KSBA moduli spaces of log CY surfaces with a view toward 5d SCFTs

Hülya Argüz

University of Georgia

String-Math 2024

June 10th 2024, ICTP/Italy

¹Alexeev–Argüz–Bousseau, "The KSBA moduli space of stable log Calabi-Yau surfaces", arXiv:2402.15117.

 $^{^2\}mbox{Argüz-Bousseau},$ "Non-toric brane webs, Calabi-Yau 3-folds, and 5d SCFTs", in preparation.

• KSBA moduli spaces of toric surfaces

- Mirror symmetry CY 3-folds in the "toric set-up"
- KSBA moduli spaces of log Calabi-Yau surfaces
 - Mirror symmetry for CY 3-folds in the "non-toric set-up"

The KSBA moduli space of stable log Calabi–Yau surfaces, up to a finite cover, is a toric variety.

Toward 5d SCFTs...

Moduli spaces in algebraic geometry

- $\overline{\mathcal{M}}_{g,n}$: Deligne–Mumford "moduli space of stable curves" $(\mathcal{C}, p_1, \dots, p_n)$,
 - C: reduced curve with arithmetic genus g has at worst nodal singularities
 - $p_1, \cdots p_n$: distinct smooth points on C
 - ▶ Stability condition: $\operatorname{Aut}(\mathcal{C}, p_1, \dots, p_n) < \infty \iff K_{\mathcal{C}} + \sum_i p_i$ is ample

• $\overline{\mathcal{M}}_{g,n}$ is a proper Deligne–Mumford stack of dimension 3g - 3 + n

The KSBA moduli space

- \mathcal{M}^{KSBA} : "moduli space of stable pairs" (Y, B), where Y is a projective variety, B is a Q-divisor.
 - ► (Y, B) has semi-log-canonical (slc) singularities
 - Stability condition: $K_Y + B$ is Q-Cartier and ample

- Connected components of are proper Deligne-Mumford stacks
 - ► Not generally irreducible → Describe the geometry of irreducible components of *M^{KSBA}*.

The toric set-up

• *P*: lattice polytope in $\mathbb{R}^n \rightsquigarrow$ polarized projective toric variety

•
$$Y = \operatorname{Proj} \mathbb{C}[C(P)_{\mathbb{Z}}]$$

- $D = -K_Y$: Toric boundary divisor
- L: ample line bundle, $H^0(Y, L) \cong \bigoplus_{p \in P_{\mathbb{Z}}} \mathbb{C}z^p$

Example

Polarized toric varieties (Y, D, L) from "momentum polytopes" P

Figure: LHS: (\mathbb{P}^2 , $\mathcal{O}(3)$), RHS:(dP_4 , $-K_{dP_4}$)

The KSBA moduli space of stable toric varieties

• $\mathcal{M}_{(Y,D,L)}$: closure in \mathcal{M}^{KSBA} of the locus of stable pairs $(Y, D + \epsilon C)$, where $C \in |L|$ and $0 < \epsilon << 1$.

► C is torically transverse in Y ↔ doesn't intersect 0 dim'l strata of D

Theorem (Alexeev, 2002)

The (normalization of the) moduli space $\mathcal{M}_{(Y,D,L)}$ is a toric variety with associated fan given by the secondary fan¹ of the momentum polytope of (Y, D, L).

¹Gelfand–Kapranov–Zelevinsky, "Discriminants, resultants, and multidimensional determinants"

KSBA moduli spaces of stable toric varieties

• Maximal cones of the "secondary fan": "regular triangulations of P"

Example

The KSBA moduli space for $(dP_4, -K_{dP_4})$ with $C \in |-K_{dP_4}|$ is \mathbb{P}^2

KSBA moduli spaces of stable toric varieties

Consider all divisors

$$C = \{\sum_{p \in P_{\mathbb{Z}}} a_p z^p = 0\} \in |L|, \text{ with } a_p \in \mathbb{C}^*$$

- ▶ All such C are "torically transverse" \rightsquigarrow (Y, D + ϵ C) is "KSBA stable"
- The space of all such divisors is the torus $(\mathbb{C}^*)^{|P_{\mathbb{Z}}| \dim(Y) 1}$
- Regular triangulation \rightsquigarrow degeneration of $(Y, D + \epsilon H)$
- Torically transverse curves degenerate to torically transverse ones in the central fiber → the KSBA compactification of (C*)^{|P_Z|-dim(Y)-1} is a toric variety with fan the secondary fan for the momentum polytope of (Y, D, L).

KSBA moduli space as the complex moduli of a CY 3-fold

- Z ⊂ C²_{u,v} × (C*)²_{x,y} given by uv = f(x, y) for f(x, y) ∈ C[x^{±1}, y^{±1}]
 P: Newton polytope of f(x, y) ↔ polarized toric surface (Y, D, L)
- C⁰ = {f(x, y) = 0} ⊂ (C*)²_{x,y} ≅ Y \ D
 (Seiberg–Witten curve for the 4d N = 2 theory obtained by compactifying type IIB string theory on Z)

Figure: $Z := \{uv = f(x, y)\} \subset \operatorname{Tot}(L|_{Y \setminus D} \oplus \mathcal{O}_{Y \setminus D}) \to Y \setminus D$

- The KSBA moduli space M_(Y,D,L): complex moduli space of Z.
 Moduli of curves C ∈ |L|, obtained by varying coefficients of f(x, y).
- Mirror symmetry: $\mathcal{M}_{(Y,D,L)}$ should be the complexified Kähler moduli space of "the mirror to \mathcal{Z} " or "the mirror family to (Y, D, L)".

The mirror family \mathcal{X} to a max degeneration of (Y, D, L)

- Question: What is the "mirror" CY 3-fold $\overline{\mathcal{X}} = \mathcal{Z}^{\vee}$ - or the "mirror family" to (Y, D, L) ?
- $\overline{\mathcal{X}}$: (singular) toric variety $\overline{\mathcal{X}} \to \mathbb{A}^1$ with fan $\operatorname{Cone}(P \times \{1\}) \subset \mathbb{R}^3$
- The mirror family to a "maximal degeneration" of (Y, D, L):
 - Crepant resolution: $\mathcal{X} = \mathcal{K}_{\mathbb{P}^1 \times \mathbb{P}^1} \to \overline{\mathcal{X}}$

KSBA moduli spaces and mirror symmetry

- Expectation from mirror symmetry: $\mathcal{M}_{(Y,D,L)}$ is a toric variety with fan the union of the Kähler cones of all crepant resolutions of $\overline{\mathcal{X}}$.
 - Algebro-geometrically: closure of Kähler cones are Nef cones, that is cones of Nef divisors (divisors which have non-negative intersection with every effective curve class).
- Sean Keel: for a Mori dream space define the MoriFan(\mathcal{X})
 - complete fan with maximal cones all Nef cones of all toric crepant resolutions of $\overline{\mathcal{X}}$ and "Bogus cones".

KSBA moduli spaces and mirror symmetry

Example

The MoriFan for $\mathcal{X} = \mathcal{K}_{\mathbb{P}^1 \times \mathbb{P}^1} \to \overline{\mathcal{X}}$ is \mathbb{P}^2 .

- Birkar–Cascini–Hacon–McKernan: the crepant resolution X → X
 of a canonical singularity is a Mori dream space.
- Secondary fan for P = MoriFan of the mirror $\mathcal{X} \to \overline{\mathcal{X}}$ to (Y, D, L)

The non-toric set-up: polarized log Calabi-Yau surfaces

- Fix (Y, D, L): polarized log Calabi-Yau surface
 - Y: projective surface, $D \subset Y$: reduced, anticanonical divisor
 - (Y, D): log canonical (for instance Y: smooth, D: normal crossing)
 - L: ample line bundle on Y

Assume (Y, D) is **maximal**: $D \neq \emptyset$ and admits a 0-dimensional strata.

Example

• Y: projective toric variety, D: toric boundary divisor

Example

• $(\operatorname{Bl}_{p}\mathbb{P}^{2}, D)$, where p is a point and D is the strict transform of the toric boundary in \mathbb{P}^{2} .

Figure: RHS: "Symington polytope" for $\operatorname{Bl}_p \mathbb{P}^2$ at a non-toric point

Further examples of log CY surfaces

Example

• Another non-toric example: $Y = \mathbb{P}^2$, $D = \text{line} \cup \text{conic}$

Figure: A Symington polytope for (\mathbb{P}^2 , line \cup conic)

• Gross-Hacking-Keel: Any log Calabi-Yau surface admits a toric model, i.e. it can be obtained by a blow-up of a toric surface along smooth points of the toric boundary (up to (corner) blow-ups with centers on 0-dimensional strata of *D*).

The KSBA moduli of polarized log Calabi-Yau surfaces

• $\mathcal{M}_{(Y,D,L)}$: closure in \mathcal{M}^{KSBA} of the locus of stable pairs "deformation equivalent" to stable pairs $(Y, D + \epsilon C)$, where $C \in |L|$ and $0 < \epsilon << 1$.

• $(Y, D + \epsilon C)$: C does not contain strata of D

•
$$K_Y + D + \epsilon C$$
 is ample for $\epsilon > 0$

Theorem (Alexeev–A.–Bousseau., 2024)

The moduli space $\mathcal{M}_{(Y,D,L)}$ of polarized log Calabi–Yau surfaces, up to a finite cover, is a toric variety.

- This is a conjecture of Hacking-Keel-Yu in any dimension.
- Previously known cases:
 - Alexeev (2002): Toric varieties
 - ► Hacking-Keel-Yu (2000): for Y a del Pezzo surfaces of degree n where $1 \le n \le 6$, and D is a cycle of n many (-1)-curves, $L = -K_Y$.

Strategy

Intrinsic mirror (Gross-Siebert)

- Step 1: Construct the mirror $\mathcal{X} \to \overline{\mathcal{X}} \to \Delta$ to (max deg of) (Y, D, L) \rightsquigarrow Let \mathcal{M}_{sec} : toric variety with fan MoriFan $(\mathcal{X}/\overline{\mathcal{X}})$
- Step 2: Construct the "double mirror": $(\mathcal{Y}, \mathcal{D} + \epsilon \mathcal{C}) \rightarrow \mathcal{M}_{sec}$
- Step 3: Prove (𝔅, 𝔅 + ϵ𝔅) → 𝑘_{sec} is a KSBA stable family and the general fiber is deformation equivalent to (𝔅, 𝔅, 𝔅, 𝔅).
- Step 4: Show $\mathcal{M}_{sec} \to \mathcal{M}_{(Y,D,L)}$ is finite and surjective.

Step 1: overview

Step 1: the normal crossing surface \mathcal{X}_0

• Engel-Friedman: Any (Y, D, L) has a "nice" Symington polytope P with a central point.

Theorem (Alexeev–A.–Bousseau)

There is a regular triangulation T of P and a maximal degeneration of (Y, D, L) with special fiber Y_0 whose intersection complex is (P, T).

- *X*₀: normal crossing surface with "dual intersection complex" (*P*, *T*).
 ▶ irreducible components *X_v* of *X*₀: vertices *v* ∈ *P*
 - v: non-singular point ⇒ X_v is smooth toric (non-compact if v ∈ ∂P)
 v: singular point ⇒ X_v is a smooth log CY surface, which we obtain by a Q-Gorenstein smoothing of a toric surface with quotient Wahl singularities locally of the form A²/¹/_{n²}(1, an 1).

Example

For $(\mathbb{P}^2, \text{line} \cup \text{conic})$: \mathcal{X}_0 is a union of 2 copies of \mathbb{A}^2 and a $\mathbb{P}^1 \times \mathbb{A}^1$ (with a non-toric boundary).

Figure: The intersection and dual intersection complexes for \mathcal{X}_0

Theorem (Alexeev–A.–Bousseau)

There exists a d-semistable gluing of X_v 's to \mathcal{X}_0 and a smoothing $\mathcal{X} \to \Delta = \operatorname{Spec} \mathbb{C}[[t]]$ of it such that

- The total space \mathcal{X} is smooth and $\mathcal{X}_0 \subset \mathcal{X}$ is a reduced normal crossing divisor (i.e. $\mathcal{X} \to \Delta$ is a semistable degeneration).
- \mathcal{X} is quasi-projective and $K_{\mathcal{X}} = 0$.
- There exist a contraction $\mathcal{X} \to \overline{\mathcal{X}}$, such that $\overline{\mathcal{X}}$ is affine with canonical singularities and $\mathcal{X} \to \overline{\mathcal{X}}$ is a projective crepant resolution $\rightsquigarrow \mathcal{X}$ is a Mori dream space.
- Proof uses log smooth deformation theory

Step 2: the intrinsic mirror to the mirror $\mathcal{X} \to \Delta$

• Gross–Siebert: given a semistable (projective) family of Calabi–Yau's $\mathcal{X} \to \Delta$, construct the intrinsic mirror

$$\mathcal{Y}_{\mathcal{X}} = \operatorname{Proj}\left(\bigoplus_{p \in C(P)_{\mathbb{Z}}} \operatorname{Spf}\mathbb{C}[[\mathsf{NE}(\mathcal{X})]]\vartheta_{p}\right)$$

 $NE(\mathcal{X})$: Mori cone of effective curve classes (dual to $Nef(\mathcal{X}/\overline{\mathcal{X}})$).

- Structure constants: log Gromov–Witten invariants of ACGS.
- Subtlety: the semi-stable mirror $\mathcal{X} \to \Delta$ is not projective but we can generalize the intrinsic mirror construction.

Theorem (Alexeev–A.–Bousseau)

The intrinsic mirror extends over the affine toric variety $\operatorname{Spec} \mathbb{C}[\mathsf{NE}(\mathcal{X})]$.

Proof: uses the birational geometry of the crepant resolution X → X
 to constrain the curve classes appearing in the intrinsic mirror
 construction.

Gluing intrinsic mirrors to all crepant resolutions of $\overline{\mathcal{X}}$

- Show ϑ_p , for $p \in \operatorname{Int} C(P)_{\mathbb{Z}}$ define an ideal \rightsquigarrow divisor $\mathcal{D}_{\mathcal{X}} \subset \mathcal{Y}_{\mathcal{X}}$.
- There is a natural line bundle L_X = O_{Y_X}(1) with sections ϑ_p, for p ∈ P_Z. Define the divisor

$$\mathcal{C}_{\mathcal{X}} = \left\{ \sum_{p \in P_{\mathbb{Z}}} \vartheta_p = 0 \right\} \in |\mathcal{L}_{\mathcal{X}}|.$$

• Run the intrinsic mirror construction for every projective crepant resolution $\mathcal{X}' \to \overline{\mathcal{X}}$.

Theorem (Alexeev–A.–Bousseau)

The families $(\mathcal{Y}_{\mathcal{X}'}, \mathcal{D}_{\mathcal{X}'} + \epsilon \mathcal{C}_{\mathcal{X}'})$ glue and naturally extend into a family

$$(\mathcal{Y}, \mathcal{D} + \epsilon \mathcal{C}) \longrightarrow \mathcal{M}_{sec},$$

of surfaces over the toric variety \mathcal{M}_{sec} with fan the Morifan $(\mathcal{X}/\overline{\mathcal{X}})$.

Step 3: KSBA stability of the mirror family

Theorem (Alexeev–A.–Bousseau)

The double mirror $(\mathcal{Y}, \mathcal{D} + \epsilon \mathcal{C}) \rightarrow \mathcal{M}_{sec}$ is a family of KSBA stable log Calabi–Yau surfaces, with general fiber deformation equivalent to (Y, D, L).

To prove the KSBA stability:

- Over the dense torus in \mathcal{M}_{sec} : any fiber (Y_t, D_t, L_t) of $(\mathcal{Y}, \mathcal{D}, \mathcal{L})$ is irreducible, by canonical scattering (Gross-Siebert).
 - $C_t \in |L_t|$ does not pass through the 0 dim'l strata of D_t : analysing the restriction of the ϑ -functions defining C_t to D_t .
- On the boundary of \mathcal{M}_{sec} : fibers $(Y_t, D_t, L_t) = \bigcup_i (Y_i, D_i, L_i)$, where each (Y_i, D_i, L_i) is the mirror to a crepant resolution $\mathcal{X}_i \to \overline{\mathcal{X}_i}$ then apply induction.

To prove the general fiber (Y_t, D_t, L_t) is def. equivalent to (Y, D, L):

• Show (Y_t, D_t, L_t) is diffeomorphic to (Y, D, L), then apply previous results of Friedman.

Step 4: The KSBA moduli space as a finite cover of \mathcal{M}_{sec}

• By universal property of $\mathcal{M}_{(Y,D,L)}$, obtain a map $\mathcal{M}_{sec} \to \mathcal{M}_{(Y,D,L)}$.

Theorem (Alexeev–A.–Bousseau)

 $\mathcal{M}_{\textit{sec}} \rightarrow \mathcal{M}_{(Y,D,L)}$ is finite and surjective.

- Proof of finiteness: the family $(\mathcal{Y}, \mathcal{D}, \mathcal{L})$ is non-constant in restriction to one-dimensional torus strata of \mathcal{M}_{sec} ,
- Proof of surjectivity: we use tropical period computations following [Lai-Zhou, Ruddat-Siebert].

Example

• For (\mathbb{P}^2 , line \cup conic), we have $\mathcal{M}^{KSBA} = \mathcal{M}_{sec} = \mathbb{P}^1$.

$$[\mathbb{P}^1 \times \mathbb{A}^1] \longrightarrow \operatorname{Nef} \mathcal{X}$$

- Webs of 5-branes in IIB string theory → 5d N = 1 SCFT
 M-theory on ℝ⁵ × X
 , in the toric set-up (for toric X)
- Webs of 5 and 7-branes in IIB string theory \rightsquigarrow 5d $\mathcal{N}=1$ SCFT
 - M-theory on $\mathbb{R}^5 \times \overline{\mathcal{X}}$, where $\mathcal{X} \to \overline{\mathcal{X}}$ is the semi-stable mirror to \mathcal{Z} we described in the non-toric set-up.

For more see Pierrick Bousseau's talk tomorrow!

