend
on the gradient of the state distribution.

A way to solve it!

Deterministic Policy Gradient Algorithms

David Silver DAVID @ DEEPMIND.COM
DeepMind Technologies, London, UK

Guy Lever GUY.LEVER@UCL.AC.UK
University College London, UK

Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller *@DEEPMIND.COM

DeepMind Technologies, London, UK

Reinforcement Learning: the 3™ wheel.

/ Supervised \

Data with label.
“Extend” information.

- image recognition

- force fields
- LLMs

U)

Reinforcement Learning: the 3™ wheel.

Q: What is the right choice of “action”?

WORLD TIME
1-1 375

supervised:
there is no “list of good actions” to look-up.

unsupervised:
the task/objective/reward is given.

The environment: part |.

The fundamental building block is the concept of Markov Decision Process:
an agent interacting with a (rewarding) environment.

“State” s € S: is the well defined state of the environment. countable/uncountable
“Action” a € A:is what the agent can do to change the state. discrete/continuous

“Transition” t(s’|s,a): encodes the dynamics of the environment. stochastic/deterministic

T

mit

The environment: part Il.

“Reward” r(s,a,s’) : is the immediate gain the agent has being in a state/doing an
action: reward attime tis r,

MARIO WORLD TIME O
000000 x00 "i-I

©1985 NINTENDOD

WORLI) TIME
1-1 375 MARIO WORLD TIME
027650 %37 a-1 363

- 1 PLAYER GAME
2 PLAYER GAME

TOP= 000000

(RS - o I o S

[Lonaplay] NES - Super Mario Bros [100%] (4K, 60FPS)

Super Mario Bros. Any% Speedrun in 4:54.631 *WR*

“Discount” y: is the discount for future reward (1/y is the time horizon)

“Return” : is the accumulated discounted reward from one time-step onwards.
_ o K
R = zkj} Fiak

“Policy” rr(als): is what tells the agent what action to take next, given the “state”.
(rr(als) = probability to take action a, from state s)

MARTO WORLD TIME
000100 %00 1-1 375

policy can be
stochastic &
discrete

policy can be

deterministic u=mn(s)
& continuous &

Value Functions

“Value” V"(s): is some estimated of all future rewards, starting from a state s
and following the policy m.

V7(s) = E"[g.p%r, | s = s']

WORLD TIME
1-1 375

Recursion

V(s) = E™[r + pV(s*) | s = §']
“Value is what | expect to get from this state following this policy:

the immediate reward + all | will get afterwards”

Q"(s,a) =E"[r +pV(s*) | s=s', a=a

“Quality is what | expect to get from this state doifg thisfirst
following this policy:

the immediate reward + all | will get afterwards”

The objective / score function

“Objective J(mr)”: is the “overall goodness” of the policy.

MARIO WORLD TIME
000000 x0 1=1

sum:n |) = E"[' r | S ~ p]

mnnm mms = BT VI(so) | 59 ~ o]

©1985 NINTENDD

- 1 PLAYER GAME
2 PLAYER GAME

TOP= 000000

A conceptual map of RL

\

Do | know where | stand?
(full observability of state)

Useful because
_-¥ Markovianity!

| can plan without trial&error!
A

| need to “explore” the env!

I
I
I
I
I
Vv I
I

\\ ! >

Q‘J\.
,OO

S 1

Do | know the world? (explicit form of dynamics t(s’[s,a) and reward r(s,a,s))

Model - free Evaluation

One needs to have an approximated evaluation of the value, generally
based on some parameters W:

w n
Q approx (S’ a)

each time | visit a state | have some new “experimental” info
Q"(s.a) = E"[r,+»Q"(s"a™) | s =" a=a']

Qexpn(SO’aO) - r1 i yQWapproxn(Sl’al)

Model - free: function approximation

how do | update Qwapprox (s,a)?

1) choose: Ztyt M MonteCarlo
Qexp"(s,a) = QYo (852) SARSA
r+y maXaQWapprOX" Q-Learning
(s"a).
2 update wr 0% = Qoo (6:3) = Q(5:2)) = 3Q7

V loss
w

How to solve RL in practice?

Policy iteration cycle (not exactly, but...)

“Is evaluated by”

m(s.a) Q" oo (5:3)

~_

“helps improving”

Introducing the Deep into the Deep Reinforcement Learning

let’s fix a parameterized policy:
m’(s,a)

WORLD TIME
1-1 375

frame

It is associated to a score:
J(r%(s,a))

Policy Gradient Theorem

[Lvﬂj(n) - E"[V,logn®a]s)x (Q"(s.a) - V(s))]] J

change of prob to take the expected value
action | really took of that action

General scheme of actor/critic algorithm

Initialize n%(s,a), Q%
loop over episodes

n
approx (S’a)

- select a~ n’s,a)
- perform action and get s,r
- compute Q*®P(s,a) e.g. r'+p max_Q(s'a)

- evaluate gradient for critic weights w
Y, (QY,0"(5a) - Q7%(s2))
- evaluate gradient for actor weights 6
V,]~V,logna|s)x (Q"(sa)-V(s))
- update weights

What about continuous actions?

Discrete Stochastic Deterministic Policy
Policy
m’(a|s) = a=pu"(s)
0
VO log n (at St) " ? I “semi”-deterministic
policies (PPO)

Vol ~V,logn’(a]s) : 72721717

x (Q"(s,a) - V™(s)) a~u’(s)+N(0,0)

m®%(als)
etc. etc.

Our task today.

State

Actions

A new Policy Gradient.

Policy gradient for deterministic policies.

V(M) =E"[V, Q(s,u"(s))]
V,H'(S) V,Q7(s, a)l,_q]

Magically simple.
The gradient for the overall score is the (weighted) gradient for the quality function.

m 0
V. Qs Al X \Veu (s)

“How much the quality changes “How much the action changes wrt
around the chose action” the parameters”

What about learning the critic?

stochastic

— w’ n(s’ w n
lcz)ss =(r+ymaxQ Jpprox (sh\a) - Q “pprox (s,a)
)

deterministic (in a sense, u%(s’) is implicitly supposed to maximize Q)

loss = (r+yQ%, o (S, po(s’)) - Q" oprox (5:3))

And now: the technical problems.

1) How to explore with a deterministic policy?

Add noise! Trajectories are constructed with an exploration policy

”,(S) = ”B(S) +N T Gaussian

T

Ornstein-Uhlenbeck

[Why is it not a problem to be off-policy? Thanks to Q-Learning!]

Part Il. Technical problems! == R - B
S B

2) Deeply unstable.

2a) Experience is very correlated.

Solution: memory/replay buffer! v |
Experience is stored in a “database” and learning -
is done selecting random times in the (even long)
past, not only last experience.

exp = (s, a, r, ', done)

Part Il. Technical problems!

A

2b) NN are chasing their own taxs.

4 ioss =(r +[y QWapprox"(s’, y“(s’)ﬂ [- Qwapproxn(s,a})2

A
4
Solution: split critic Q into two:

critic QW, learns by stochastic gradient descent

and target_critic QW updates its parameters w' by (slowly) copying w
does not enter in the gradient calculation.

A
4« loss = ?I’ Ty Qwapproxn(s’, ”B(S’)) -* QWapprox”(s’a))2

Deep Deterministic Policy Gradient

Algorithm 1 DDPG algorithm

Here at last! Randomly initialize critic network Q(s, a|#?) and actor ;1(s|0#) with weights % and *.
Initialize target network ' and ;¢ with weights 09" < 0@, o' +— g
Initialize replay buffer R
for episode = 1, M do
Initialize a random process A/ for action exploration
Receive initial observation state s¢
fort=1,Tdo
Select action a; = 1(s¢|0*) + N¢ according to the current policy and exploration noise
Execute action a; and observe reward 7; and observe new state S; 1
Store transition (S;., @z, 7. S;.1) in R
Sample a random minibatch of N transitions (s;, a;, 75, ;1) from R |
Set y; = 1; +YQ' (Siy1, 1 (5i11|0#)]09)
Update critic by minimizing the loss: L = + 3" (y; — Q(s;, a;]0%9))?
Update the actor policy using the sampled policy gradient:

1
Voul ~ 5 ;an(s,, a]69)|s=s4 amp(s:) Vor (5|0 s,

Update the target networks:
09 « 169 + (1 —1)0?

0r — To" + (1- T)H"’

end for
end for

The Maximization bias.

3) Q-Learning update suffers from maximization bias.

— w’ n(s’ w n
lgss =(r+ y[maxaQ ©pprox (s ,a)] - Q Jpprox (s,a)
)

the max over a noisy variable has always a positive bias!

Solution(s):
1) make two independent copies of the critic (and their targets) Qlwl, QZW2

new target = + mil‘l1'2 [y QiW"apprOX"(S’, IJO(S’))]

2) evaluate the QiW" not exactly at the “optimal” action, but with some error, so
that artificial peaks get smoothed out

Twin Delayed DDPG - TD3

Algorithm 1 TD3
Last but not least! Initialize critic networks Qy, , Qg,, and actor network 7,

with random parameters 61, 0y, ¢

Initialize target networks 6] < 61, 05 < 02, ¢’ + ¢
Initialize replay buffer B

fort = 1to7 do|

Select action with exploration noise a@ ~ mg(s) + €,
€ ~ N (0,0) and observe reward r and new state s’
Store transition tuple (s, a,r, s’) in B

Sample mini-batch of NV transitions (s, a,r, s) from B

a+ mg(s')+e €~clipN(0,0),—c,c)

Y < 7+ ymini=1 2 Qg (s, a)

Update critics p; <— argming N=1 3" (y—Qo, (s, a))?

if £ mod d then

Update ¢ by the deterministic policy gradient:

V¢J(¢) = ! Z VGQ91 (Sa a)!az’lw(s)v(ﬁﬂ-qﬁ(s)

Update target networks:

0+ 70; + (1 —71)0.

¢ 19+ (1 —7)¢
end if

end for

Critic - TD3/DDPG(same) Actor TD3/DDPG(same)
[state (24) } [state (24) }

\ linear + Wew
: linear + RelLU

[actions (4)] + hidden layer (400)

hidden layer (400)

linear + batch normy/+ RelLU)
linear + ReLU

[actions (4)] N g

hidden layer (300) hidden layer (300)

+
Iiksar + Ta|741
linear
actions (4)

Q (1)

