
Junior Scientists Workshop on Recent Advances in Theoretical Neuroscience | (SMR 3943)

03 Jun 2024 - 07 Jun 2024 
ICTP, Trieste, Italy

P01 - AL-MASRI Rahaf Ata Ouda

In-Silico Analysis of Astrocytic GABA Transporter GAT3 Stability and Dynamics Related to C-Terminal
Truncation

P02 - ALTROGGE Simon Sebastian

Entropic force or a homeostatic mechanism can maintain input-output relations of multilayer drifting assemblies

P03 - BARRI Alessandro

Can simple models provide insights into how the cortico-cerebellar system represents and maintains time-
varying activity?

P04 - BASU Anindita

Short and long thoughts: expressed by a cortex with regionally different time scales

P05 - BENTIVOGLIO Lucas Eduardo

Effects of Potassium and Calcium Currents in a Neuronal Network

P06 - BOLELLI Maria Virginia

A neural field approach for modeling flickering-induced visual illusions

P07 - CAMILLI Francesco

The power of memory: the decimation scheme for symmetric matrix factorization

P08 - CONDRUZ Nicoleta

Amplification abounds, but not without a toll. The trade-off between stability and amplification in Dalean networks

P09 - CORNACCHIA Isabel Maria

An efficient coding theory for cortical connectivity

P10 - COSTACURTA Julia Christina

Neuromodulated recurrent neural networks

P11 - CRISOSTOMO Richmond Lapira

Network Development in Silico: The Role of Inhibition in Activity-Dependent Neuronal Growth and Migration

P12 - DALL'OSTO Dominic

The insect compass system: from theory to circuitry

P13 - DAMIANI Francesco

Improving optimal control in systems with biologically realistic multiplicative and internal noise

P14 - DE PAOLIS Ludovica

Synthesizing naturalistic visual textures with multiscale, nonlinear constraints using deep neural samplers

P15 - DÍAZ FALOH Cristina

Pruning and generalization capacity of Restricted Boltzmann Machines

P16 - DI BERNARDO Arianna



Shaping manifolds in equivariant recurrent neural networks

P17 - DOGONASHEVA Olesia

Rhythmically structured predictive coding enables invariant semantic recovery

P18 - DURMAZ Ayse Aybuke

Perceptual decision making of nonequilibrium fluctuations

P19 - ELYASIZAD Leyla

Criticality in the Macaque Brain

P20 - FOURNIER Samantha Jasmine

Learning with high dimensional chaotic systems

P21 - GOYAL Shaurya Aseem

The Role of Prefrontal Spatial Coding in Supporting Contextual Association

P22 - GUTIERREZ BARRAGAN Daniel

Evolutionarily conserved fMRI network dynamics in the mouse, macaque, and human brain

P23 - DANIELI Krubeal

Online cognitive maps through neuromodulated hebbian learning

P24 - MARIANI Jean-Charles Rene Pasquin

Functional ultrasound mapping of large-scale connectivity networks in the mouse brain

P25 - MOKASHE Subhadra Satish

Competition between memories for reactivation as a mechanism for long-delay credit assignment

P26 - MUKTA Kamrun Nahar

Eigenmode analysis of brain activity in a convoluted cortex via neural field theory

P27 - NWEMADJI TIAKO Arsene Gibbs

On the capacity of a quantum perceptron for storing biased patterns

P28 - PELLEGRINO Arthur Charles Denis

Neural manifold discovery via dynamical systems

P29 - ESTORNINHO PEREIRA DA SILVA Sofia Maria

Identifying learning algorithms using Brain Computer Interfaces

P30 - PERNADAS CARMONA Joana

How Noise Sources Shape Cortical Inter-areal Communication

P31 - POUR AHIMI Motahareh

Priority Map Emerges in Performance-optimized Neural Network Models of Visual Search

P32 - SALZANO Giulia

Computational model of Astrocyte-Neuron Networks

P33 - SANTOS COSTA CHIOSSI Heloisa

The effects of learning on the hippocampal representational hierarchy

P34 - SCHIEFERSTEIN Natalie



Intra-ripple Frequency Accommodation in an Inhibitory Network Model for Hippocampal Ripple Oscillations

P35 - SCHMID Christian

Learning Dynamics for Non-Linear Perceptrons

P36 - SEGOVIA Tadeo Neyen

Characterization of the spatial properties of effective chromatic receptive fields based on chromatic induction

P37 - SENNEFF Sageanne

Theta phase precession and procession emerge depending upon upstream excitability in a CA1 place cell
simulation study

P38 - SEOANE IGLESIAS Luís Francisco

Symmetry and symmetry breaking in neural systems

P39 - SOLTANIPOUR Mohammadreza

Heterogeneity and response sharpening in balanced ring models

P40 - MARQUES DE SOUZA Diogo Leonai

Emergence of spiral waves in CA1 hippocampus network

P41 - TUNC Ibrahim Alperen

Role of local Kenyon cell - Kenyon cell interactions in the γ lobe of Drosophila melanogaster for specificity in
olfactory learning

P42 - VARETTI Sara

Learning, connectivity and correlations in neural circuits

P43 - WANG Zhenyi

Implementing arbitrary nonlinear low-dimensional dynamical systems in large neural networks



Structural and Functional Analysis of Astrocytic 

GABA Transporter GAT3 as a Therapeutic Target 
R. Al-Masri 1 ,  H.D. Yildirim 1,   M.D. Oksal 1,   S. Essiz 2,   K. Yelekci 2,  Y. Onder 2  

1Kadir Has University, Department of Engineering and Natural Sciences, Istanbul, Turkey, 2Kadir Has 

University, Department of Molecular Biology and Genetics, Istanbul, Turkey 

Abstract: 

GABA transporter 3 (GAT3) is mainly located in the astrocytes in the brain, and it’s responsible 

for regulating brain inhibitory neurotransmission through the reuptake of GABA molecules from 

the synapse. Alterations in GAT3 levels are related to multiple neurodegenerative and neurological 

diseases making it a promising therapeutic target. My research aims to analyze wild-type and C-

terminal truncated GAT3 using computational and molecular biology tools to understand the effect 

of the C-terminal region on the protein’s dynamic, localization, and trafficking. Due to the GAT3 

structure being unknown homology modeling using Discover Studios 2016 was done to predict 

the outward (oGAT3) and inward (iGAT3) open confirmations for both the wild-type (GAT3+C) 

and the mutant (GAT3-C) structures. 100ns molecular dynamics (MD) was performed for an initial 

check of the structural stability, following that substrates docking was performed using AutoDock 

1.5.7 to the outward open conformation resulting from MD for both targeted structures. The 100ns 

MD simulations show promising results of a possible impact of the C-terminal on GAT3 structural 

stability especially the inward open confirmation as the analysis suggests the C-terminal pushing 

a stronger closure of the extracellular gate and a bigger opening of the intracellular gate, but to 

fully understand the impact of the mutation a longer 1000ns simulation will be performed to the 

inward, outward, and docked outward conformations representing the wild-type and mutant 

GAT3. Cells will be transfected with pcDNA3.1(+) vector containing HA-tagged wild-type or 

mutant GAT3 and the localization and trafficking pattern of GAT3 will be analyzed. 
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Entropic force or a homeostatic mechanism can maintain
input-output relations of multilayer drifting assemblies

Simon Altrogge1 and Raoul-Martin Memmesheimer1

1Neural Network Dynamics and Computation, Institute of Genetics, University of Bonn,
Bonn, Germany

Associative memories might be represented in the brain by groups of strongly intercon-
nected neurons, called neuronal assemblies. Recent experimental findings suggest that
such assemblies are not static but composed of different neurons at different times [1]. A
theoretical model reproducing these findings is given by networks of drifting assemblies [2]:
In a gradual process, assemblies exchange individual neurons between one another due
to ever-present synaptic plasticity. So far, only single-layer networks of drifting assem-
blies have been considered. Biological neuronal assemblies are, however, thought to be
distributed over several brain regions. How networks of drifting assemblies generalize to
multiple layers is unknown.
Here we propose a model for multilayered networks of drifting assemblies. We introduce
a novel form of homeostatic plasticity which we refer to as distributed homeostatic nor-
malization. It promotes connections between neurons of different layers by separately
normalizing intra- and interlayer weights. We show that distributed homeostatic nor-
malization is capable of ensuring an even distribution of assemblies over two layers. In
contrast to homeostatic plasticity mechanisms in previous models, distributed homeo-
static normalization can act on biologically plausible timescales of a few hours [3] and
still have the desired impact on the network structure. For large assemblies we find that
a dedicated homeostatic mechanism is not necessary, as entropic force already leads to a
sufficient distribution of the assemblies over multiple layers.
Our model demonstrates how continuous pathways from input neurons over multiple
layers to output neurons can be established and maintained. The faithfulness of such
input-output relations is essential for the conservation of memory and behavior. In hav-
ing multiple layers, our networks resemble biological neural networks of the brain more
closely than previous models did.

[1] L. A. De Nardo et al., Nat. Neurosci. 22, 460–469 (2019).
[2] Y. F. Kalle Kossio et al., PNAS 118, e2023832118 (2021).
[3] F. Zenke et al., Curr. Opin. Neurobiol. 43, 166-176 (2017).
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Can simple models provide insights into how the cortico-cerebellar system 
represents and maintains time-varying activity?

Alessandro Barri 1 , Harsha Gurnani 1,2 and R. Angus Silver 1

1Department of Neuroscience, Physiology and Pharmacology, University College London, 
Gower Street, London, WC1E 6BT, UK

2 Department of Biology, University of Washington

Neocortex and cerebellum, two major cortical structures in the brain, are interconnected via 
polysynaptic pathways forming the cortico-cerebellar system [1]. In motor regions this closed 
loop arrangement is  thought to facilitate  leaning and coordination of  movements.  Skilled 
motor  tasks  require  the  generation  of  precise  sequences  of  motor  command  signals.  To 
investigate how a recurrent neocortical circuit and a largely feedforward cerebellar circuit 
might contribute to learning precise temporal sequences we studied the properties of a simple 
recurrent neural network (RNN) and explored how coupling it to a feedforward perceptron 
influenced  its  performance  in  learning,  representing  and  maintaining  periodic  signals  of 
differing complexity. We first studied the properties of an RNN by adjusting the read-out 
weights  of  a  single  feedback  loop  to  autonomously  generate  a  cosine  target  signal  with 
frequency  w  using least squares learning. The RNN’s ability to maintain its output varied 
continuously  with  w and  was  optimal  at  frequency  wopt.  In  agreement  with  previous 
theoretical  work  [2], wopt was  predicted  by  the  dimensionality  of  the  RNN’s  population 
activity  for  a  single  frequency  target  signal.  However,  dimensionality  was  not  a  good 
predictor  of  learning  performance  for  target  signals  with  more  than  one  frequency 
component.  Rather  we find that  learning performance is  related to  the condition number 
(sensitivity of response to changes in the input) and the angles between the spanning vectors 
into which the RNN activity can be decomposed. These vectors represent the amplitudes and 
phases of the various frequency components present in the network. Surprisingly, when the 
RNN activity is perturbed by an additional external periodic signal of higher frequency (noise 
that could arise from harmonics generated by nonlinear neuronal thresholding), the output 
error is a discontinuous function of w, drastically increasing for frequencies much higher and 
lower than wopt. Examination of the eigenvalues of the connectivity weights revealed outlier 
values with a real part >1, suggesting network instability underlies this failure to maintain the 
target signal. Interestingly, we find that learning performance can be qualitatively understood 
by the degree of alignment of the spanning vectors associated with the target signal and 
higher frequency noise in the RNN. Having gained some insight into the relationship between 
representations  and  learning  in  an  RNN,  we  added  a  cerebellar  granule  cell  layer-like 
feedforward perceptron to  the RNN’s feedback loop (P-RNN).  Subjecting P-RNN to the 
same task  as  above,  we find that,  for  a  broad range  of  granule  cell  threshold  values,  it 
moderately outperforms the RNN. Our analysis reveals that this improvement arises from a 
trade-off  of  two  opposing  properties.  The  granule  cell  thresholds  introduced  additional 
frequency harmonics that generally deteriorate output stability of the system. However, this is 
counteracted  by  an  increase  in  the  spanning  vector  angles  which  improves  learning 
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performance. Our results provide new insights into the relationship between the activity and 
learning  in  RNNs  and  suggest  that  the  cerebellar  granule  cell  layer  could  facilitate  the 
maintenance of temporal signals by recasting neocortical  representations into a form that 
separates signal from noise.

[1] R.M. Kelly, P.L. Strick., The Journal of Neuroscience 23, 23 (2003)..
[2] L. Susman, F. Mastrogiuseppe, N. Brenner, O. Barak., Physical Review Research 3, 1 (2021).



Short and long thoughts: expressed by a cortex with regionally
different time scales

Anindita Basu1, Kwang Il Ryom1, and Alessandro Treves1

1SISSA, Trieste

The Potts associative network, a neurally-informed generalisation of the Hopfield model
[1], can serve as a simplified representation of global cortical dynamics. Considering
memories to be sparsely distributed patterns of local cortical activity, we have studied
latching dynamics – the largely random hopping through global attractor states driven by
adaptation [2] – as a regime potentially underlying complex cognition such as language
production and mind wandering [3]. In a recent study, we have differentiated a Potts
associative network into two parts, representing frontal and posterior cortices, to crudely
capture with distinct model parameters, including adaptation time scales, salient regional
differences observed across mammals. We find that the frontal cortex leads latching in
the posterior cortex, determining the sequence of memory states [4]. Here, we analyse the
temporal structure of such dynamics.

In a homogeneous network, adaptation times set a unique timescale for latching. When
they differ sufficiently between the two halves, instead, latching follows the slowly adapting
frontal cortex. Interestingly, in the intermediate regime, when the characteristic adap-
tation times are closer to the ratio of 1:4, we find that latching duration varies within
the same sequence, with short and long latches admixed (see Figure 1). When simple
fronto-posterior pattern pairs are then replaced by more complex combinatorial mem-
ory structures, we observe that short posterior latches can be nested within long frontal
ones, suggesting a mechanism for the spontaneous emergence of long short-term memory
(LSTM) functionality at the cortical network level.

Figure 1: Hybrid Potts network with differentiated timescales

[1] A. Treves. Frontal latching networks: A possible neural basis for infinite recursion. Cognitive
neuropsychology 22(3):276–91 (2005)

[2] E. Russo, V. M. K. Namboodiri, A. Treves, E. Kropff. Free association transitions in models
of cortical latching dynamics. New J. Phys, 10(1):015008 (2008)

[3] K. I. Ryom, A. Basu, D. Stendardi, E. Ciaramelli, A. Treves. Taking time to compose
thoughts with prefrontal schemata. Exp. Brain Res., 38483564 (2024)

[4] E. Ciaramelli, A. Treves. A Mind Free to Wander: Neural and Computational Constraints
on Spontaneous Thought. Front. Psychology, (2019)
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Effects of Potassium and Calcium Currents in a Neuronal Network

Lucas E. Bentivoglio1, Diogo L. M. de Souza1,Fernado S. Borges1,2 , Paulo Ricardo

Protachevicz 3, Fátima Elis Cruziniani1, Patrı́cio D. C. dos Reis1, Conrado F.

Bittencourt1, Enrique C. Gabrick1,4,5, José D. S. Junior6, and Antonio M. Batista6

1Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa,

PR, Brazil Affiliation 1
2 Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University,

New York, NY 11203, USA
3Institute of Physics, University of São Paulo, 05508-090 São Paulo, SP, Brazil

2State University of New York
4Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam,

Germany
5Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin,

Germany
6Department of Mathematics and Statistics, State University of Ponta Grossa, 84030-900

Ponta Grossa, PR, Brazil

The human brain exhibits a wide range of different patterns, for instance synchronized

oscillations during sleep and asynchronous behavior during the learning process [1]. How-

ever, neuronal synchronizaton may contribute to neurological disorders [2]. With regard to

neuronal desynchronization,The flux through the neuronal membrane plays the crucial role in

asynchronous activities [3]. In this work, we investigate how the flux of slow potassium and

calcium ions can impact the dynamic behavior of one or more neurons. In our initial analy-

sis, we find that, in a single neuron, slow potassium conductance can induce an adaptation in

the firing rate. We verify that the high-threshold calcium and low-threshold calcium have no

effect on the firing rate. Conversely, when examining the coefficient of variation, we observe

that specific combinations of the slow potassium and calcium ion values can lead to a transition

from asynchronous firing patterns to synchronous burst activities. Subsequently, we investigate

the dynamical behavior of a neuronal network composed a thousand coupled neurons. Utiliz-

ing the Kuramoto order parameter, we explore how coupling intensity can directly influence

the dynamic behavior of the neuronal network. We focus on the transition from asynchronous

firing activities to synchronous bursts. Lastly, we delve into the role of slow potassium ions in

the dynamical behavior transition of the neuronal network. We demonstrate that the presence

of slow potassium conductance, by varying the value of coupling intensity, promotes a bistable

regime in certain regions of the network, where asynchronous firing dynamics coexist with

synchronous burst activities. Our results enhance the understanding of the intricate ionic inter-

actions within a neuronal network and establish a direct connection with neurobiology, offering

potential experimental interventions for empirical testing.

[1] F. S. Borges, P. R. Protachevicz, P. E. L. Lameu, R. C. Bonetti, K. C. Iarosz, I. L. Caldas, M. S.

Baptista, A. M. Batista, Neural Netw. 90, 1 (2017).

[2] L. Nayak, A. Dasgupt, R. Das, K. Ghosh, R. De, J. Biosci. 43, 1037 (2018).

[3] F. S. Borges, P.R. Protachevicz, D. L. M. Souza, C. F. Bittencourt, E. C. Gabrick, L. E. Bentivoglio,

J. D. Jr. Szezech, A. M. Batista, ; I.L. Caldas, S. Dura-Bernal, Brain Sci. 13, 1347 (2023).
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A neural field approach for modeling flickering-induced visual
illusions

M. Virginia Bolelli1, Dario Prandi1

1(Presenting author underlined) Laboratoire des Signaux et Systèmes, Université
Paris-Saclay, CentraleSupèlec, Gif-sur-Yvette, France.

We present a framework for investigating the visual sensory processing underlying the
perception of flickering-induced visual illusions in the primary visual cortex V1, focusing
on flickering geometric stimuli used in psychophysical experiments such as MacKay [1] and
Billock-Tsou [2]. We adapt the classical Wilson-Cowan/Amari-type neural field equation
([3, 4]) to model the evolution of the population of activated neurons in response to the
flickering input. This differential equation is of the form:

∂tu = −u+ ω ∗ f(u) + I, (1)

where ∗ denotes the convolution in space, ω is a difference of Gaussians connectivity
kernel , f a firing rate function, and I a time-periodic external input that captures the
cortical response to the flickering visual stimulus. The linearity or non-linearity of (1) is
determined by the firing rate function f , and the solution u corresponds to the perceived
visual pattern in V1.

Firstly, we show that u exponentially decays to a time-periodic state as t goes to infin-
ity. Secondly, under linear firing rate function, we characterize how flicker-periodicity can
modulate neural activation and affect visual perception of resulting visual patterns such
as the one obtained by MacKay’s experiment. Finally, we perform numerical simulations
to illustrate how the non-linearity of (1) intervenes in generating visual patterns consis-
tent with experiments by Billock-Tsou. These results extend a previous study conducted
in the static case [5] and offer insights into the mechanisms underlying visual illusions
induced by flickering stimuli, highlighting the important role of non-linear dynamics in
modeling visual perception.

References

[1] Donald M. MacKay. Moving visual images produced by regular stationary patterns.
Nature, 180(4591):849–850, 1957.

[2] Vincent A. Billock and Brian H. Tsou. Neural interactions between flicker-induced
self-organized visual hallucinations and physical stimuli. Proceedings of the National
Academy of Sciences, 104(20):8490–8495, 2007.

[3] Hugh R. Wilson and Jack D. Cowan. Excitatory and inhibitory interactions in localized
populations of model neurons. Biophysical Journal, 12(1):1–24, 1972.

[4] Shun-Ichi Amari. Characteristics of random nets of analog neuron-like elements. IEEE
Transactions on Systems, Man, and Cybernetics, 2(5):643–657, 1972.

[5] Cyprien Tamekue, Dario Prandi, and Yacine Chitour. Cortical origins of mackay-type
visual illusions: A case for the non-linearity. IFAC-PapersOnLine, 56(2):476–481,
2023.

P06



The power of memory: the decimation scheme for symmetric matrix
factorization

Francesco Camilli1, Marc Mézard2

1 Quantitative Life Sciences, International Centre for Theoretical Physics
2 Department of Computing Sciences, Bocconi University

Factorizing a matrix with a rank comparable to its dimension into two matrix factors is a no-
toriously hard and unsolved problem in high-dimensional inference. Matrix factorization is
encountered in several applications such as sparse coding, recommendation systems, image and
video denoising and inpainting.

Given how much we rely on artificial intelligence algorithms, to which matrix factorization
is crucial, it is of paramount importance to have a predictive theory for its accuracy. In the
last decade this problem has eluded every attempt to compute its Bayes-optimal limits, i.e. the
insurmountable bounds of performance provided by Information Theory.

In our work we propose an alternative procedure, that we called “decimation”, that maps
matrix factorization into a sequence of neural network models for associative memory, akin to
the Hopfield model. Each of them depends on the ability to recall “memory patterns” of the
preceding ones. Although sub-optimal in general, this novel scheme offers the advantage of
completely analyzable performances. Finally, I will exhibit an “oracle” algorithm based on the
ground-state search of a neural network, which shows performances that match the theoretical
prediction,and beats other algorithms that were the state-of-the-art prior to our work.

[1] Camilli, Francesco, and Marc Mézard. ”Matrix factorization with neural networks.”, Physical Re-
view E 107 (6) 064308 (2023)

[2] Camilli, Francesco, and Marc Mézard. “The decimation scheme for symmetric matrix factoriza-
tion.”Journal of Physics A: Mathematical and Theoretical 57 (8) 085002 (2024)
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Amplification abounds, but not without a toll. The trade-off between
stability and amplification in Dalean networks

Nicoleta Condruz , Chaitanya Chintaluri, Ivan Bulygin, Tim Vogels

Insitute of Science and Technology Austria (ISTA)

Cortical neurons exhibit rich, time-dependent patterns of activity that are often selective to
specific stimuli [1,2]. From a dynamical systems perspective, such complex activity can be
conceptualised  as  transient  amplification  [3,4].  It  is,  however,  unclear  if  transient
amplification is an artefact of a carefully tuned model, or a naturally occurring phenomenon.
Moreover, minute changes in the connectivity of amplifying networks can cause catastrophic
dynamic instabilities  [5].  How biological  circuits  could  settle  into stable,  yet  amplifying
connectivity manifolds in an ever-changing brain is unknown. 

Here,  we  show  that  transient  amplification  is  a  ubiquitous  network  quality  that  can  be
achieved without fine-tuning. We use Schur decomposition to find--for each synapse--a set of
constraints that allows us to sample Dalean and stable connectivity matrices (DS) in linear
rate models. We find that within this space, the fraction of amplifying networks increases
both with connectivity strength and network size, revealing a predominantly amplifying DS.
We  then  demonstrate  that  there  exists  a  trade-off  between  richness  of  dynamics  and
robustness  to  connectivity  perturbations.  For  this,  we  consider  a  simpler  system of  one
excitatory  and  one  inhibitory  unit.  We  find  a  set  of  constraints  that  each  synapse  must
observe, and derive analytically the space of Dalean, stable, and amplifying matrices (DSA).
We show that the most amplifying networks are the ones closest to the instability boundary.
Interestingly, circuits can safely traverse DS (i.e. learn) without risking catastrophe by way of
homeostatic constraints that prevents crossing the instability boundary. Our findings argue for
the biological plausibility and ubiquity of transient amplification and show how stability and
amplification  constrain  the  nature  of  connectivity  changes  in  neural  systems.

[1] S. Ganguli et al., Neuron, 58, 1 (2008). 
[2] M. M. Churchland et al., Nature, 487, 7405 (2012).  
[3] B. K. Murphy, K. D. Miller, Neuron, 61, 4 (2009).  
[4] G. Bondanelli, S. Ostojic, PLOS Comp. Bio., 16, 2 (2020).
[5] L. N. Trefethen, M. Embree, Princeton University Press (2005). 
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An efficient coding theory for cortical connectivity

Isabel M. Cornacchia1, and Angus Chadwick1

1Institute for Adaptive and Neural Computation, University of Edinburgh, UK

Cortical circuits transform sensory inputs into distributed neural firing patterns via the
concerted interactions of excitatory and inhibitory cell types. However, the principles
relating cortical connectivity to efficient sensory codes are poorly understood [1]. Two
fundamental properties of cortical connectivity shape representations of sensory stimuli:
1) neurons with shared stimulus preferences connect more strongly and frequently than
those with disparate preferences (stimulus-specific connectivity), and 2) excitatory and
inhibitory synaptic inputs to each neuron are co-tuned and approximately equal (E-I
balance). A substantial literature has investigated the functional properties of circuits
endowed with these properties [2] and the learning rules that give rise to their formation
[3], providing mechanistic explanations for various phenomena observed experimentally
in visual cortex, such as contrast-invariant tuning curves and cross-orientation suppres-
sion. However, a normative, first principles explanation for cortical connectivity and the
response properties it generates is currently lacking.

Here, we asked whether these properties could emerge from an efficient coding objec-
tive. We developed a method to adjust the recurrent weights of an E-I network to max-
imise the Fisher information of the response IF (θs) for a given ensemble of input stimuli
{θs} ∈ S (fig A). We found that networks optimised to encode stimulus orientation at
varying contrasts exhibit stimulus-specific connectivity and co-tuned E/I synaptic cur-
rents (E-I balance) (fig B). Excitatory connectivity selectively amplifies input patterns,
while recurrent inhibition maintains dynamical stability (inhibitory-stabilisation). Al-
though the network was not directly incentivised to encode stimulus contrast, both E and
I cells exhibited contrast-invariant tuning curves (fig C). Finally, although the network was
optimised to encode a single stimulus orientation, the network exhibited cross-orientation
suppression when two orientations were presented simultaneously. Taken together, we
show that fundamental features of cortical circuit connectivity, dynamics and response
properties can be accounted for by an efficient coding principle.
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(A) We optimise the recurrent network connectivity W to maximise the total Fisher
information of the excitatory network output IF (θs). (B) The optimised network is in a
strongly recurrent regime, where the recurrent excitatory synaptic current (red) amplifies
the feedforward input (pink) and is balanced by the inhibitory synaptic current (blue).
(C) The emerging network exhibits contrast-invariant tuning curves.

[1] K. D. Harris, T. Mrsic-Flogel, Nature 503, 7474 (2013).
[2] S. Denève, C. Machens, Nature Neuroscience 19, 3 (2016).
[3] T. P. Vogels, H. Sprekeler, et al., Science 334, 6062 (2011).
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Neuromodulated recurrent neural networks 
Julia Costacurta, Shaunak Bhandarkar, David Zoltowski, Scott Linderman 

Stanford University 

Abstract: Neuromodulatory (NM) signals are powerful and prevalent influences on behavior, 
however, their specific role within neural circuits is poorly understood [1]. A common way to 
probe circuit dynamics is by analyzing task-optimized recurrent neural networks (RNNs), yet 
RNN models rarely incorporate NM effects. We propose the neuromodulated RNN (NM-
RNN) (Fig. 1), which consists of two linked subnetworks corresponding to neuromodulation 
( , eqn. 1) and output generation ( , eqn. 2). We model the output generation 
subnetwork as a low-rank RNN, and allow the output of the NM subnetwork ( , eqn. 1) 
to scale the low-rank factors of the output generation weight matrix ( , eqn. 2). 

,        (1) 

,       (2) 

One intuitive way to understand how neuromodulation impacts the output generation network 
is by considering the case where the output generation network is linear and symmetric with 
orthogonal . In this case, we may reparameterize the system state in terms of 

, the component in the column space of , and , the component lying 
outside of . The dynamics of each component evolve according to the dynamics  

,      (3) 

where . In the absence of inputs, the solution to this system is  

,      (4) 

In words,  is controlled by the NM signal, while  
decays according to . In our model we restrict  to lie 
within [0, 1], so we see that when ,  decays 
more rapidly than . This means that in essence, the NM 
signal can control the time constants of the low-rank RNN. 
 We train NM-RNNs and low-rank RNNs on the 
measure-wait-go task, where the network must measure and 
reproduce interval times [2]. On both trained and unseen 
intervals, the NM-RNN has improved performance over the 
low-rank RNN. We found that the NM-RNN's NM signal has 
channels which are associated with distinct aspects of the task, 
and ablating these signals destroys performance. Our results 
show how the NM-RNN distributes task computation across 
low-rank factors. For future work, we plan to investigate how 
NM-RNNs may facilitate continual learning in the multi-task 
setup explored in Driscoll et al [3]. In general, the NM-RNN 
framework offers a novel method to investigate the effects of NM on neural dynamics. 
[1] E. Marder, and V. Thirumalai. Neural Networks 15.4-6 (2002): 479-493. 
[2] M. Beiran, et al. Neuron 111.5 (2023): 739-753. 
[3] L. Driscoll, K. Shenoy, and D. Sussillo. bioRxiv (2022): 2022-08.
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Network Development in Silico: The Role of Inhibition
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Richmond L. Crisostomo1,2∗, Shreya Agarwal1,2, Ulrich Egert1,2,
and Samora Okujeni1,2

1Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
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The timely maturation of inhibition in neuronal networks is considered crucial for stable
activity dynamics that support normal brain function. Meanwhile, excitatory neuronal
interactions are essential for network formation in early development. In the develop-
ing brain, there exists a gradual transition in GABAergic signaling: from depolarizing
to hyperpolarizing, which impacts on the processs of network formation. Moreover, the
level of inhibition depends on the fraction of inhibitory neurons as well as the mesoscale
structural organization of the network that dictates its interconnectivity. Here, activity-
dependent structural plasticity (ADSP) regulates neuronal connectivity and network ac-
tivity in a homeostatic closed loop. However, the interplay between E-I interaction and
ADSP in regulating the mesoscale structure, connectivity, and activity of developing net-
works remains poorly understood. To disentangle interactions among neuronal growth,
migration, and inhibition, we utilized computational growth models that capture develop-
mental aspects exhibited in cultured neuronal networks. Preliminary results suggest that
asymmetric interactions between E/I neurons crucially impact on evolving network archi-
tectures. Increasing the fraction of INs prolonged neuronal growth and migration phase,
which enhanced the size of neurite fields and clustering of neurons. Overall, this led to
higher connectivity levels and lower network modularity in mature networks. Effectively,
inhibition delayed down-regulation of neuronal growth and migration by prolonging the
developmental time-course until network stability was attained. Our models can be used
to explore various developmental scenarios and provide hypotheses that can be tested and
constrained experimentally with in vitro networks from dissociated cortical cultures.

Growth Migration Neurite Fields Connectivity

ENs
INs

Figure 1: Neuronal growth and migration. To reach a homeostatic setpoint in activity,
a neuron expands its neurite field or migrates towards other neurons to increase connectivity.
Opposing influences from E-I interactions dictate the course of morphological, structural, and
functional differentiation in the network. Neurite overlap defines connectivity among neurons.

[1] Okujeni, S., & Egert, U. (2019). Self-organization of modular network architecture by
activity-dependent neuronal migration and outgrowth. Elife, 8, e47996.

[2] Van Ooyen, A., Van Pelt, J., & Corner, M. A. (1995). Implications of activity dependent
neurite outgrowth for neuronal morphology and network development. Journal of theoretical
biology, 172(1), 63-82.
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The insect compass system: from theory to circuitry
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1Institute of Neuroinformatics, University of Zürich and ETH Zürich
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Insects exhibit remarkable navigation abilities over long distances to find food or reach
other places of interest before returning to their nests. This ability requires heading integration
– maintaining an estimate of one’s heading angle by integrating angular velocity signals over
time. We seek to understand the neural and computational bases of insects’ heading integration
abilities by proposing a normative theory of heading integration based on simple requirements
for biological plausibility and mathematical stability.

Previous work has shown that insects encode positions and directions as sinusoidal bumps
of activity within a ring shaped population of neurons. It has been speculated that the sinusoidal
activity profiles are useful because they allow the population of neurons to easily add vectors
through phasor arithmetic [1], where the distance and direction of a vector are encoded as the
amplitude and phase of a sinusoidal signal respectively.

Based on our theory, we prove that the phasor arithmetic explanation is only part of the
story – there are a whole family of circuits with this property. We can characterise the possible
heading integration circuits based on the Fourier spectra of their weights and activity profiles.
From these, we show that the circuit with sinusoidal activity and weights has the maximal
signal to noise ratio while requiring minimal neural activity. We then test this novel prediction
of sinusoidal weights against experimental data. We use a network analysis approach, counting
direct and indirect pathways between the neurons encoding heading, and find that the neural
connectivity in both the locust [2] and fruit fly [3] closely match our sinusoidal prediction.

Additionally, we show that using Oja’s rule (a variant of Hebbian learning) the circuit self-
organises naturally to our predicted sinusoidal synaptic connectivity. This means the circuit
could be developed naturally by this learning rule, and would be robust to synaptic perturba-
tions. Furthermore, we postulate that a heading integration circuit with 8 neural columns, as
is present in fruit flies, locusts, and other insect species [2], has the simplest possible genetic
encoding of any functional circuit [4].

Our work establishes a principled mathematical theory for understanding neural circuits for
heading integration in insects. We hope this novel insight can aid further investigations into
how brains of different species perform robust navigation.

[1] Lyu C, Abbott L F, Maimon G. Building an allocentric travelling direction signal via vector compu-
tation. Nature. 2022.

[2] Pisokas I, Heinze S, Webb B. The head direction circuit of two insect species. eLife. 2020.
[3] Hulse B K, Haberkern H, Franconville R, et al. A connectome of the drosophila central complex

reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife.
2021.

[4] Johnston I G, Dingle K, Greenbury S F, Camargo C Q, Doye J PK, Ahnert S E, and Louis A A. Sym-
metry and simplicity spontaneously emerge from the algorithmic nature of evolution. Proceedings
of the National Academy of Sciences. 2022.
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Francesco Damiani1, Akiyuki Anzai2, Greg DeAngelis2, Jan Drugowitsch3, and Rubén
Moreno-Bote1
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To act in the world, we integrate sensory information as we move our sensors and body through
the external environment, creating perception-action loops. Movements alter sensory inputs,
which are then compared with predictions and used in planning future movements to accom-
plish internal objectives. However, these mechanisms are challenged by different noise-sources,
coming from the integration of sensory feedback and the motor output itself [1]. Furthermore,
neural representations are subject to internal fluctuations, which affect estimation processes and,
consequently, behaviour [1, 2]. Stochastic optimal control theory formalizes these concepts to
explain behaviour through optimality principles at the algorithmic level [3]. In this context,
having an optimal solution is crucial for assessing the rationality of the observed behavior.
Our work is then particularly relevant in the context of inverse optimal control [5]. A control
problem involves designing the optimal control law, or state-to-action policy, to minimize a
cost-function of a system, determined by task goals and energetic costs [4]. Exact solutions
to the control problem can only be derived under linear dynamics, additive Gaussian noise,
and a quadratic cost function, exploiting the independence between estimation and control [4].
However, when considering a realistic noise-model of the sensory-motor system (including
multiplicative noise at the feedback and motor output levels and internal noise in the estimation
process), this independence breaks down, requiring additional assumptions and approximations
to derive optimal control laws [4]. In this work, we introduce two algorithms that outperform,
in terms of cost minimization, state-of-the-art solutions for stochastic control problems in the
presence of internal noise. We provide both heuristic and mathematical explanations for this
improved performance, offering a practical application for sensory-motor control. These devel-
opments will allow stochastic control theory to be applied a to broader range of problems in
systems neuroscience.

[1] A. A. Faisal, L. P. Selen, D. M. Wolpert, Nature reviews neuroscience 9, 292–303 (2008).
[2] R. Moreno-Bote et al., Nature neuroscience 17, 1410–1417 (2014).
[3] E. Todorov, Nature neuroscience 7, 907–915 (2004).
[4] E. Todorov, Neural computation 17, 1084–1108 (2005).
[5] M. Shultheis et al., Advances in Neural Information Processing Systems 34, 9429–9442 (2021).
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Synthesizing naturalistic visual textures with multiscale, nonlinear constraints

using deep neural samplers
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The efficient coding principle states that a sensory system is tuned to the statistics of its natural input. In the same
framework, the visual system is expected to be tuned to the statistics of natural visual scenes. Visual textures are “a
family of visual patterns that share certain local regularities” [1] and they are useful in understanding how efficient
coding applies not only to natural but also to artificial visual inputs. Three kinds of algorithms have been proposed for
texture synthesis: parametric models computed on a set of statistical constraints [2]; methods in which local statistics
are top-down, mathematically determined, but is limited to low order correlations that result in unnatural synthetic
textures [3]; models representing textures as the correlations between the feature maps of a deep convolutional neural
network resulting in nonlinear, multiscale and photorealistic representations [4].

We propose a novel approach for texture synthesis: a combination of a Variational Autoencoder (VAE [5]) for
image generation and of a pre-trained convolutional neural network for defining the natural textures space (VGG-16
[6]). The goal is to characterize such space with nonlinear multi-scale representations, and to go beyond the limit
of the low-order correlations developed by [3]. However, we want to use the same top-down approach from [3] to
disentangle the information carried by the latent code of VAE.

VAE’s Encoder reduces the input image to a vector, the latent code; the Decoder reconstructs the image from
the latent code sampling from a Gaussian distribution. In this process VAE generates new images that show new,
synthetic examples of the visual textures in the original images. The original and the generated texture images then
are given to VGG-16 to represent the texture characteristics adapting the technique in [4]. More precisely, we compute
the Gram Matrices of VGG-16’s feature maps for each original-generated textures pair to discard spatial information.
Consequently, we will manipulate the latent code of the VAE to affect some features of the generated textures. In
particular we think that, for each dimension of the latent vector, there is a corresponding texture feature.

The model is trained with a combination of two losses: 1) one guides the learning of VAE minimizing the KL
distance between the latent distribution and the Gaussian prior to sample for generating the output; 2) one defines
the perceptual difference between original and generated texture by means of a weighted MSE between pairs of
Gram Matrices. We are employing this technique on multiple datasets, including natural images taken from different
environments exploiting their different visual characteristics.

References

[1] B. Julesz. “Textons, the elements of texture perception, and their interactions”. In: Nature 290 (1981), pp. 91–97.

[2] J. Portilla E. P. Simoncelli. “A parametric texture model based on joint statistics of complex wavelet coefficients”.
In: International Journal of Computer Vision 40 (2000), pp. 49–70.

[3] J. D. Victor M. M. Conte. “Local image statistics: maximum entropy constructions and perceptual salience”. In:
Optical Society of America 29 (2012), pp. 1313–1345.

[4] L. A. Gatys et al. “Texture Synthesis Using Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems 28 (NIPS 2015) (2015).

[5] D. P. Knigma M. Wellig. “Auto-Encoding Variational Bayes”. In: ArXiv 11 (2022).

[6] K. Simonyan A. Zisserman. “Very Deep Convolutional Networks for Large Scale Image Recognition”. In: ICLR
2015 (2015).
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A Restricted Boltzmann Machine (RBM) is a generative neural network consisting of one
layer  of  visible  neurons  fully  connected  to  a  second  layer  of  hidden  neurons,  with  no
connections within the same layer. They are commonly used for unsupervised learning, often
serving as an initial  or intermediate layer in deeper models.  Our investigation focuses on
RBMs to understand the impact of pruning on their generalization capacity—the ability of the
model to generate realistic and diverse samples that capture the underlying patterns of the
training  data.  Our  study  presents  outcomes  from  extensive  numerical  simulations  and
preliminary analytical findings. The focus is on understanding how pruning influences the
learning processes of RBMs and similar models, shedding light on optimizing their structure
for improved efficiency maintaining robust generalization capabilities.
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Neural computations rely on the collective dynamics of populations of neurons, which
exhibit rich structure in their coordinated activity [1]. An important source of structure
are recurrent connections between neurons, which can generate continuous attractors, also
known as activity manifolds, which have been used as models for the head direction system
[2], grid cells [3] or orientation selectivity [4]. Although numerous particular cases have
been studied, general principles linking network connectivity and the geometry of attrac-
tors remain to be uncovered. Here, we address this question by using group representation
theory to formalize the general relationship between the symmetries in connectivity and
in the resulting neural manifold.
We start by revisiting the classical ring model, a continuous attractor network generating
a circular manifold [5,6], and extract the key underlying features: (i) the connectivity can
be interpreted as a circular convolution [7];
(ii) this confers rotational symmetry to the set of attractors of the dynamics;
(iii) circular convolution can be expanded in Fourier basis, leading to a low-dimensional
latent model [8];
(iv) the latent model retains the original rotational symmetry and determines the stability
and dimensionality of the manifold.
Based on the principles of geometric deep learning, we generalize this framework to ar-
bitrary symmetries, using the theory of group representations. Specifically, we introduce
a new class of low-rank equivariant recurrent neural networks, where the connectivity is
defined via a group convolution [9], which confers group symmetry to the attractors. Us-
ing the group Fourier transform, the network can then be reduced to a low-dimensional
model, that preserves the original symmetries and determines the manifold’s stability and
dimensionality.
Our findings elucidate the relationship between the symmetry of the connectivity and the
symmetry of the neural manifold, offering a new method to generate manifolds with a
wide range of symmetries, such as tori and spheres.

[1] Chung and Abbott Curr Opin Neurobiol. 70: 137–144 (2021)
[2] Chaudhuri et al. Nat Neurosci 22, pages1512–1520 (2019)
[3] Gardner et al. Nature volume 602, pages123–128 (2022)
[4] Beshkov et al. ISCI 109370 (2023)
[5] Ben-Yishai et al. Proc Natl Acad Sci USA 92(9): 3844–3848(1995)
[6] Zhang Journal of Neuroscience 16(6) 2112-2126 (1996)
[7] Zhang et al. Advances in Neural Information Processing Systems 35 (NeurIPS 2022) (2022)
[8] Mastrogiuseppe and Ostojic Neuron 99, 609–623 (2018)
[9] Kondor and Trivedi Proceedings of the 35th International Conference on Machine Learning,

PMLR 80:2747-2755 (2018)
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Our ability to perceive speech is resilient to variations in voice, rate, and temporal in-
terruptions. While inference models addressed the first two [1], the computational prin-
ciples by which speech understanding remains impervious to temporal restructuring are
largely unexplored. Previous studies indicated intriguing recoveries in comprehension
when speech interruptions were over 1 Hz [2] and temporally compressed speech was
segmented with silences of specific durations [3, 4]. Here, we show that predictive cod-
ing, constrained by endogenous rhythms, accounts for these quizzical results and enables
robust speech recovery.

We build upon the major hypotheses that the rhythmic structure of speech estab-
lishes temporal windows, allowing the brain circuits to effectively process auditory sig-
nals. Moreover, rhythmic activity is hierarchically structured in line with the structure of
speech [5] and modulates predictive coding so that successful comprehension relies on ac-
tively minimizing contextual uncertainty and surprise [6]. These in turn modulate theta
and delta rhythms, respectively [7]. Integrating this evidence, we propose a predictive
coding framework (BRyBI), which implements a hierarchy of rhythms and actively mini-
mizes both uncertainty and surprise. The theta rhythm in the BRyBI reduces uncertainty
in the subsequent phoneme distribution. Theta rhythm entrainment by speech minimizes
errors in the gamma code of phonemes. On the other hand, the delta rhythm enables
temporally-structured semantic prediction error minimization, thereby implementing on-
line word-context inference.

BRyBI allows for robust speech recognition under temporal perturbations such as
compression, interruption, and segmentation. Furthermore, behaviors observed experi-
mentally so far have escaped explanation, such as error-related potentials that emerge
naturally in BRyBI; speech-rhythms coherence decreases for theta and grows for delta
with increased uncertainty and surprise. In sum, we suggest that oscillation-constrained
predictive coding generically explains the results of multiple experiments with temporal
scale alterations and provides a new view of the speech recognition process in the brain.

[1] Norris D, et al. Language, cognition and neuroscience (2016).
[2] Miller GA. J of the Acoustic Soc of America (1950)).
[3] Huggins AWF. Perception & Psychophysics (1975).
[4] Ghitza O, Greenberg S. Phonetica (2009).
[5] Giraud AL, Poeppel D. Nat Neurosci (2012).
[6] Friston KJ, et al. Hearing research (2021).
[7] Donhauser PW, Baillet S. Neuron (2020).
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A key function of the brain is to process noisy sensory data to make fast and accurate
decisions in an ever-changing environment. However, how we adaptively process the exact
stochastic fluctuations in stimuli remains largely unexplored. To bridge this gap, here we
conducted behavioral experiments with human participants viewing movies of
nonequilibrium Brownian dynamics simulations, characterized by a given drift velocity and
diffusion coefficient. Participants judged the motion as leftward or rightward. The rate of
stochastic entropy production that emerged from the stimulus trajectory enabled us to
measure the noise in the system. Overall, the results uncovered fundamental performance
limits, consistent with recently established thermodynamic trade-offs involving speed,
accuracy, and dissipation. Specifically, decision times proved to be sensitive to entropy
production rates. Moreover, for a given level of accuracy, we observed that participants
behave suboptimally, i.e., they take more time on average to decide than that required for an
optimal response as quantified by the sequential probability ratio test. In view of such
suboptimality, we developed an alternative account based on evidence integration with a
memory time constant. This revealed that humans tackle stimuli that are farther from
equilibrium at a quicker rate at the expense of relying on larger memory about the stimuli's
past outcomes. This adaptive integration time scale significantly improved trial-by-trial
predictions on decision metrics. To conclude, this study demonstrates that perceptual
psychophysics, using stimuli rooted in nonequilibrium physical processes, provides a robust
platform for understanding how the brain makes decisions based on stochastic information.
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Experimental evidence has shown that a healthy brain might operate near Criticality [1]; an 
advantageous state in terms of information processing capacity as well as maximum dynamic 
range which is associated with interesting features such as, the well-known neuronal 
avalanches, long-range correlation, and scale-invariance in space and time domain. This 
evidence has been found in cell cultures, in vitro, and in anesthetized animals in vivo [2, 3]. 
However, some recent studies are challenging this hypothesis in behaving animals (awake 
cortex) [4]. The cortical activity shows a rich dynamical repertoire ranging from synchronous 
to the desynchronized states and this could be correlated with the degree of (or deviation from) 
criticality brain dynamics expresses.Following this hypothesis, the avalanche-like statistics of 
cortical activity can be used to characterize the state of the brain dynamics. 
We look for hallmarks of criticality in several cortical regions of the macaque monkey during 
an Object-in-Place task [5], focusing on specific not-behaving epochs.  

● White	Screen	Period:	in	which a	white-screen	is	passively	watched	(for	~15	seconds) 
● Resting	State	Epochs	lasting	for	~5-10	minutes 

We use the local field-potential (LFP) recorded in premotor cortices and in the frontal pole to 
detect significant negative fluctuations [2]. We computed the critical exponents and the 
scaling relations between them [6, 8]. For being critical, the scaling relation between critical 
exponents is crucial so we use the deviation from this relation as a measure (Deviation from 
Criticality Coefficient, DCC).  Furthermore, the Coefficient of Variation of the multi-unit 
activity signal is used to distinguish between different dynamical states. We contrasted these 
measures to check whether and at which level of the cortical activity the brain is approaching 
the critical point. 
Preliminary results suggest that the activity during the resting state/white screen epoch is far from being 
critical, however the distance to the critical point is modulated through time in an area-specific manner. 
The goal is to investigate whether there is a correlation between the cortical state and deviation from 
criticality in different cortical regions.  
 
[1] Dante R. Chialvo, Nature physics 6.10, 744-750 (2010). 
[2] J. M. Beggs, D. Plenz, J. Neurosci. 23, 11167 (2003). 
[3] G. Hahn, A. Ponce-Alvarez, C. Monier, G. Benvenuti, A.Kumar, F. Chavane, G.Deco, et al., PLoSComput. Biol. 13, e1005543 (2017). 
[4] Petermann, Thomas, et al., Proceedings of the National Academy of Sciences, 106.37, 15921-15926 (2009). 
[5] L. Ferrucci, A. Genovesio, Scientific Reports, 9, 401 (2019). 
[6] Antonio J. Fontenele, et al., Phys. Rev. Lett. 122, 208101(2019) 
[7] J. P. Sethna, K. A. Dahmen, et al., Nature, 410(6825), 242–250 (2001).  
[8] S. Di Santo, P. Villegas,R. Burioni, et al., Proceedings of the National Academy of Sciences, 115(7), pp.E1356-E1365 (2018). 
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Learning with high dimensional chaotic systems


Chaotic dynamics can naturally arise in high-dimensional heterogeneous systems of interacting 
variables. The simplest examples are random recurrent neural networks. I will discuss how to 
study simplified models of this kind through dynamical mean field theory (DMFT) and show that 
the corresponding chaotic dynamics can be tuned and shaped by synaptic connections to 
perform a set of interesting tasks. I will show how DMFT can be used to explore and describe the 
space of synaptic connections leading to good performances of the corresponding trained 
dynamical systems. This is based on:


Fournier, Urbani, Statistical physics of learning in high-dimensional chaotic systems, JSTAT 2023

Fournier, Urbani, to appear, 2024.
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Neurons in the medial prefrontal cortex (mPFC), a region critical for flexible behaviour and 

memory recall, have been shown to represent spatial information along with the hippocampus 

(HPC). However, the nature of spatial representations in the prefrontal cortex is disputed, 

with evidence for both specific and generalized representational forms. [1, 2, 3, 4] Previous 

work has found reactivation in the mPFC both during sleep and awake periods. During sleep, 

after the learning of a task, mPFC reactivation occurred simultaneously with hippocampal 

SWRs. [5] Furthermore, hippocampal and mPFC trajectory reactivation were also seen to 

occur independently during awake immobility, and the occurrence of mPFC trajectory 

reactivation positively correlated with rule-switching performance. [1] 

 

Interactions between the HPC and mPFC are critical for learning, memory consolidation, and 

solving spatial tasks. Nonetheless, it is still unclear how behavioral demands drive the 

appearance of task-relevant spatial information in the mPFC, the nature of its generalization, 

and the role of spatial reactivations across areas over the course of learning. 

 

We train rats to learn two cue-reward paired associations in parallel in a radial 8-arm 

maze and simultaneously record from the mPFC and HPC across multiple days of learning.  

Rats must flexibly adapt their behavior based on which cue is presented to find the  

context-specific reward. We observe individual differences in the strategies used by the rats 

to learn the task with a jump in performance after 6-7 days of training. Preliminary results 

suggest that spatial representations occur in the mPFC of naïve animals, which can generalize 

between the reward locations. This also suggests the presence of reactivation in the mPFC 

and ongoing analysis will permit the further understanding of its role in learning. 

 

[1] K. Kaefer, M. Nardin, K. Blahna, & J. Csicsvari, Neuron, 106(1), 154-165 (2020). 

[2] J.D. Shin, W. Tang, & S.P. Jadhav, Neuron, 104(6), 1110-1125 (2019). 

[3] V. Samborska, J.L. Butler, M.E. Walton, et al, Nat Neurosci 25, 1314–1326 (2022). 

[4] J.F. Sauer, S. Folschweiller, & M. Bartos, PNAS, 119(6), e2117300119 (2022). 

[5] A. Peyrache, M. Khamassi, K. Benchenane, S.I. Wiener, & F.P. Battaglia, Nat Neurosci, 12(7), 

919-926 (2009). 
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Abstract 

Evolutionarily relevant networks have been previously described in several mammalian 

species using time-averaged analyses of fMRI time-series. However, fMRI network activity 

is highly dynamic and continually evolves over timescales of seconds. Whether the dynamic 

organization of resting-state fMRI network activity is conserved across mammalian species 

remains unclear. Using frame-wise clustering of fMRI time-series, we find that intrinsic fMRI 

network dynamics in awake macaques and humans is characterized by recurrent transitions 

between a set of 4 dominant, neuroanatomically homologous fMRI coactivation modes (C-

modes), three of which are also plausibly represented in the rodent brain. Importantly, in all 

species C-modes exhibit species-invariant dynamic features, including preferred occurrence 

at specific phases of fMRI global signal fluctuations, and a state transition structure 

compatible with infraslow coupled oscillator dynamics. Moreover, dominant C-mode 

occurrence reconstitutes the static organization of the fMRI connectome in all species, and 

is predictive of ranking of corresponding fMRI connectivity gradients. These results reveal a 

set of species-invariant principles underlying the dynamic organization of fMRI networks in 

mammalian species, and offer novel opportunities to relate fMRI network findings across the 

phylogenetic tree.  
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Online cognitive maps through neuromodulated hebbian
learning
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During navigation, animals dynamically create rich representations of the environment,
forming personalized cognitive maps. The hippocampal area CA1 features spatial cells
that adapt based on behavior and internal states. Computational models have usually
obtained spatial tuning by training a deep recurrent network for solving path integration,
over numerous epochs, using backpropagation [1, 2, 3]. However, such methods do not
closely align with the real-time local learning used by animals. Additionally, the formed
spatial maps are solely oriented towards solving a specific task, and fail to capture the
full richness of non-spatial features that might be relevant for more complex behaviours.
This study introduces a rate model that dynamically generates place cells as the agent
navigates the environment. Online tuning is achieved through rapid Hebbian plasticity,
lateral competition triggered by shortage of dopamine [4], and a supra-threshold theta
oscillatory current that pushes cells to bind to new input patterns. This model suc-
cessfully creates a representation of visited areas and consolidates recurrent connections
among similarly tuned cells. Such connections are essential for active navigation; they
make possible to generate plausible trajectories directly within the network manifold, and
then select physical actions accordingly. Importantly, factors such as theta frequency and
dopamine influence the density of the place cells, impacting the encoding of behaviorally
relevant information [5, 6].
Finally, we conducted a quantitative analysis of the representation capacity and shape
while a simulated agent navigated a closed room. We observed that the formed place
representation has a Shannon information content comparable to that of a network with
hard-coded place fields. Furthermore, it can capture the topological structure of the envi-
ronment and, in normal conditions, the geometry of the neural manifold is approximately
Euclidean. However, in the occurence of salient events, the place cells become more clus-
tered, resulting in a locally curved space [7] as measured by the metric tensor.
This model provides a biologically plausible framework for the generation of cognitive
maps refecting what is relevant for the agent. The current step is to apply it to a goal-
directed reinforcement learning task, and evolve through genetic algorithms an optimal
policy for manipulating the neural geometry.

[1] Cueva, C. J., & Wei, X. X. (2018).
[2] Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., ... & Kumaran, D.

Nature, 557(7705), 429-433. (2018)
[3] Sorscher, B., Mel, G., Ganguli, S., & Ocko, S. Advances in neural information processing

systems, 32. (2019)
[4] Mei, J., Meshkinnejad, R., & Mohsenzadeh, Y. Iscience, 26(2). (2023)
[5] Brzosko, Z., Zannone, S., Schultz, W., Clopath, C., & Paulsen, O. Elife, 6, e27756. (2017)
[6] Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., & Magee, J. C. Science,

357(6355), 1033-1036. (2017)
[7] Ginosar, G., Aljadeff, J., Las, L., Derdikman, D., & Ulanovsky, N. Neuron, 111(12), 1858-

1875. (2023)
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Functional ultrasound mapping of large-scale connectivity networks in the
mouse brain
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Whole-brain imaging methods such as functional Magnetic Resonance Imaging (fMRI) are
widely used to examine intrinsic and task-evoked patterns of coordinated brain activity in hu-
mans. However, the application of task-based fMRI in preclinical species is complicated by
the need to constrain animals within the scanner small bore. Recently, functional ultrasound
imaging (fUS) has emerged as a promising technology to fill this gap, enabling neuroimag-
ing investigations of the entire brain in behaving animals. To explore the potential of fUS,
and demonstrate its validity against well-established techniques, we investigated its capabil-
ity to map previously described resting-state functional networks in lightly sedated mice. For
this purpose, we carried out multislice fUS acquisitions in lightly sedated mice using various
anaesthetic mixtures. A preprocessing pipeline, reflecting the primary steps employed in fMRI
timeseries analysis, has been designed for robustness and portability. The results obtained have
been compared with the underlying structural connectome. We found that large-scale functional
brain networks can be reliably mapped at the group level with fUS. The networks mapped in-
clude also a default mode network, which we found to be anticorrelated with a latero-cortical
system. While overall network topography appears to be consistent across different sedation
protocols, we show that a novel combination of anesthetics provides optimal fUS network de-
tection without the need to use complex animal preparation procedures. Our results show that
fUS can be effectively used to detect distributed resting-state networks in anaesthetized rodents
comparable to well-established imaging modalities, such as fMRI.
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Competition between memories for reactivation as a mechanism for
long-delay credit assignment

Subhadra Mokashe1, and Paul Miller2

1Neuroscience Graduate Program and
2Department of Biology, Brandeis University

Animals learn to associate an event with its outcome, as in conditioned taste aversion when
they gain aversion to a conditioned stimulus (CS, recently experienced taste) if sickness is later
induced [2]. If there is another intervening taste (interfering stimulus, IS), the IS gains some
credit for the causality of the outcome, reducing aversion to the CS. The known short-term
correlational plasticity mechanisms do not wholly explain how networks of neurons achieve
long-delay credit assignment[3]. We hypothesize that reactivation of prior events at the time
of outcome causes specific associative learning between those events and the outcome. We
explore the credit assignment using a spiking neural network model storing memories–through
time-decaying synaptic strengthenings–of two events that inherently compete to be the cause.
As one cause becomes more likely, the other becomes less likely to be the cause of the outcome.
We explore how the time delay between the two events–via differences in intra-cluster synaptic
strengths– and other network properties influence the degree of competition between the two
memories for reactivation. We show how a later memory can be reactivated more often and
reduce the reactivation of a prior memory. By reactivating the memories in a probabilistic way,
neural networks could perform Bayesian inference to assign the credit in a biologically plausible
way. Our results could explain the findings in the gustatory cortex about long-delay learning in
conditioned taste aversion and overshadowing by an interfering stimulus [1].

CTA

Overshadowing

Test

CS

Induction of sickness 
with LiCl

ISI   

CS

CS  IS

 delay.     

CS

 IS
 delay.     

Presentation of CS Strong aversion to CS

Presentation of IS
reduced aversion to CS

gain of aversion to IS a a + ϵ

A B

C D

Figure 1: A. The sequence of events during CTA, and overshadowing. B. Connectivity of
the network model. C. Reactivation of the CS and the IS ensembles. D. Fraction of time the
network spends in the CS and the IS states as a function of the time difference between them
via differences in intra-cluster synaptic strengths(ϵ).

[1] D. Kwok, J. Harris, and R. Boakes. Learn Behav 45, 1 (2017).
[2] M. Nachman, J Comp Physiol Psychol. 73, 1 (1970).
[3] M. Papper, R. Kempter, and C. Leibold. Learning & Memory 18, 1 (2011).
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Neural field theory (NFT) of the corticothalamic system has successfully explained a wide 

variety of phenomena, from EEG spectra and evoked potentials, to nonlinear phenomena such 

as seizures and Parkinsonian oscillations. Representing brain activity in terms of eigenmode 

expansion  helps us understand brain dynamics in terms of its natural spatial modes (analogous 

to the natural modes of a vibrating string). NFT has also been used to understand brain 

connectivity, and its eigenmodes have been employed to solve the inverse problem of 

determining brain structure from functional connectivity. Most recently, the eigenmodes of a 

single brain hemisphere have been shown to be close analogs of spherical harmonics. They are 

also the building blocks for unihemsipheric  modes, whose structure and symmetry properties 

explain many features of resting state and task-related activity. 

 

Here, the evoked response potential (ERP) is modeled as an impulse response and is calculated 

numerically and analytically on both the convoluted and spherical cortex using NFT. The ERPs 

are expanded in terms of numerically calculated eigenmodes of a convoluted cortex and the 

results are compared to the spherical cortex. The effects of the complex folding in the 

convoluted cortex is explored and as well as how many modes contribute significantly to 

representing the ERP. 

 

The main results are that numerically calculated eigenfunctions and corresponding eigenvalues 

are similar for multiple eigenmodes in the spherical cortex, but in the convoluted cortex, 

eigenvalues are individual for each eigenmodes due to the complex folding. We found that just 

a few handful modes are responsible for the basic features of ERPs in a convoluted cortex. The 

ERP peak decreases monotonically with increasing distance from the stimulus point. Due to 

complex folding in the convoluted cortex, ERPs are different between locations at the same 

distance from the stimulus point. ERP activity is strong near the stimulus locations, and spread 

through the whole cortex, decaying over time. At longer periods, the global mode is dominant. 

 In conclusion of Robinson and Mukta [1,2] cortical folding has an effect on eigenmodes, which 

dominate the ERP activity with few modes. In future, this analysis of complex convoluted 

cortex will enable more realistic modeling and analysis of experimental brain signals. 

 

 

[1] P. A. Robinson, X. Zhao, K. M. Aquino, J. D. Griffiths, S. Sarkar, and G. Mehta-Pandejee, 

NeuroImage 142, 79 (2016).  

[2] K. N. Mukta, P. A. Robinson, J. C. Pagès, N. C. Gabay, and Xiao Gao, Phys. Rev. E 102, 062303 

(2020). 
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Savar, Dhaka-1342. 
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Although different architectures of quantum perceptrons have been recently put
forward, the capabilities of such quantum devices versus their classical counterparts
remain debated. Here, we consider random patterns and targets independently
distributed with biased probabilities and investigate the storage capacity of a
continuous quantum perceptron model that admits a classical limit, thus facilitating
the comparison of performances. Such a more general context extends a previous
study of the quantum storage capacity where using statistical mechanics techniques
in the limit of a large number of inputs, it was proved that no quantum advantages
are to be expected concerning the storage properties. This outcome is due to the
fuzziness inevitably introduced by the intrinsic stochasticity of quantum devices. We
strengthen such an indication by showing that the possibility of indefinitely
enhancing the storage capacity for highly correlated patterns, as it occurs in a
classical setting, is instead prevented at the quantum level.
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Neural manifold discovery via dynamical systems

Arthur Pellegrino1, Isabel M. Cornacchia1, and Angus Chadwick1
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Summary. Recent studies have proposed that neural circuits have a task manifold: i.e.,
a subset of the neural state-space to which neural activity is confined as an animal per-
forms a task [1]. Thus, discovering and characterising these manifolds and their associated
dynamics from experimental data can shed light on the neural computations unfolding
within the brain during various cognitive tasks. Yet, common manifold discovery methods
often do not take into account that neural data is generated by an underlying dynamical
system. To address this, we first derive a general class of manifolds that neural dynamics
can implement. Building on these results, we introduce a dynamical systems-based dimen-
sionality reduction method for neural population data: Manifold Discovery Through Dy-
namics (MDTD). We illustrate its usefulness by applying it to recordings of the macaque
motor and premotor cortex during a reach task [2], where we show that MDTD uncovers
a manifold with behaviourally-relevant geometry. Overall, our framework offers a link
between the geometric and dynamical perspectives on population activity, and provides
a generative model to uncover task manifolds from neural data.

Background. Consider a collection of vector fields Xi : Rn → Rn for i = 1, ...,m on
the neural state space Rn. Key results from differential geometry provide sufficient and
necessary conditions under which these vector fields define an m-dimensional manifold
with tangent space span {Xi}. MDTD allows navigating along the vector fields through
the dynamics ẏ(t) =

∑m
i=1 ci(t)Xi(y(t)), which generates trajectories on the manifold

(Fig. a). We fit MDTD (i.e. find the optimal Xi’s and ci’s) to neural data trajectories to
uncover the latent manifold they lie on (Fig. b).

Results. We applied MDTD to recordings from the motor and premotor cortex [2]
(Fig. c). We found that the neural trajectories intrinsic to the inferred manifold directly
correlated to the movement of the animal (Fig. d). To validate that it was the dynamical
aspect of MDTD that enabled this, we applied classic dimensionality reduction methods
including PCA and Isomap and found that they captured the task condition but not the
geometry of the behaviour. Overall, we illustrate how MDTD can uncover behaviourally
relevant geometry and dynamics from neural data.

a. MDTD defines a manifold through dynamics on it. b. The manifold is inferred by
fitting trajectories on it to data. c. Description of the neural data from [2]. d. Trajectories
on the inferred manifold. MDTD recovers the geometry of the behaviour solely from the
neural data. e. Two views of a low-dimensional embedding of the inferred manifold.

References.
[1] S. Chung, LF. Abbott, Cur. Opin. Neurobiol. 70:137-144 (2021).
[2] M. Perich, J. Gallego, L. Miller, Neuron, 100(4):964-976 (2018).
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Identifying learning algorithms
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By causally mapping neural activity to behavior [1], Brain Computer Interface (BCI)
experiments offer an approach to studying the dynamics of sensorimotor learning and
identifying the underlying learning algorithms [2]. Here, we used computational mod-
eling and data analysis to study how monkeys performing a center-out task adapt to a
changed output mapping. Learning this mapping from neural space (ca. 100D) to the
2D cursor position is a credit assignment problem [3] that is underconstrained, because
changes along a large number of output-null directions do not influence the behavioral
output. We hypothesized that different, but equally performing learning algorithms can
be distinguished by the changes they generate in output-null dimensions. We study this
idea in networks for three different learning rules (gradient descent, model-based feedback
alignment and reinforcement learning) and three different network architectures that re-
flect distinct learning strategies (re-aiming [4], remodeling [5], recurrent dynamics). We
find that various combinations of rules and architectures lead to changes in different low-
dimensional subspaces of neural activity. Comparing these subspaces with available data
from BCI experiments [6, 7, 8] suggests that monkeys learn in a subspace that is more
similar to model-based learning and reinforcement learning than to gradient descent. For
trained recurrent networks, the explored subspace also depends on the temporal structure
of the input given to the network, highlighting the role of recurrent dynamics. Overall, our
study suggests monkeys employ a combination of distinct strategies to learn BCI tasks.

[1] M. Golub et al. Curr. Op. in Neurobiology 37, 53-58 (2016).
[2] J. Portes, et al. NeurIPS 35, 25937–25950 (2022).
[3] B. Feulner, C. Clopath, PLOS Computational Biology, 17, e1008621 (2021).
[4] J. Menendez, UCL PhD thesis (2021).
[5] M. Golub et al. eLife 4, e10015 (2015).
[6] M. Golub et al. Nature neuroscience 21, 607–616 (2018).
[7] J. Hennig et al. Nature Neuroscience 24, 727–736 (2021).
[8] J. Hennig et al. eLife 7, e36774 (2018).

Figure 1: (left) Potential learning algorithms underlying the BCI task, all changes depend on the cursor position error e and
an algorithm-dependent term B ; (right) low-D subspaces explored in simulations of the algorithms and BCI data [6, 7, 8]
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Hierarchical visual processing relies on the directional propagation of signals across 
brain areas to subserve computational goals. Recent work [1] leveraged simultaneous multi-
area recordings to investigate the strength and directionality of inter-areal signaling, revealing 
that V1-V2 communication shifts from feedforward-dominated following stimulus onset to 
feedback-dominated during spontaneous activity. Importantly, this shift does not simply 
reflect a change in the directionality of the mean drive but rather results from trial-to-trial 
activity fluctuations predominantly traveling in different directions during evoked and 
spontaneous periods. What hierarchical circuit architectures support the observed directional 
flow of activity fluctuations? And what are the network mechanisms involved in the stimulus- 
dependent shift in the directionality of interactions? 

Here, we investigated these questions by using two-area recurrent neural networks 
(RNNs). We first investigated the conditions that lead to a directional flow of activity 
fluctuations, as observed in neural data, in linearized circuit models. Through mathematical 
analysis and simulations [2,3] we concluded that, for arbitrary network connectivity, 
communication directionality is strongly determined by the difference in noise variance 
injected in the two areas. Based on this finding, we designed a model for noise sources in V1 
and V2 that causes a shift in communication directionality, and is also consistent with 
biology. This includes a feedforward source associated with variability in the stimulus, and a 
persistent feedback source linked to slow global signals arising in higher-order areas [4,5]. To 
evaluate this mechanism in a larger and functional network, we focused on a predictive 
coding network [6], an established normative model of V1-V2 dynamics. We found that 
simulated activity could qualitatively recapitulate the main features of inter-areal 
communication observed in the data. Our approach allowed us to gain insight into possible 
network mechanisms underlying bi-directional and selective signaling as well as to constrain 
the space of models of inter-areal communication that are consistent with experimental 
observations. 

[1] J. D. Semedo et al., Nat. Commun. 13(1), 1099 (2022).
[2] A. Bernacchia et al., Neuron. 110(11), 1857-1868 (2022).
[3] C. W. Gardiner, Handbook of Stochastic Methods (2nd ed. Springer) (1997).
[4] T. A. Engel et al., Science, 354(6316), 1140-1144 (2016).
[5] M. M. Churchland et al., Nat. Neurosci., 13(3), 369-378 (2010).
[6] R. P. Rao and D. H. Ballard, Nat. Neurosci. 2(1), 79-87 (1999).
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Visual search, the process of locating a specific item among a multitude of visually presented 
objects, is one of the most crucial behaviors in high-level animals and constitutes key 
experimental paradigms widely used in the studies of visual attention. Numerous 
computational models of this behavior have previously been developed, among which priority-
map-based models are currently the most widely used [1-3]. A priority map is a conceptual 
representation of the priority assigned by the brain to different locations within the visual space, 
integrating both the bottom-up (saliency) and top-down (task-relevance) information across 
locations of the visual space, controlling the allocation of covert attention in covert search and 
guiding saccade sequence in overt search [4]. Priority-map-based models propose that the brain 
solves the visual search task by building a priority map of the visual space and applying a 
winner-take-all mechanism to select the target location. Lateral Interparietal Cortex (LIP), 
Frontal Eye Fields (FEF), and Superior Colliculus (SC), collectively known as the fronto-
parietal attentional control network, have been identified as candidate areas for instantiating 
the priority map in the primate brain [4-8]. However, we still lack a complete understanding of 
how the distributed activity across these areas gives rise to the priority map representation and 
visual search behavior. To address this question, we modeled the neural computations 
underlying visual search by training a biologically-matched neural network architecture on this 
task. Our model consisted of three components: 1) a model of retina that matches the position-
dependent sampling density in the primate retina; 2) a convolutional network model (CNN) 
mimicking the neural computations along the ventral visual pathway and; 3) a recurrent neural 
network (RNN) model of the fronto-parietal network. We found that after training: 1) RNN 
units exhibited cue-dependent response patterns similar to those observed in the primate fronto-
parietal attention network during visual search; 2) Cue-similarity (a key indicator of priority) 
was linearly decodable from the RNN units, indicating that these units have developed a 
distributed representation of the priority map; 3) Decodability of cue-similarity exponentially 
decreased with increasing spatial distance, suggesting that the priority map is continuously 
represented within the RNN latent space. Altogether, we presented a neurally-plausible, image-
computable model of visual search in which brain-like priority map representations emerged. 
The general-purpose architecture of the model makes it a viable candidate for being extended 
to modeling other visual attention tasks, providing means of simulating, and elucidating the 
underlying neural computations of visual attention. 
 
 
[1] M. Zhang, J. Feng, K. T. Ma, J. H. Lim, Q. Zhao, and G. Kreiman, Nat. Commun., 9, 3730 (2018) 

[2] H. Adeli, F. Vitu, and G. J. Zelinsky, J. Neurosci., 37, 1453 (2017) 

[3] G. J. Zelinsky, Psychol. Rev., 115, 787 (2008) 

[4] J. W. Bisley and K. Mirpour, Curr. Opin. Psychol., 29, 108 (2019) 

[5] K. G. Thompson and N. P. Bichot, Prog. Brain Res., 147, 249 (2005) 

[6] C. Wardak, G. Ibos, J.-R. Duhamel, and E. Olivier, J. Neurosci., 26, 4228 (2006) 

[7] R. M. McPeek and E. L. Keller, J. Neurophysiol., 88, 2019 (2002) 

[8] A. C. Nobre, Neurosci. Biobehav. Rev., 25, 477 (2001) 
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Until recent times, glial cells, which constitute more than half of the mammal brain cells,
have been neglected in the study of signal transmission and information processing in the
nervous systems. This has been due to a long-lasting neuron-centric view of the brain
functioning [1]. Nowadays, it is generally accepted that glial cells, particularly astrocytes,
play diverse roles in brain function, including synaptic modulation, memory formation,
and synchronization of neural population activities, in addition to providing structural
support. This consolidated knowledge has induced theoretical neuroscientists to include
astrocytes in their mathematical models of the brain [2, 3, 4].

The first part of this work focuses on optimizing and extending a recently published
model [3], built with the neural simulator Brian 2 [5], one of the most flexible simula-
tors for neuron-astrocyte networks. The model consists of a recurrent network of ex-
citatory and inhibitory leaky-integrate-and-fire neural models endowed with astrocytes,
activated by synaptic transmission and modulating it. We implement essential changes
to the model, concerning neurons’ spatial distribution in the network, neuron-neuron,
and neuron-astrocyte connectivities. In particular, we introduce scale-free connectivity
alongside commonly used random connectivity in the neuron network. Additionally, we
explore astrocytic calcium dynamics, which plays a fundamental role in the mechanisms
underpinning gliotransmitter release, and its effects on neuron activity. By tweaking some
model parameters, we obtain both periodic behavior and larger and slower calcium oscil-
lation that better reproduce what is experimentally observed [6]. Subsequently, we run
simulations and analyses of the model in steady-state conditions, to outline the principal
differences in the whole network spiking activity emerging when the astrocytes are in-
cluded in the network or silenced, evaluating also the effects on activity for random/scale-
free-like connectivities.

Finally, we compare the total average number of spikes emitted and the Inter-Spike In-
terval (ISI) distributions in the four cases under examination. Our analysis reveals that
astrocytes reduce the number of spikes emitted by the network, indicating a global in-
hibitory effect on neurons. Furthermore, longer ISIs are more likely when astrocytes inter-
act with neurons, consistent with the inhibitory action of astrocytes on neuron synapses.
Interestingly, ISI distributions exhibit distinct trends depending on the type of connectiv-
ity, regardless of the presence of astrocytes. Specifically, probability density functions are
approximately exponentially distributed for random networks, while they show power-law
tails for scale-free-like networks.

[1] G.I. Hatton, V. Parpura, Springer (2004).
[2] K.V. Kastanenka, R. Moreno-Bote, M. De Pittà, et al., Glia 68, 1 (2020).
[3] M. De Pittà, H. Berry, Springer Series in Computational Neuroscience, 2197-1900 (2019).
[4] T. Manninen, J. Aćimović, M.L. Linne, Neuroinformatics 21, 2 (2023).
[5] M. Stimberg, R. Brette, D. Goodman, eLife Sciences Publications 8, e47314 (2019).
[6] A.H. Cornell-Bell, S.M. Finkbeiner, M.S. Cooper, S.J. Smith, Science 247, 4941 (1990).
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Learning  goal-oriented  behaviours  can  induce  changes  in  the  hippocampal
representation of space on a time scale of minutes. At longer time scales, it is less clear if
changes in hippocampal representations are related to further learning, especially for non-
spatial variables. Therefore, we monitored the evolution of these neural representations over
multiple days to study their link to behaviour. We recorded the activity of the dorsal CA1
area of  the hippocampus of  rats  using  in vivo electrophysiology while animals learned a
spatial association task. Animals had to remember the location of a reward given a set of
contextual cues (visual and tactile) and then dig for food in those locations only. Their best
performance was achieved after 3-5 days. 

To  assess  the  representation  of  different  task  variables  such  as  position,  reward,
movement  direction  or  context  in  the  population  activity,  we  used  linear  decoders  and
principal component analysis. We observed that, over days, the hippocampal code underwent
a reorganisation of population activity in principal component (PC) space. Despite position
explaining the highest variance of the pyramidal cell population at all times, we found that
decoding  of  context  from  high-variance  PCs  improved  with  learning;  this  happened
specifically  at  positions  where  it  mattered  for  task  performance  and  resulted  in  fewer
dimensions  being  necessary  for  decoding.  Also,  the  dimensions  encoding  context  were
different at different positions, which meant that context could be better decoded conditional
on  position.  We  confirm  this  hierarchy  between  position  and  context  by  hierarchical
clustering of populations vectors, which shows that the main clusters of population activity
are  defined  by  animal  position;  within  those  clusters,  sub-clusters  referring  to  different
contexts can be found and are better separated at task-relevant positions. When we contrasted
these  results  with  that  of  variables  less  relevant  for  task  performance  (e.g,  movement
direction),  the  encoding dimensions  were  also  position-specific;  nevertheless,  we did  not
observe increased decoding accuracy at specific positions nor a reduction of dimensionality
with learning. 

Altogether,  our results  show that  non-spatial  variables unequally contribute to the
variance  in  hippocampal  activity.  This  supports  the  idea  that  these  representations  are
hierarchical, as suggested in previous studies [1,2]. In addition, we show that the contribution
of each variable depends on position and adapts to behavioural demands during associative
learning. Downstream from the hippocampus, this enables better decoding of environmental
features learned to be relevant for behaviour. This suggests that hippocampal representations
may play a role supporting behaviour not only over minutes or hours, but also over many
days of learning.

[1] Shapiro M.L., Tanila H., Eichenbaum H. Hippocampus 7, pp. 624-642 (1997)
[2] McKenzie S. et al, Neuron, 83, 1, pp. 202-215 (2014)
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Hippocampal ripple oscillations have been implicated in important cognitive functions such
as  memory  consolidation  and  planning  [1].  Multiple  computational  models  have  been
proposed  to  explain  the  emergence  of  ripple  oscillations,  relying  either  on  excitation  or
inhibition as the main pacemaker. Nevertheless, the generating mechanism of ripples remains
unclear.  An interesting dynamical feature of experimentally  measured ripples,  which may
advance  model  selection,  is  intra-ripple  frequency accommodation  (IFA):  a  decay of  the
instantaneous ripple frequency over the course of a ripple event [2]. So far, only a feedback-
based inhibition-first model [3], which relies on delayed inhibitory synaptic coupling, has
been  shown  to  reproduce  IFA  [4].  Here  we  use  an  analytical  mean-field  approach  and
numerical simulations of a leaky integrate-and-fire spiking network to explain the mechanism
of  IFA [5].  We  develop  a  drift-based  approximation  for  the  oscillation  dynamics  of  the
population rate and the mean membrane potential  of interneurons under strong excitatory
drive and strong inhibitory coupling. For IFA, the speed at which the excitatory drive changes
is critical. We demonstrate that IFA arises due to a speed-dependent hysteresis effect in the
dynamics of the mean membrane potential,  when the interneurons receive transient, sharp
wave-associated excitation. We thus predict that the IFA asymmetry vanishes in the limit of
slowly changing drive, but is otherwise a robust feature of the feedback-based inhibition-first
ripple  model.  Finally,  we demonstrate  that  other  ripple  models  (e.g.  [6])  make  different,
testable predictions regarding IFA, which makes IFA a good marker for model selection that
can advance the search for the generation mechanism of hippocampal ripples.
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Learning Dynamics for Non-Linear Perceptrons
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The ability of a brain or a neural network to efficiently learn depends crucially on both
the task structure and the learning rule. Previous works have analyzed the dynamical
equations describing learning in the relatively simplified context of the perceptron under
assumptions of a student-teacher framework or a linearized output [1, 2, 3, 4, 5]. How-
ever, in addition to being an impediment to biological interpretations, these assumptions
have precluded a detailed understanding of the roles of the nonlinearity and input-data
distribution in determining the learning dynamics. Here, we use a stochastic-process ap-
proach to derive flow equations describing learning, which we can do order-by-order in the
learning rate. We than apply this framework to the case of a nonlinear finite-dimensional
perceptron with a sigmoidal activation function, performing binary classification on inputs
drawn from anisotropic Gaussian distributions.

We characterize the effects of the learning rule (supervised or reinforcement learning,
SL/RL) and input-data distribution on the perceptron’s learning curve, the fixed point
to which learning converges, and the forgetting curve as subsequent tasks are learned.
In particular, we quantify how the input-data noise differently affects the learning speed
under SL vs. RL, as well as determines how quickly learning of a task is overwritten
by subsequent learning. More generally, this approach points a way toward analyzing
learning dynamics for more-complex circuit architectures.
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A, B: The perceptron classifies inputs from two multinormal distributions. The weight vector w is orthogonal to the classi-
fication boundary. C, D: The learning curves for the simulated perceptron follow the analytical results. E: Surprisingly,for
isotropic inputs, time to learn the task increases with total noise for SL. F, G: For anisotropic inputs, the noise component
in the decoding direction slows down learning. H: For continual learning, increased noise leads to faster forgetting.
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Chromatic induction is the phenomenon by which the perceived color of a stimulus changes
depending on the chromaticity of its surround. This change is repulsive, meaning it
increases the contrast between the stimulus and its surround.

In this study, we developed a theoretical description of chromatic induction based
on a linear formalism that includes a receptive field G(x,x′), with a characteristic size
σ associated with anatomical and physiological properties of the underlying neural net-
works. Therefore, a physical chromatic stimulus r(x) is processed by this receptive field,
producing the percept r′(x), defined as

r̃(x) =
∫

dx′G(x,x′)r(x′). (1)

The percept r′ and its associated physical stimulus r are described in their perceptual
coordinates, elucidated in [1]. These coordinates allow us to exploit the symmetries of
the color space to compute quantities of interest. The theory predicts that the ability to
discriminate colors is optimal when the spatial frequency of the stimulus is 1/σ.

We designed and conducted perceptual experiments that allowed us to access param-
eters of the receptive field by determining discrimination thresholds. Seven trichromatic
volunteers participated in experiments where spatially structured chromatic stimuli were
presented with modulation along three different directions in color space: S, L - M, and
L + M, the first two directions related to chromatic properties of the stimulus and the
third related to its luminosity.

For each subject, and each direction in colour space, the spatial frequency yielding
minimal detection threshold was determined. In line with the linear theory, we associated
the inverse of the optimal frequency with the size σ of the receptive field. We found that
the value of σ is smaller when the stimulus is modulated along the L + M direction
compared to the other two directions, with a size of approximately 0.8◦ in the luminance
direction and 2◦ in the chromatic directions for all volunteers.

In addition, the normalized detection threshold was smaller in the L + M direction. In
conclusion, the luminance channel is more precise than the chromatic channels, both due
to smaller thresholds and higher spatial resolution. The difference in optimal frequency
between the luminance channel and the chromatic channels challenges the hypothesis of
a linear model valid for the entire color space. The data indicate two parallel processing
channels with different characteristic sizes. If we interpret receptive fields as an effective
measure of lateral connections in the visual field, this work suggests that connections
processing luminance information have a smaller lateral extent than those processing
chromatic information.

[1] N. Vattuone, T. Watchler, I. Samengo, Mathematical Neuroscience and Applications 1
(2020).

[2] K. R. Gegenfurtner, Nature Reviews Neuroscience, 4, 563-572 (2003).
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Hippocampal place cells offer a window into spatial navigation, building an internal, 
cognitive map of our external, physical environment. Place cells are excited in a spatially 
dependent manner, forming place fields that encode an animal’s position in space. Firing within 
individual place fields is correlated with the extracellularly recorded theta rhythm, with place 
cell spike times progressively advancing to earlier and earlier phases of theta in a phenomenon 
known as theta phase precession (O’Keefe and Recce, 1993). The exact neurophysiological 
mechanisms that drive this phenomenon are still debated, and exploring these mechanisms relies 
heavily on computational models (Drieu and Zugaro, 2019; Sloin et al., 2024). Precession 
models most commonly draw on two seminal theories: (1) dual oscillator theory, wherein one 
theta pacemaker outpaces another to entrain spikes to a specific rhythm, or (2), asymmetric 
excitation theory, where directionally weighted networks propagate excitability across 
overlapping place fields. The latter requires a local assumption of dense recurrent connections, 
which is not applicable to all sub-regions of the hippocampus (e.g., CA1 contains sparsely 
interconnected neurons). The dual oscillatory theory is more robust with regards to observed 
experimental data but neglects upstream circuit-level interactions, which may be inherited and 
nonlinearly modulated within place fields. Recent modeling work has demonstrated that 
conductance changes in single place cells can influence extracellular theta via a resonant effect 
(Sinha and Narayanan, 2022). It has also been suggested that competition between firing rate 
adaptation in single cells and localized timing of external inputs can provoke either phase 
precession, or the lesser studied phase procession, where spike timing with respect to theta phase 
is reversed across theta cycles (Chu et al., 2024).  Precession and procession are broadly 
theorized to represent retrospective and prospective encoding of an animal’s location, and 
understanding the conditions under which one may dominate over the other can yield insights 
into how animals map virtual paths of the environment (Wang et al., 2020). To contribute to this 
effort, we present a conductance-based computational model of a place cell subjected to 
oscillatory inputs carrying spatial information and theta rhythmicity. External theta received at 
the cell dendrite is required in the model to promote phase precession, competing with somatic 
hyperpolarization to entrain somatic spike times. Progressively decreased theta input frequency 
resulted in a switch from precession to procession. Delayed onset of theta input induced longer 
periods of place cell excitability, increasing somatic firing early in the place field, which was 
exacerbated by delayed shunting inhibition. Finally, remodeling oscillatory inputs to the cell 
with a neural mass equation allowed for examination of the effects of upstream changes in 
excitability on firing rate and phase. Hyperexcitability of the upstream model resulted in phase 
procession, while hypoexcitability blocked both precession and procession. 

 

[1] T. Chu, Z. Ji, J. Zuo et al., eLife, 12, RP87055 (2024).  
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Figure 1: Interplay between brain sym-
metry (or its breaking) and the symme-
try (or lack thereof) of cognitive phe-
notypes. Examples 1-4, 7, and 8 are men-
tioned in the text. 5 represents grid cells
for navigation (symmetric in mice, lateral-
ized in humans). 6 is the navigation system
of the fly, which brings a toroidal geometry
into play. Figure extracted from [1].

Symmetry and symmetry breaking in neural systems

Luis F Seoane1
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Most brains appear mirror symmetric but, upon close inspection, a series of asymme-
tries are revealed—notably so in the well-studied human brain. There are morphological
differences (e.g. foldings or fissures more marked in one side) and lateralized function (e.g.
human language is mostly left-hemispheric). Symmetry is a key concept that captivates
mathematicians and physicists and invites the application of elegant theories to study
associated phenomena. What is its role in neural systems? The brain’s mirror symme-
try comes from the bilaterian plan, thus is perfectly suited for body control (Fig. 1, top
left). What happens when a task demands this symmetry but the brain loses it—as after
hemispherectomy or stroke (Fig. 1, top right)? What becomes of bilaterality when a com-
putational task does not need it (Fig. 1, bottom)? Is it retained, as parrots do to generate
their speech (4 in Fig. 1)? Or does brain activity become lateralized, as it happens for
human language (7) or in singing birds (8)?

My recent work aims at shedding some light upon these questions. In its most the-
oretical side, we tackled the long-standing hypothesis (traced back to Paul Broca) that
increased cognitive complexity results in brain symmetry breaking. This popular conjec-
ture lacks strong empirical support given the difficulty of measuring both complexity and
asymmetry. Until recently, a rigorous mathematical framework to pose and resolve the
issue was missing too. My recent paper [1] provides this framework, offers very strong
mathematical support, and reveals regimes (depending on error rates, contributed fitness,
and metabolic costs of neural circuits) in which either symmetry or lateralization become
preferred as complexity increases. Another thread of my research has more clinical rel-
evance, as it studies how brains are reorganized after hemispherectomy [2] or stroke [3].
These works suggest mathematical constraints to long-distance neural plasticity and il-
luminate seemingly contradictory findings about window periods to recover lost function
after injury [2]. They also make connections between brain reorganization, phase transi-
tions, and criticality; at the time exploring neurorehabilitation strategies quantitatively
[3]. Understanding the interplay between internal and external symmetries and symmetry
breaking offers great opportunity both for theoretical and empirical studies.

[1] Seoane LF, Phys. Rev. X 13(3), 031028 (2024).
[2] Seoane LF, Solé R, bioRxiv, doi: https://doi.org/10.1101/2020.12.25.424412 (2020).
[3] Carballo-Castro A, Seoane LF, bioRxiv, https://doi.org/10.1101/2022.12.14.520421 (2022).
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Ring models are widely used in neuroscience to understand fundamental mechanisms of response sharpening 
and working memory. Ring models build of spiking neurons in the balanced state [1, 2], can robustly reproduce 
irregular activity, as observed in vivo, and exhibit various intriguing phenomena, such as response sharpening 
by short range inhibition [3] and feature tuning emerging in random networks [4]. In principle, balanced ring 
networks can be analyzed using a powerful mean-field theory that can capture even emergent response 
heterogeneity [5]. However, this approach - so far examined only for binary neuron networks [5] - appeared 
technically extremely involved. Here we present and analyze a class of analytically highly tractable spiking 
balanced ring models that enable to dissect circuit mechanisms of response tuning comprehensively and 
rigorously. We present results for ring models with both cosine-tuned and von mises-tuned connectivity and 
inputs. For the von mises case, the mean population activity profile is analytically obtained as infinite series of 
Bessel functions. In this case the activity profile is obtained directly from the balanced equation demonstrating 
that the profile is independent of the single neuron model and intrinsic heterogeneity. For the cosine-tuned 
network, a limiting case of von mises-tuning, the balance equation alone is insufficient to determine the 
population profile. Instead, the population profile is found to depend on a set of self-consistency equations for 
moments of the firing rate distribution across the network that we obtain in closed form. We present highly 
accurate approximate solutions to these self-consistency equations and show how they can be extended to 
determine the entire distribution of heterogeneous tuning curves in the network. Our results reveal strong 
indications that the population response profile is universal with respect to many biophysical parameters of 
synaptic interactions and detailed properties of the single neuron model used. 
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274(5293):1724–1726, 1996. 
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cortical circuits. Current opinion in neurobiology, 25:228–236, 2014. 
[3] Robert Rosenbaum and Brent Doiron. Balanced networks of spiking neurons with spatially dependent recurrent connections. 
Physical Review X, 4(2):021039, 2014. 
[4] Hansel, D. & Vreeswijk, C. van. The Mechanism of Orientation Selectivity in Primary Visual Cortex without a Functional Map. J 
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Traveling waves are remarkable spatial patterns which emerge in the cortex and hippocampus.
These waves have been shown to contain precise information about an animal’s spatial location
[1]. Traveling waves play a crucial role in the human brain due to their ability to coordinate
phase coding throughout the hippocampus [2] and are involved in synaptic plasticity. Rotating
or spiral waves, characterized by the presence of a phase singularity (PS) at their center, are
another pattern of brain waves. Spiral waves are important in cognitive processing and its
properties are related to distinct cognitive tasks [3]. There have been several studies about the
emergence of wave patterns, their relationship with network properties and how to detect them.
Therefore, computational analysis are necessary to deepen our understanding of the spiral wave
emergence. We investigate a novel method for detecting and studying the emergence of spiral
waves as well as synchronization in a network that models the distribution of hippocampal
pyramidal cells [4]. Inspired by the lack of simple methods for detecting spiral waves, we
develop a novel and reliable method based on synchronization measurement tools to accurately
identify and analyze spiral waves. Moreover, we propose a method for locate phase singularities
(PS) in spiral waves. Our findings show that for different coupling strengths and connectivity
radius, spiral and synchronization waves appear. In this work, we show that spiral waves are
strongly dependent of the connectivity radius of each neuron due to the spatial properties which
spiral waves possess. Notably, in some range of radius connection bistable regions are observed,
highlighting the sensitivity of some wave patterns to initial conditions. Our results provide
valuable insights into the mechanisms underlying spiral wave emergence.

[1] Muller, L.; Chavane, F.; Reynolds, J.; Sejnowski, T. J. Nature Reviews, 19, (2018).
[2] Zhang, H.; Jacobs, J; The Journal of Neuroscience, 35, 12477–12487, (2015).
[3] Xu, Y.; Long, X.; Feng, J.; Gong P. Nature Human Behaviour, 7, 1196–1215, (2023).
[4] Bezaire, M.J.; Raikov, I.; Burk, K. Vyas, D.; Soltesz, I.; eLife, 5, e18566, (2016).
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For the olfactory associative learning to be specific, stimulus representation in the  Kenyon
cell  (KC) population  should  be  accurate  with  minimal  activity  overlap  between different
stimuli,  which  is  achieved  by the  sparse  and highly  odor-specific  KC response  patterns.
While  a  multitude  of  cellular  and  network  mechanisms  substantially  increase the  KC
population  sparsity,  the  proportion  of  KCs  responding  unreliably  to  a  given  odor  over
multiple trials is roughly three times larger than that of reliable responders [1, 3], leading to
substantial response correlations between different odors. Considering dopamine signaling in
the  mushroom body lobes  is  unspecific with  volume transmission,  population  sparseness
alone is not sufficient to ensure specificity in associative learning. It has been recently shown,
that  additional  axo-axonic  interactions  with  muscarinic  type-B  receptors  (mAChR-B)
between  KCs  enhance  the  specificity  in  associative  learning  by  suppressing  both  odor
mediated Ca2+ signals and dopaminergic neuron driven cAMP signals [2], increasing learning
specificity by inhibiting KCs responding unreliably to a given odor. 

In this project, we theoretically investigate the functions and significance of lateral inhibition
in learning specificity by comparing variants of KC population rate models with and without
lateral inhibition. In line with the experimental observations, the naive model without lateral
inhibition shows a lower degree of learning specificity when compared to the full model.
Finally,  we  address  possible  mAChR-B related  molecular  mechanisms,  such  as  activity-
dependent  gating of lateral  inhibition,  which leads  to an overall  enhancement  in learning
performance. Ultimately, we aim to propose an extended model for local mushroom body
bouton  computation,  highlighting the  importance  of  lateral  interactions  between  KCs  in
learning and memory [4].

[1] Turner, G. C., Bazhenov, M. & Laurent, G. Olfactory representations by Drosophila mushroom
body neurons. Journal of Neurophysiology 99, 734–746. ISSN: 00223077 (2008).

[2] Manoim, J. E., Davidson, A. M., Weiss, S., Hige, T. & Parnas, M. Lateral axonal modulation is
required for stimulus-specific olfactory conditioning in Drosophila.  Current Biology  32, 4438–
4450.e5. ISSN: 18790445 (2022).

[3] Honegger, K. S., Campbell, R. A. & Turner, G. C. Cellular-resolution population imaging reveals
robust  sparse  coding in  the drosophila mushroom body.  Journal of  Neuroscience 31,  11772–
11785. ISSN: 02706474 (2011).

[4] Bilz, F., Geurten, B. R., Hancock, C. E., Widmann, A. & Fiala, A. Visualization of a Distributed
Synaptic  Memory  Code  in  the  Drosophila  Brain.  Neuron 106,  963–976.e4.  ISSN:  10974199
(2020).
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In neuroscience, correlations between neurons have a significant impact on the encoding and
decoding of information in neural population codes. 
Correlations might play a role in generating codes across different timescales and in aiding
the  transmission  and  interpretation  of  information  by  downstream  brain  areas,  thus
influencing behavior.   A unified conceptual  picture of how local  and biological  plausible
learning rules determine these so-called noise correlations is, however, currently missing. 
Moreover, we still lack a theoretical framework to describe how population codes balance the
constraints imposed by correlations. Noise correlations are known to be information limiting,
but appear also to enhance signal propagation and thus have an effect beyond limiting the
encoding  of  sensory  information.  Nonetheless,  correlations  may  vary  across  the  brain,
ranging  from  weak  correlations  in  sensory  cortices,  possibly  beneficial  to  maximize
information encoding with short timescales for dynamic stimuli, to stronger correlations in
associative areas, optimal for stronger signal propagation and longer timescales[4].
Here we propose to study population codes by studying the learning dynamics of recurrent
neural networks with ongoing Hebbian plasticity. A previous study of a network model in
which neurons and synapses are mutually coupled dynamic variables analyzed the dynamical
regimes that emerge from spontaneous activity [5] .  We study the ability of this coupled
dynamical  system  to  learn,  from  the  statistics  of  inputs,  how  to  shape  particular  low-
connectivity structures, which are known to be essential for implementing computations [3,
6]. Additionally,  introducing Hebbian plasticity while presenting the network with a fixed
stimulus has shown to introduce a variability in the neural responses, even if the network is in
a  non-chaotic  regime.  Thus,  this  plasticity-induced  variability  allows  us  to  investigate
correlations  across-trials,  which  is  a  first  step  to  develop  a  theoretical  model  of  noise-
correlations emerging from recurrent connections and to study their role in the encoding of
information by downstream brain areas. Finally, we investigate if the representations learnt
from local learning rules have a distributional simplicity bias, as observed in neural networks
trained using stochastic gradient descent [7], and whether this bias can be relevant to build
different time scales across the network. 

[1]  Vyas, S., Golub, M. D., Sussillo, D., & Shenoy, K. V. (2020). Computation Through Neural Population Dynamics. 
Annu. Rev. Neurosci. 2020. 43:249–75
[2] Panzeri, S., Moroni, M., Safaai, H., & Harvey, C. D. (2022). The structures and functions of correlations in neural 
population codes. Nature Reviews Neuroscience, 23, 551–567.
[3] Mastrogiuseppe, F., & Ostojic, S. (2018). Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent 
Neural Networks. Neuron, 99(3), 609-623.e29.
[4]Runyan, C. A., Piasini, E., Panzeri, S., & Harvey, C. D. (2017). Distinct timescales of population coding across cortex. 
Nature, 548, 92–96.
[5] David G. Clark, L.F. Abbott (2024). Theory of coupled neuronal-synaptic dynamics. Physical Review X 
[6] Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F., & Ostojic, S. (2022). The role of population structure in 
computations through neural dynamics. Nature Neuroscience, 25, 783–794.
[7] Refinetti, M., Ingrosso, A., & Goldt, S. (2023). Neural networks trained with SGD learn distributions of increasing 
complexity. In ICML'23: Proceedings of the 40th International Conference on Machine Learning, July 2023
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An increasing amount of findings highlight the significance of low-dimensional neural dynam-
ics in the motor system, sensory pathways, and cognitive task representations. Recent studies
have linked structure to low-dimensional activities by considering low-rank corrections to ran-
dom synaptic efficacy matrices. However, these studies focused on Gaussian statistics, restrict-
ing the networks’ dynamic repertoire. To understand how neural circuits implement diverse
computations, we need a theory that deals with complex structures and accounts for arbitrary
nonlinear low-dimensional dynamics.

In this work, we go beyond the current paradigm and consider low-rank matrices with
higher-order statistics. For tractability, we use synaptic weights sampled from discrete statis-
tics. We derive a dynamic mean-field theory for the low-dimensional activity generated by the
low-rank weights. First, we show that i.i.d. weights with second-order statistics can produce
only linear effective dynamics. Next, we show that appropriately choosing higher-order correla-
tions can yield non-trivial collective dynamics. As an example, we generate a low-dimensional
chaotic attractor. The low-dimensional chaos is different from chaos generated by large ran-
dom networks and is characterized by higher correlations. Finally, we prove a universality
theorem stating that a large low-rank nonlinear network can implement any smooth dynami-
cal system. Importantly, we calculate the error bound for approximating arbitrary dynamical
nonlinear dynamical systems and show it falls exponentially as the rank increases. Our work
provides an essential missing link between structure and neural dynamics; it provides a pre-
scription for constructing neural networks that implement non-linear dynamical systems using
low-rank structures and a framework for analyzing trained networks.
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