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Uncertainty representations in variational inference models of low-level
visual perception

Josefina Catoni1, Enzo Ferrante1, Diego H. Milone1 and Rodrigo Echeveste1

1sinc(i), CONICET-Universidad Nacional del Litoral, Santa Fe, Argentina

Bayes rule provides an optimal way to perform inference in probabilistic scenarios, and it is
hence a natural tool to understand perception in the context of uncertainty. Indeed, increas-
ing evidence indicates the brain is able to represent and operate with probability distributions
to (approximately) perform probabilistic inference in several scenarios [1]. A popular choice
to approximate the process is variational inference. Variational Autoencoders (VAEs) [2] are
a useful tool to learn internal probabilistic representations in an unsupervised fashion. This
procedure can be useful when modeling an inference process where the generative model is
unknown, since in VAEs the encoder and the decoder are simultaneously learned from the data.
This architecture provides a means to model inference in the cortex by learning from the statis-
tics of stimuli. Indeed, previous work has shown that classical receptive fields emerge when
training sparse VAEs [3].
Here we studied the properties of the posterior distributions of those VAEs, finding a coun-
terintuitive behavior. While the signal mean and signal variance in the latent representations
increase with the contrast of the images, as expected since the images and orientations present
in them become more and more distinguishable (cf Fig. 1a and ) first column), the reported un-
certainty (noise variance) grows. This is counterintuitive as the uncertainty would be expected
to decrease as contrast increases, with a blank zero contrast image being maximally uninforma-
tive. Taking inspiration from the Gaussian Scale Mixture (GSM) model [4], we incorporate a
global multiplicative contrast variable to the generative model of the VAE. The GSM has been
shown to capture basic properties of natural image statistics, and has been used as a model of
cortical visual processing [5]. We call this model explaining-away VAE (EA-VAE) alluding to
the explaining-away phenomenon observed in the GSM. Our model fixes the aforementioned
problems showing decreasing uncertainty with contrast. Importantly, posteriors converge the
prior for zero contrast, which in turn matches the average posterior (Fig. 1b).

Figure 1: a) Sketch of the expected behavior of an inference model for natural images. b)
Comparison of the behavior of inferred posteriors in a VAE with the inferred by our EA-VAE.

[1] A. Pouget et al., Nat. Neurosci. 16 (9), 1170-1178 (2013).
[2] D.P. Kingma, M. Welling, arXiv:1312.6114 (2022).
[3] F. Csikor et al., arXiv:2206.00436 (2022).
[4] M.J. Wainwright, E. Simoncelli, Adv. Neural Inf. Process. Syst. 12 (1999).
[5] R. Echeveste et al., Nat. Neurosci. 23 (9), 1138-1149 (2020).
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Rotational dynamics enables noise robust working memory

Laura Ritter1 and Angus Chadwick1

1University of Edinburgh

Working memory is fundamental to higher-order cognitive function, yet the circuit
mechanisms through which memoranda are maintained in neural activity after removal of
sensory input remain subject to vigorous debate [1,2]. Prominent theories propose that
stimuli are encoded in either stable and persistent activity patterns configured through
recurrent attractor dynamics or dynamic and time-varying patterns of population activity
brought about through non-normal or feedforward network architectures [2,3]. However,
the optimal dynamics for working memory, particularly when faced with ongoing neuronal
noise, has not been resolved.

Here, we address this question within the analytically tractable setting of linear re-
current neural networks. First, we develop a novel method to optimise continuous-time
linear RNNs driven by Gaussian noise to solve working memory tasks. Our method em-
ploys exact analytical expressions to perform gradient descent with respect to the average
loss over infinitely many trials, without requiring forward-simulation or backpropagation-
through-time. Application of this optimisation method yields a novel and previously
overlooked mechanism for working memory maintainence combining both non-normal
and rotational dynamics. To test whether these dynamics are a consequence of our op-
timisation method, we took two approaches: first we confirmed analytically that these
non-normal rotational dynamics substantially outperform both perstistent/attactor and
non-normal/sequential/feedforward mechanisms; second, we derived analytical expres-
sions for the updates generated by backpropagation-through-time (again over an infinitely
large batch size), which upon implementation produced near-identical learning dynamics
to those produced by our method.

We next asked whether the non-normal rotational dynamics we identified capture
experimentally observed features of neural population activity during working memory
tasks. Indeed, we found that the optimised networks replicated several core features of
neural population activity in prefrontal cortex, including “dynamic coding” (as quanti-
fied by both cross-temporal decoding analysis and switching of single-neuron neuronal
selectivity over the delay period) despite stable representational geometry [4].

Taken together, our findings suggest that memoranda are stored and maintained dur-
ing working memory using combination of non-normal and rotational dynamics, which
support a stable and optimally noise-robust representation of working memory contents
within a time-varying and dynamic population code.

[1] J Zylberberg, BW Strowbridge, Annu. Rev. Neurosci 40, 603-627 (2017).
[2] M Lundqvist, P Herman, EK Miller, J. Neurosci 38, 7013-7019 (2018).
[3] M Goldman, Neuron 61(4): 621-634 (2009).
[4] E Spaak, K Watanabe, S Funahashi, MG Stokes, J. Neurosci, 37 (27) 6503-6516 (2017).
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Dynamics of drifting cell assemblies

Sven Goedeke1,2, Yaroslav Felipe Kalle Kossio2, Christian Klos2,
and Raoul-Martin Memmesheimer2

1(Presenting author underlined) Theoretical Systems Neuroscience,
Bernstein Center Freiburg, University of Freiburg, Germany

2Neural Network Dynamics and Computation, Institute of Genetics,
University of Bonn, Germany

In a standard model, associative memories are represented by assemblies of strongly inter-
connected neurons. We have proposed a contrasting memory model with complete tem-
poral remodeling of assemblies, based on experimentally observed changes in synapses
and neural representations [1]. The assemblies drift freely as noisy autonomous net-
work activity and spontaneous synaptic turnover drive neuron exchange. The gradual
exchange allows activity-dependent and homeostatic plasticity to conserve the representa-
tional structure and keep inputs, outputs, and assemblies consistent, leading to persistent
memory. This explains experimental findings of changing memory representations.

At the level of single neurons, assembly drift is reflected by characteristic dynamics:
relatively long periods of stable assembly membership interspersed with fast transitions.
How can we mechanistically understand these dynamics? Here we answer this question
by proposing simplified, reduced models. We first constructed a random walk model for
neuron transitions between assemblies based on the statistics of synaptic weight changes
measured in simulations of plastic spiking neural networks exhibiting assembly drift. It
shows that neuron transitions between assemblies can be understood as noise-activated
switching between metastable states. The random walk’s potential landscape and inho-
mogeneous noise strength induce metastability and thus support assembly maintenance
in the presence of ongoing fluctuations. In a second step, we derive an effective random
walk model from first principles. In this model, a neuron spikes at a fixed background
rate and, depending on the neuron’s coupling to the assembly, together with its current
or another assembly. The model generates neuron transitions between assemblies as well
as potentials and inhomogeneous noise similar to those observed in spiking network sim-
ulations. The approach can be applied generally to the dynamics of drifting assemblies,
irrespective of the employed neuron and plasticity models.

[1] Y. F. Kalle Kossio, S. Goedeke, C. Klos, R.-M. Memmesheimer, Drifting assemblies
for persistent memory: Neuron transitions and unsupervised compensation. PNAS 118,
e2023832118 (2021).
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Use case determines the validity of neural systems comparisons

Erin Grant1, Brian Cheung2, Tomaso Poggio2, Andrew Saxe1

1 Gatsby Unit & Sainsbury Wellcome Centre, University College London
2 Center for Brains, Minds and Machines, Massachusetts Institute of Technology

Deep learning provides new data-driven tools to relate neural activity to perception and
cognition, aiding neuroscientists and cognitive scientists in developing theories of neural
computation that increasingly resemble biological systems both at the level of behavior [3]
and of neural activity. [1] But what in a neural network should correspond to what in
a biological system? This question is addressed implicitly in the use of specific compar-
ison measures—such as representational similarity analysis [5] or linear regression fit to
neural activity [6]—that relate specific neural or behavioral dimensions via a particular
functional form. However, distinct comparison methodologies can give conflicting results
in recovering even a known ground-truth model in an idealized setting, [4] leaving open
the question of what to conclude from a successful or unsuccessful systems comparison
using any given methodology.

Here, we develop a framework to make explicit and quantitative the effect of both
hypothesis-driven aspects—such as details of the architecture of a neural network—as
well as methodological choices in a systems comparison setting. We demonstrate via
both analytical and simulated learning dynamics of neural networks that, while the role
of the comparison methodology is often de-emphasized relative to hypothesis-driven as-
pects, this choice can greatly impact and even invert the conclusions to be drawn from a
comparison between neural systems. In particular, we establish cases in which whether
or not two systems are found to be similar depends on variables not often accounted for
when comparing neural systems. For example, rich and lazy learning—distinct repre-
sentational regimes attested via models of biological learning [2]— can be controlled via
methodological parameters, suggesting that representational regimes should be treated as
hypothesis-relevant variables, on the level of architecture, for example.

In addition, our framework allows us to idealize scientific use cases as parametric inter-
ventions; for example, we examine the robustness of conclusions about representational
and functional similarity to measurement noise in neural activity and model misspeci-
fication. We contend that the right way to judge similarity depends on the purpose or
scientific hypothesis under investigation, which could range from identifying single-neuron
or circuit-level correspondences to capturing generalizability to new stimulus dimensions.

[1] C Conwell et al. “What can 1.8B regressions tell us about the pressures shaping
high-level visual representations...” In: BioRxiv (2023).

[2] M Farrell et al. “From lazy to rich to exclusive task representations in neural networks
and neural codes”. In: Curr. Opin. Neurobio. (2023).

[3] R Geirhos et al. “Partial success in closing the gap between human and machine
vision”. In: Adv. NeurIPS (2021).

[4] Y Han et al. “System identification of neural systems: If we got it right, would we
know?” In: Proc. ICML. 2023.

[5] N Kriegeskorte et al. “Representational similarity analysis: Connecting the branches
of systems neuro.” In: Front. Sys. Neuro. (2008).

[6] M Schrimpf et al. “Brain-Score: Which artificial neural network for object recognition
is most brain-like?” In: BioRxiv (2018).
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Junior Scientists Workshop on Recent Advances in Theoretical Neuroscience: 

Feedback Controllability Constrains Learning Timescales During Motor 

Adaptation 

Harsha Gurnani1,2,3 , Bing W. Brunton 1,2,3 

1Department of Biology, 2Computational Neuroscience Center, 3eScience Institute;  

University of Washington, Seattle, USA 

 

The ability to produce new neural dynamics is a key feature of motor learning, and likely 

involves plasticity within distributed circuits; this learning is also relevant in the context of 

brain-computer interfaces (BCI) that rely on real time decoding of neural activity. Previous 

work exploring the structure of M1 activity during motor tasks has largely assumed 

autonomous dynamics (i.e. activity unfolding from initial states dominated by local recurrent 

interactions), and related work on BCI learning has focused on local mechanisms (such as M1 

synaptic plasticity). However, recent experimental evidence suggests that M1 activity 

during BCI use is continuously modified by sensory feedback [1] and produces 

corrections for noise and external perturbations [1,2], suggesting a critical need to model 

this interaction between feedback and intrinsic M1 dynamics. In this work, we investigated 

the role of flexible feedback modulation of cortical dynamics in the context of both BCI task 

performance and short-term learning.  Incorporating sensory feedback inputs to recurrent 

neural networks (RNNs), we trained them on a 2D centre-out reaching task where the network 

activity controlled the BCI cursor velocity. We first examined the task-relevant dynamics that 

emerged over training and showed that many experimentally observed features of M1 activity 

could be recapitulated in feedback-driven networks. We further adapted existing reverse-

engineering methods to closed-loop dynamics and showed how fixed points of the coupled 

RNN-cursor system underlie the error-correction mechanism. Secondly, we observed a 

misalignment of the intrinsic manifold, task-dynamics subspace and decoder (output) weights, 

which we show has implications for the robustness of different decoders against neuronal noise. 

Next, we suggest that short-term adaptation, including to BCI decoder perturbations as in [3], 

can be facilitated by plasticity of inputs from upstream controllers such as a remapping of 

sensory feedback, instead of plasticity of recurrent connections within M1. Crucially, we show 

that beyond alignment of decoders with the intrinsic manifold, the pre-existing input-driven 

dynamical structure determines the speed of adaptation to different decoder perturbations. This 

offers an explanation for the experimentally-observed variability of learning outcomes across 

different “within-manifold” perturbations, that has been missing from related computational 

studies. Moreover, learning via input plasticity produced little change to the statistical 

distribution of neural states, consistent with neural reassociation [4].  Lastly, we show 

adaptation using a biologically-plausible learning rule that modifies input weights is consistent 

with experimentally-observed variability of BCI learning outcomes. By incorporating 

adaptive controllers upstream of M1, our work highlights the need to model input-

dependent latent dynamics, and clarifies how constraints on learning arise from both the 

statistical characteristics and the underlying dynamical structure of neural activity. 

 
[1] M. Golub, B.M. Yu, S.M. Chase. eLife 2 4:e10015 (2015).   

[2] S.D. Stavisky, J.C. Kao, S.I. Ryu, K.V. Shenoy. Neuron, 95(1), 195–208.e9 (2017). 

[3] P.T. Sadtler, K.M. Quick, M. Golub, S.M. Chase, S.I. Ryu, E.C. Tyler-Kabara, B.M. Yu, A.P. 

Batista. Nature 512, 423–426 (2014). 

[4] M.D. Golub, P.T. Sadtler, E.R. Oby, K.M. Quick, S.I. Ryu, E.C. Tyler-Kabara, A.P. Batista, S.M. 

Chase, B.M. Yu. Nature Neuroscience 21, 607–616 (2018). 
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Mean Field Analysis of a Stochastic STDP model
Pascal Helson1, Etienne Tanré2, and Romain Veltz2

1 KTH Royal Institute of Technology, Sweden 2Inria Sophia-Antipolis, France

Biological neural network models with synaptic plasticity pose challenges for both theoretical and
numerical analyses. The numerical bottleneck arises from the N2 scaling of synapses with an in-
creasing number N of neurons. Additionally, the intricate coupling between neuron and synapse
dynamics, along with plasticity-induced heterogeneity, hinders the use of classical tools from the-
ory. One approach to address these challenges is to assume plasticity to be very slow compared to
neural activity and leverage slow-fast theory. However, this slowness is not universally applicable in
the brain, making it unclear how to analyze such complex systems without relying on the slow-fast
assumption. In this work, we conduct a mean-field analysis on a neural network model with plastic
interactions, resulting in a significantly reduced model.

We explore Spike-Timing-Dependent Plasticity (STDP) within a probabilistic Wilson-Cowan neu-
ral network model featuring binary neural activity. The network is composed of N triplets, each
comprises the neuron potential V i,N

t ∈ 0, 1, the time since its last spike Si,N
t ∈ R+, and its N incom-

ing synaptic weights (W i←j,N
t )1 ≤ j ≤ N ∈ Z. Neurons revert to their resting potential (from 1 to

0) via Poisson processes, spiking (from 0 to 1) based on synaptic currents I i,N
t = 1

N

∑
j W i←j,N

t V j,N
t .

Upon a spike, outgoing (W j←i,N
t )1 ≤ j ≤ N or incoming weights (W i←j,N

t )1≤j≤N update following
a probabilistic STDP rule, where smaller Sj0,N

t makes W i←j0,N
t more likely to potentiate (+1) and

W j0←i,N
t to depress (−1).
The N2 weights make the definition of a typical neuron highly non trivial. A possible choice

is to use new variables that ease performing a mean field approximation which are the empirical
distributions, ξi,N

t , of the state of the pre-synaptic neurons (neuron state, time since last spike and
outcoming synaptic weight to neuron i),

ξi,N
t = 1

N

∑
j

δ(V j,N
t ,Sj,N

t ,W i←j,N
t ).

(a) Time since last spike distribution (V=0)
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Fig. 1 : Comparing two properties of
the limit system in 1a and 1b for N =
5000 after 500ms.

Considering this new system X i,N
t = (V i,N

t , Si,N
t , ξi,N

t ), we
derive a closed system of equations. We then conjecture
that the dynamics of any limit point as N tends to infinity,
(V ∗t , S∗t , ξ∗t )t≥0, is solution to a McKean-Vlasov SDE on the
space {0, 1} × R+ × P(Em) where P(Em) is the space of
probability measures on {0, 1}×R+ ×Z. We illustrated this
limit dynamics with simulations by comparing the finite size
neural network to the mean field limit system. There is a
good match between the two as shown in Fig. 1.

This analysis marks the first exploration of exact mean-
field dynamics in a network of interacting neurons with plas-
ticity. We hope this work can help deriving mean field limits
of other models with particle in interaction. It also opens
the door to new mathematical questions such as establish-
ing the uniqueness of the solution to the limit system and
confirming the convergence to a deterministic limit measure.
Moreover, studying the limit system would give insight in
the initial model. In particular, this study opens new av-
enues for preventing weight divergence without relying on
soft or hard bounds. Importantly, our approach significantly
reduces simulation costs, crucial for models involving synap-
tic plasticity. A timeline example is the consequence of deep brain stimulation (DBS) on the weights
linking the neurons stimulated, especially in an adaptive setting. DBS is used to alleviate symptoms
in many brain diseases like depression, Parkinson’s disease and epilepsy.
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Modeling the sensorimotor system with
task-driven modeling

Alessandro Marin Vargas, Alberto S. Chiappa, Adriana P. Rotondo, Alexander Mathis
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Complex behavioral tasks like grasping require precise and accurate motor control. This de-
mands an intricate interplay between proprioceptive processing and motor command generation
within the sensorimotor system. While task-driven modeling has demonstrated success in un-
derstanding visual processing, its application to proprioception remains underexplored. Here,
we employ a task-driven modeling approach to investigate the neural code of proprioceptive
neurons in cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated mus-
cle spindle signals through musculoskeletal modeling and generated a large-scale movement
repertoire to train neural networks based on 16 hypotheses, each representing different compu-
tational goals. We found that the emerging, task-optimized internal representations generalize
from synthetic data to predict neural dynamics in CN and S1 of primates. Computational tasks
that aim to predict the limb position and velocity were the best to predict the neural activ-
ity in both areas. Since task-optimization develops representations that better predict neural
activity during active than passive movements, we postulate that neural activity in CN and
S1 is top-down modulated during goal-directed movements (Marin Vargas*, Bisi* et al. Cell
2024). Building upon this framework, we extend our investigation to incorporate deep reinforce-
ment learning, aiming to capture sensorimotor representations. By training artificial agents
to imitate natural grasp movements using imitation learning, we develop stimulus-computable
models that effectively capture sensorimotor representation by predicting the neural activity of
primates during grasping movements. We show that these models outperform classic encoding
models. These results suggest that deep reinforcement learning has the potential to bridge the
gap between artificial and biological sensorimotor systems, providing valuable insights into the
mechanisms underlying sensorimotor integration and control.
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Estimating Noise Correlations Across Continuous Conditions
With Wishart Processes

Amin Nejatbakhsh1, Isabel Garon1, and Alex H Williams1

1 Center for Computational Neuroscience, Flatiron Institute, New York, NY

The signaling capacity of a neural population depends on the scale and orientation of
its noise covariance across trials [1] (Fig. 1A). Estimating this covariance is challenging
and is thought to require a large number of stereotyped trials of a repeated action or
stimulus presentation. New approaches are therefore needed to interrogate the structure of
neural noise across rich, naturalistic behaviors and sensory experiences, with few trials per
condition. Here, we exploit the fact that conditions are smoothly parameterized in many
experiments and leverage Wishart process models to pool statistical power from trials
in neighboring conditions [2]. The core insight we exploit is that similar experimental
conditions—e.g. cued arm reaches to similar locations—ought to exhibit similar noise
statistics (Fig. 1B). We demonstrate favorable performance on experimental data from the
monkey motor cortex relative to standard covariance estimators (Fig. 1E-H). Moreover,
the Wishart process produces smooth estimates of covariance as a function of stimulus
parameters, enabling estimates of noise correlations in unseen conditions (Fig. 1I,J) as
well as continuous estimates of Fisher information—a commonly used measure of signal
fidelity. Together, our results suggest that Wishart processes are broadly applicable tools
for quantification and uncertainty estimation of noise correlations in trial-limited regimes,
paving the way toward understanding the role of noise in complex neural computations
and behavior.
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Figure 1: (A) Illustration of information limiting noise correlations. (B) Experimental dataset
with smoothly parametrized conditions (see [1]). A nonhuman primate makes point-to-point
reaches to radial targets. The parameterized condition space is shown on the cartoon screen. (C)
Graphical model of the Wishart model with Normal observations. (D) Samples from Gaussian
and Wishart process prior distributions. Dots and ellipses represent the mean and covariance of
neural responses. Colors appear in the increasing order of condition value (e.g. angle) and dashed
lines connect neighboring conditions. Increasing the mean kernel parameter (horizontal axis)
encourages smoothness in the means while increasing the covariance kernel parameter (vertical
axis) encourages the ellipses to change smoothly. (E) Task schematic and set of experimental
conditions. (F,G) Wishart (left) and Ledoit-Wolf (right) estimates of mean and covariance,
projected onto the top-2 PCs. (H) Log-likelihood distributions of held-out trials. (I) The
middle ring (red ring in G) of targets was held out in training and the means and covariances
were interpolated (red ellipses) using the Wishart model. (J) Covariance ellipses, grand-empirical
estimates (dashed lines), and samples (black dots) are visualized in the top-2 PC subspace.

1. Moreno-Bote, R. et al. en. Nat. Neuro. (2014).

2. Wilson, A. G. et al. UAI (2011).
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Contextual responding is a common feature in neuroscience experiments where animals identify
two contexts in the task and switch between them flexibly, often requiring only a few error trials
to infer a context switch. Context representations are then thought to gate the neural population
dynamics to perform the correct computation in each context. However, how these cognitive
abstractions of context emerge in neural systems is unknown. Here, we consider the emergence
of context in a linear network with gating variables, both analytically and in simulations. Dur-
ing learning we update both the network weights and the gating variables along the objective
function gradient. Simulations show that the weight matrices specialize to solve the computa-
tion required in each task, while the gating variables represent the active context. Transitioning
between contexts initially relies on updating weights and later on updating gating variables only,
leading to adaptable behavior and minimizing interference and forgetting. This separation be-
tween task computations and representation of task context emerges from an interplay of scales
in the respective parts of the network. Gating variables encoding of context is incentivized by
the dynamics once the weight matrices learn the task computation accurately. In addition, ana-
lytical expressions of the gating variable dynamics and its interactions with weights dynamics
show that gating not only influences behavioral output, but also gates the effective learning rate
of the weights responsible for other behaviors. Overall, our work studies linear networks to
propose a mechanism for how abstract cognitive representations of context emerge, identifying
the pertinent components for behavioral flexibility and protecting knowledge.
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A unifying neural network model shows perceptual biases emergence from Hebbian plasticity
Francesca Schönsberg

Perceiving the magnitude of a stimulus is a complex brain function that arises from the interplay of 
working memory and experience. This interplay results in two well-known perceptual biases in 
memory tasks: 1. In a series of vibrational stimuli of varying strength, both humans and rodents 
tend to overestimate the strength of a stimulus after a series of weak stimuli (and vice versa) due to 
the repulsive bias of representations. 2. The contraction bias instead shifts the representation of a 
stimulus held in working memory towards the average of stimuli observed in the past. While a 
series of experiments have yielded a detailed phenomenological description of both biases, the 
neural mechanisms underlying these biases remain poorly understood.

In the presentation I will report a recent study in which we show that the representations learnt by 
recurrent neural networks with ongoing Hebbian plasticity quantitatively reproduce (i) the 
contractive bias we find in experiments with human subjects, and (ii) the repulsive effect found in 
rodents by Hachen et al. (Nat. Comm. 2021). In our model, a fully-connected network of rate-based 
units is driven by external inputs modeled after the experimental protocol, while its connectivity is 
continuously evolving due to Hebbian plasticity. We do not use gradient descent nor do we fine-tune
the model to different experimental paradigms. We finally design a new behavioural paradigm 
where contraction and repulsive bias interact and find again that the model predicts salient features 
of the performance of our human participants.

Our results show that a single recurrent neural network with ongoing Hebbian plasticity reproduces 
two perceptive biases observed across three experimental paradigms. The striking match between 
experimental data and theoretical predictions supports the hypothesis that perceptual biases arise 
from simple Hebbian plasticity within a unique recurrent subregion of the brain, e.g. vM1 in rats, 
which acts as a plastic platform that filters perception based on context.
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The impact of local connectivity features on network dynamics
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Understanding how connectivity structure shapes network dynamics is paramount in
the field of neuroscience. Theoretical investigations of multi-population neuronal net-
works often consider statistically homogeneous populations and incorporate either only
the population-averaged mean or i.i.d. fluctuations in synaptic couplings. A newly re-
leased synaptic physiology dataset highlighted the strong presence of motifs – specific
connectivity patterns between pairs and triplets of neurons–beyond the scope of mean
connectivity[1]. However, it is a priori not clear which of the experimentally identified
connectivity motifs exert a strong influence on neural dynamics. While most previous
works focused on reciprocal motifs, here we show that another feature of connectivity,
chain motifs, has a much stronger impact on the dynamics of neural activity.

We compared the effects of chain and reciprocal motifs within two-population excitatory-
inhibitory networks using an analytical framework that approximates the connectivity in
terms of low-rank structures that incorporate motifs. We mathematically derived the
dominant eigenvalues and exploited matrix perturbation theory to determine the statis-
tics of corresponding eigenvectors. We then used these results to perform a low-rank
approximation[2] that predicts the effects of connectivity motifs on linear network dy-
namics.

Our results show that chain motifs have a much stronger impact on dominant eigen-
modes than reciprocal motifs[3, 4]. Moreover, an overrepresentation of chain motifs in-
duces an additional eigenmode with an eigenvalue of sign opposite to the dominant one,
thus modifying the network’s effective rank (Fig 1a). This additional eigenmode sub-
stantially influences network dynamics, offering a new perspective on how local EI motifs
shape the network’s excitability (Fig 1b1 and 2). Our exploration of the physiological
connectivity dataset for the first time revealed the significant impact of EI chain mo-
tifs on altering the network’s effective rank, permitting the discovery of richer dynamics
associated with these specific connectivity motifs.

Figure 1: (a) illustrates the effects of chain motifs on eigenvalues, notably the emergence of an
additional outlier λ2. (b1 and 2) The low-rank approximation model predicts the influence of
the chain motifs on network excitability.

[1] Luke Campagnola et al., Science 375, eabj5861 (2022).
[2] Francesca Mastrogiuseppe, Srdjan Ostojic, Neuron 99, no. 3 (2018).
[3] David Dahmen, Stefano Recanatesi, Gabriel K. Ocker, Xiaoxuan Jia, Moritz Helias, and
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