Anomaly cancellation in string theory using homotopy theory

Arun Debray — June 10, 2024

based on joint work with Ivano Basile, Matilda Delgado, Markus Dierigl, Jonathan J. Heckman, Miguel Montero, and Matthew Yu

• This talk is about using bordism (a tool from algebraic topology) to calculate anomalies in string theories

- This talk is about using bordism (a tool from algebraic topology) to calculate anomalies in string theories
- Potential things one could get out of this talk

- This talk is about using bordism (a tool from algebraic topology) to calculate anomalies in string theories
- Potential things one could get out of this talk
 - What is bordism, and why does it have anything to do with string theory?

- This talk is about using bordism (a tool from algebraic topology) to calculate anomalies in string theories
- Potential things one could get out of this talk
 - What is bordism, and why does it have anything to do with string theory?
 - How can one extract a concrete mathematical question out of the physics question of calculating an anomaly?

- This talk is about using bordism (a tool from algebraic topology) to calculate anomalies in string theories
- Potential things one could get out of this talk
 - What is bordism, and why does it have anything to do with string theory?
 - How can one extract a concrete mathematical question out of the physics question of calculating an anomaly?
 - What is the lay of the land for these computations for various theories? What makes a given example tractable or difficult?

Disclaimers

• People mean a lot of things when they say "anomaly" and I am not talking about all of them! The focus is 't Hooft anomalies

Disclaimers

- People mean a lot of things when they say "anomaly" and I am not talking about all of them! The focus is 't Hooft anomalies
- "The anomaly of a string theory" is mathematically contentious for a couple of reasons
 - That phrase suggests a settled mathematical formulation of string theory, which is not true, so **the mathematically correct thing to discuss is anomalies of supergravity theories**, which are expected to be low-energy limits of string theories
 - In order to have a quantity that can be evaluated on a spacetime background, the whole discussion takes place before performing the sum over such backgrounds

• If a group G acts linearly on a vector pace V, the G-action sends lines through 0 to lines through 0, so there is an induced action on projective space $\mathbb{P}(V)$

- If a group G acts linearly on a vector pace V, the G-action sends lines through 0 to lines through 0, so there is an induced action on projective space $\mathbb{P}(V)$
- The converse is false: there are group actions on projective spaces that do not lift to linear actions (e.g. spin-1/2 representations of SO_n)

- If a group G acts linearly on a vector pace V, the G-action sends lines through 0 to lines through 0, so there is an induced action on projective space $\mathbb{P}(V)$
- The converse is false: there are group actions on projective spaces that do not lift to linear actions (e.g. spin-1/2 representations of SO_n)
- In quantum mechanics, the space of states is the projectivization of a Hilbert space \mathcal{H} , but one usually prefers to work directly with \mathcal{H}
 - And indeed, some constructions *require* working with \mathcal{H} rather than $\mathbb{P}(\mathcal{H})$, such as gauging a symmetry

- If a group G acts linearly on a vector pace V, the G-action sends lines through 0 to lines through 0, so there is an induced action on projective space $\mathbb{P}(V)$
- The converse is false: there are group actions on projective spaces that do not lift to linear actions (e.g. spin-1/2 representations of SO_n)
- In quantum mechanics, the space of states is the projectivization of a Hilbert space \mathcal{H} , but one usually prefers to work directly with \mathcal{H}
 - And indeed, some constructions *require* working with \mathcal{H} rather than $\mathbb{P}(\mathcal{H})$, such as gauging a symmetry
- In quantum mechanics, the **anomaly** of a G-action on P(H) is defined to be the obstruction to lifting to a linear action of G on H

• More generally, in QFT or quantum gravity we need to fit spacetime into this

- More generally, in QFT or quantum gravity we need to fit spacetime into this
- So there is data of an obstruction associated to every choice of spacetime, and it ought to be both local and unitary, whatever that would entail

- More generally, in QFT or quantum gravity we need to fit spacetime into this
- So there is data of an obstruction associated to every choice of spacetime, and it ought to be both local and unitary, whatever that would entail
- Following that line of logic leads to the conclusion that the anomaly itself *is* a field theory α, but in one dimension higher (Freed-Teleman '12); related to **anomaly inflow**

- More generally, in QFT or quantum gravity we need to fit spacetime into this
- So there is data of an obstruction associated to every choice of spacetime, and it ought to be both local and unitary, whatever that would entail
- Following that line of logic leads to the conclusion that the anomaly itself *is* a field theory α, but in one dimension higher (Freed-Teleman '12); related to **anomaly inflow**
- In addition, the state spaces of α must be one-dimensional: α is an **invertible field theory** (Freed-Moore '04)

Theorem (Freed-Hopkins '16, Grady '23)

Let $\operatorname{IFT}_{\xi}^{n}$ denote the abelian group of n-dimensional reflection-positive IFTs on manifolds with ξ -structure. There is a short exact sequence

$$0 \longrightarrow \operatorname{Hom}(\Omega_n^{\xi}, \mathbb{C}^{\times})_{\operatorname{tors}} \longrightarrow \operatorname{IFT}_{\xi}^n \longrightarrow \operatorname{Hom}(\Omega_{n+1}^{\xi}, \mathbb{Z}) \longrightarrow 0.$$

Tangential structure

- In order to discuss a field theory, we have to know what data is needed to define it on a manifold
- " ξ " appears to encode precisely the topological part of that data: a **tangential structure** (Lashof '63)

Tangential structure

- In order to discuss a field theory, we have to know what data is needed to define it on a manifold
- " ξ " appears to encode precisely the topological part of that data: a **tangential structure** (Lashof '63)
- This is anything like an orientation, spin structure, principal bundle, ... but no metric or connections!

Tangential structure

- In order to discuss a field theory, we have to know what data is needed to define it on a manifold
- " ξ " appears to encode precisely the topological part of that data: a **tangential structure** (Lashof '63)
- This is anything like an orientation, spin structure, principal bundle, ... but no metric or connections!
- The point is, to specify a field theory, and therefore define IFTⁿ_ξ, you need to know the dimension and the tangential structure of the possible spacetimes of the theory

• We need to define Ω_n^{ξ}

- We need to define Ω_n^{ξ}
- This is a bordism group: specifically, it is the commutative monoid of closed n-manifolds with ξ-structure, modulo those which are boundaries of compact (n + 1)-dimensional ξ-manifolds

- We need to define Ω_n^{ξ}
- This is a bordism group: specifically, it is the commutative monoid of closed n-manifolds with ξ-structure, modulo those which are boundaries of compact (n + 1)-dimensional ξ-manifolds
- Surprise! It turns out Ω_n^{ξ} is always an abelian group the inverse of M is, roughly speaking, M with the opposite orientation, because $\partial(M \times [0, 1]) \cong M \amalg M^{\text{op}}$.

- We need to define Ω_n^{ξ}
- This is a bordism group: specifically, it is the commutative monoid of closed n-manifolds with ξ-structure, modulo those which are boundaries of compact (n + 1)-dimensional ξ-manifolds
- Surprise! It turns out Ω_n^{ξ} is always an abelian group the inverse of M is, roughly speaking, M with the opposite orientation, because $\partial(M \times [0, 1]) \cong M \amalg M^{\text{op}}$.
- This group is called the *n*-dimensional ξ -bordism group

Reflection-positive invertible field theories (IFTs)

Theorem (Freed-Hopkins '16, Grady '23)

Let $\operatorname{IFT}_{\xi}^{n+1}$ denote the abelian group of (n+1)-dimensional reflection-positive IFTs on manifolds with ξ -structure. There is a short exact sequence

$$0 \longrightarrow \operatorname{Hom}(\Omega_{n+1}^{\xi}, \mathbb{C}^{\times})_{\operatorname{tors}} \longrightarrow \operatorname{IFT}_{\xi}^{n+1} \longrightarrow \operatorname{Hom}(\Omega_{n+2}^{\xi}, \mathbb{Z}) \longrightarrow 0.$$

Interpretation for an anomaly of an n-dimensional theory:

- The quotient is a free group of characteristic classes in dimension (n + 2), namely the **anomaly polynomial** or **local anomaly**, visible perturbatively
- The sub is the topological anomaly theories, and is not seen perturbatively. Sometimes called the **global anomaly**

• We will focus on the situation when the local anomaly is trivial, since the local anomaly can be addressed with perturbative methods

- We will focus on the situation when the local anomaly is trivial, since the local anomaly can be addressed with perturbative methods
- With this assumption, pulling back to the sub in the short exact sequence, we want to study torsion homomorphisms $\Omega_{n+1}^{\xi} \to \mathbb{C}^{\times}$

- We will focus on the situation when the local anomaly is trivial, since the local anomaly can be addressed with perturbative methods
- With this assumption, pulling back to the sub in the short exact sequence, we want to study torsion homomorphisms $\Omega_{n+1}^{\xi} \to \mathbb{C}^{\times}$
- The first step, then, is to determine the isomorphism type of this bordism group and find manifolds which represent a generating set

Best case: the obstruction vanishes!

• Sometimes $\Omega_{n+1}^{\xi} = 0$: every closed manifold that admits a ξ -structure is the boundary of another ξ -manifold

Best case: the obstruction vanishes!

- Sometimes $\Omega_{n+1}^{\xi} = 0$: every closed manifold that admits a ξ -structure is the boundary of another ξ -manifold
- E.g. n + 1 = 2, ξ = orientation: all closed, oriented surfaces are disjoint unions of many-holed tori and can be "filled in"

Best case: the obstruction vanishes!

- Sometimes $\Omega_{n+1}^{\xi} = 0$: every closed manifold that admits a ξ -structure is the boundary of another ξ -manifold
- E.g. n + 1 = 2, ξ = orientation: all closed, oriented surfaces are disjoint unions of many-holed tori and can be "filled in"
- We saw that the anomaly vanishes on manifolds which are boundaries, so in this setting the anomaly must be trivial!

• Starting data on a manifold M: a spin structure and two principal E_8 -bundles $P, Q \to M$

- Starting data on a manifold M: a spin structure and two principal E_8 -bundles $P, Q \to M$
- To cancel the perturbative anomaly, need the **Green-Schwarz data** of a trivialization of $\lambda(M) c(P) c(Q) \in H^4(M; \mathbb{Z})$
 - λ is the " $\frac{1}{2}p_1$ " class on spin manifolds
 - c is the canonical generator of $H^4(BE_8;\mathbb{Z})$

- Starting data on a manifold M: a spin structure and two principal E_8 -bundles $P, Q \to M$
- To cancel the perturbative anomaly, need the **Green-Schwarz data** of a trivialization of $\lambda(M) c(P) c(Q) \in H^4(M; \mathbb{Z})$
 - λ is the " $\frac{1}{2}p_1$ " class on spin manifolds
 - c is the canonical generator of $H^4(BE_8;\mathbb{Z})$
- This trivialization is an example of a **twisted string structure**

How hard is the computation of Ω_{11}^{ξ} ?

- Generally speaking, bordism computations increase in difficulty as one ascends the Whitehead tower of the orthogonal group
 - Unoriented: determined by mod 2 homology (Thom '54)

How hard is the computation of Ω_{11}^{ξ} ?

- Generally speaking, bordism computations increase in difficulty as one ascends the Whitehead tower of the orthogonal group
 - Unoriented: determined by mod 2 homology (Thom '54)
 - Oriented: mostly determined by \mathbb{Z} homology (Wall '60)
How hard is the computation of Ω_{11}^{ξ} ?

- Generally speaking, bordism computations increase in difficulty as one ascends the Whitehead tower of the orthogonal group
 - Unoriented: determined by mod 2 homology (Thom '54)
 - Oriented: mostly determined by \mathbb{Z} homology (Wall '60)
 - Spin: usually more complicated than ordinary homology (Anderson-Brown-Peterson '67)

How hard is the computation of Ω_{11}^{ξ} ?

- Generally speaking, bordism computations increase in difficulty as one ascends the Whitehead tower of the orthogonal group
 - Unoriented: determined by mod 2 homology (Thom '54)
 - Oriented: mostly determined by \mathbb{Z} homology (Wall '60)
 - Spin: usually more complicated than ordinary homology (Anderson-Brown-Peterson '67)
 - String: not known above dimension 49 (Giambalvo '71, Hovey-Ravenel '95, Mahowald-Gorbounov '95); difficult even in string-theoretic dimensions

- Witten '86 reduced from twisted string bordism to twisted spin bordism (much easier!)
- Stong '86 then showed $\Omega_{11}^{\xi} = 0$

- Witten '86 reduced from twisted string bordism to twisted spin bordism (much easier!)
- Stong '86 then showed $\Omega_{11}^{\xi} = 0$
- Conclusion: the $E_8 \times E_8$ heterotic string is anomaly-free

• If $\Omega_{n+1}^{\xi} \neq 0$, the anomaly isn't automatically 0

- If $\Omega_{n+1}^{\xi} \neq 0$, the anomaly isn't automatically 0
- Find a set of generators for Ω_{n+1}^{ξ} , then evaluate the anomaly on that set

- If $\Omega_{n+1}^{\xi} \neq 0$, the anomaly isn't automatically 0
- Find a set of generators for Ω_{n+1}^{ξ} , then evaluate the anomaly on that set
- In practice, this set is not so big

- If $\Omega_{n+1}^{\xi} \neq 0$, the anomaly isn't automatically 0
- Find a set of generators for Ω_{n+1}^{ξ} , then evaluate the anomaly on that set
- In practice, this set is not so big
- Freed-Hopkins '21 (M-theory with parity symmetry), D.-Yu '22 (a 4d U-duality symmetry), D. '23, Basile-D.-Delgado-Montero '23 (E₈ × E₈ heterotic string theory)

$E_8 \times E_8$ heterotic string theory, again

- $E_8 \times E_8$ heterotic string theory has a $\mathbb{Z}/2$ symmetry which switches the two E_8 -bundles
- Is this Z/2 symmetry anomalous?

$E_8 \times E_8$ heterotic string theory, again

- $E_8 \times E_8$ heterotic string theory has a $\mathbb{Z}/2$ symmetry which switches the two E_8 -bundles
- Is this Z/2 symmetry anomalous?
- Canceling the anomaly is important for the 9d *CHL string* to be well-defined

$E_8 \times E_8$ heterotic string theory, again

- $E_8 \times E_8$ heterotic string theory has a $\mathbb{Z}/2$ symmetry which switches the two E_8 -bundles
- Is this Z/2 symmetry anomalous?
- Canceling the anomaly is important for the 9d *CHL string* to be well-defined
- Witten's argument breaks the $\mathbb{Z}/2$ symmetry, so does not apply here

Theorem (D., '23, Basile-D.-Delgado-Montero, '23)

Let ξ denote the tangential structure for the $E_8 \times E_8$ heterotic string with its $\mathbb{Z}/2$ symmetry.

 Ω^ξ₁₁ is isomorphic to either Z/8 ⊕ Z/8, Z/16 ⊕ Z/4, Z/32 ⊕ Z/2, or Z/64. A generating set of manifolds is Bott × ℝP³ and a certain (S⁴ × S⁴)-bundle over ℝP³. Theorem (D., '23, Basile-D.-Delgado-Montero, '23)

Let ξ denote the tangential structure for the $E_8 \times E_8$ heterotic string with its $\mathbb{Z}/2$ symmetry.

- Ω^ξ₁₁ is isomorphic to either Z/8 ⊕ Z/8, Z/16 ⊕ Z/4, Z/32 ⊕ Z/2, or Z/64. A generating set of manifolds is Bott × ℝP³ and a certain (S⁴ × S⁴)-bundle over ℝP³.
- 2. The anomaly theory $\alpha_{\rm HE} \colon \Omega_{11}^{\xi} \to \mathbb{C}^{\times}$ vanishes.

Note: Tachikawa-Yamashita '22 provide a different (and very cool!) argument for anomaly vanishing, which has not yet been shown to be mathematically equivalent to ours

• The Pontrjagin-Thom theorem identifies Ω_*^{ξ} with the homotopy groups of an object $MT\xi$ called a Thom spectrum

- The Pontrjagin-Thom theorem identifies Ω_*^{ξ} with the homotopy groups of an object $MT\xi$ called a Thom spectrum
- Everything in homotopy theory has an enormous amount of algebraic data associated to it, e.g. cohomology groups, Steenrod operations, ...

• The point of algebraic topology is that topological facts, such as the size of a homotopy group, constrain algebraic facts

- The point of algebraic topology is that topological facts, such as the size of a homotopy group, constrain algebraic facts
- Now turn it around use algebraic information to constrain topology

- The point of algebraic topology is that topological facts, such as the size of a homotopy group, constrain algebraic facts
- Now turn it around use algebraic information to constrain topology
- In general the relationship is subtle, so rather than make these inferences "by hand," work with well-studied machines that organize the flow of information back and forth

- Common technique: a spectral sequence
- "It has been suggested that the name 'spectral' was given because, like spectres, spectral sequences are terrifying, evil, and dangerous. I have heard no one disagree with this interpretation, which is perhaps not surprising since I just made it up." – Ravi Vakil

• A spectral sequence begins with the E_2 -page, an approximation of the thing you want to calculate; successive pages refine that approximation until you get the correct answer

- A spectral sequence begins with the E_2 -page, an approximation of the thing you want to calculate; successive pages refine that approximation until you get the correct answer
- Looks scary (so much is happening!) but that's really structure we can use to solve this computation

- A spectral sequence begins with the E_2 -page, an approximation of the thing you want to calculate; successive pages refine that approximation until you get the correct answer
- Looks scary (so much is happening!) but that's really structure we can use to solve this computation
- In this computation we use the Adams spectral sequence

The *E*₂-page

• A nonzero anomaly is not necessarily a bad thing

- A nonzero anomaly is not necessarily a bad thing
- However, the anomalies of two dual theories should be the same, and there are lots of string dualities

- A nonzero anomaly is not necessarily a bad thing
- However, the anomalies of two dual theories should be the same, and there are lots of string dualities
- Upshot: in many situations of interest, physical expectation is that the anomaly vanishes

- A nonzero anomaly is not necessarily a bad thing
- However, the anomalies of two dual theories should be the same, and there are lots of string dualities
- Upshot: in many situations of interest, physical expectation is that the anomaly vanishes
- And yet, sometimes things go wrong!

• Type IIB string theory has an $\mathrm{SL}_2(\mathbb{Z})$ symmetry given by S-duality

- Type IIB string theory has an $SL_2(\mathbb{Z})$ symmetry given by S-duality
- More accurately: on bosons this is a well-defined SL₂(Z)-action, but on fermions it is projective, and one must lift to the **metaplectic group** Mp₂(Z)

- Type IIB string theory has an $SL_2(\mathbb{Z})$ symmetry given by S-duality
- More accurately: on bosons this is a well-defined SL₂(Z)-action, but on fermions it is projective, and one must lift to the metaplectic group Mp₂(Z)
- So the tangential structure is $\operatorname{Spin} \times_{\{\pm 1\}} \operatorname{Mp}_2(\mathbb{Z})$
 - We have Spin × Mp₂(Z), but the two fermion parity operators act identically so we can identify them

- Type IIB string theory has an $SL_2(\mathbb{Z})$ symmetry given by S-duality
- More accurately: on bosons this is a well-defined SL₂(Z)-action, but on fermions it is projective, and one must lift to the metaplectic group Mp₂(Z)
- So the tangential structure is $\operatorname{Spin} \times_{\{\pm 1\}} \operatorname{Mp}_2(\mathbb{Z})$
 - We have Spin × Mp₂(Z), but the two fermion parity operators act identically so we can identify them
- In fact, including worldsheet orientation reversal (Tachikawa-Yonekura '18) enlarges the duality group to GL₂(Z) and the tangential structure to Spin ×_{{±1}} GL₂⁺(Z)

 Spin ×_{±1} GL⁺₂(ℤ)-structures are twisted spin structures, so this is less complicated than the twisted string examples

- Spin ×_{±1} GL⁺₂(ℤ)-structures are twisted spin structures, so this is less complicated than the twisted string examples
- Many examples of twisted spin bordism computations in the literature (see in particular Beaudry-Campbell '18)

- Spin ×_{±1} GL⁺₂(ℤ)-structures are twisted spin structures, so this is less complicated than the twisted string examples
- Many examples of twisted spin bordism computations in the literature (see in particular Beaudry-Campbell '18)
- Comes down to: how complicated is the classifying space of $\operatorname{GL}_2(\mathbb{Z})$?

- Spin ×_{±1} GL⁺₂(ℤ)-structures are twisted spin structures, so this is less complicated than the twisted string examples
- Many examples of twisted spin bordism computations in the literature (see in particular Beaudry-Campbell '18)
- Comes down to: how complicated is the classifying space of $\operatorname{GL}_2(\mathbb{Z})$?
- Turns out, not complicated: you can replace $\operatorname{GL}_2(\mathbb{Z})$ with the dihedral group D_{24}

The spectral sequence computation

The spectral sequence computation

Theorem (D.-Dierigl-Heckan-Montero '21, '23)

1.
$$\Omega_{11}^{\operatorname{Spin}\times_{\{\pm 1\}}\operatorname{GL}_{2}^{+}(\mathbb{Z})} \cong \mathbb{Z}/8 \oplus (\mathbb{Z}/2)^{\oplus 9} \oplus \mathbb{Z}/27 \oplus \mathbb{Z}/3$$

Theorem (D.-Dierigl-Heckan-Montero '21, '23)

1.
$$\Omega_{11}^{\operatorname{Spin}\times_{\{\pm 1\}}\operatorname{GL}_{2}^{+}(\mathbb{Z})} \cong \mathbb{Z}/8 \oplus (\mathbb{Z}/2)^{\oplus 9} \oplus \mathbb{Z}/27 \oplus \mathbb{Z}/3.$$

 The following manifolds' bordism classes generate that bordism group: Q¹¹₄, HP² × L³₄, RP¹¹, HP² × RP³, S¹ × Milnor's X₁₀, an RP⁵-bundle over RP⁶, L¹¹₃, and HP² × L³₃.

• Each kind of particle contributes a term to the anomaly

- Each kind of particle contributes a term to the anomaly
- The fermions' contribution are η -invariants

- Each kind of particle contributes a term to the anomaly
- The fermions' contribution are η -invariants
- In general, η -invariants are pretty difficult to compute, but a formula due to Donnelly ' '78 gets us most of the way

- Each kind of particle contributes a term to the anomaly
- The fermions' contribution are η -invariants
- In general, η -invariants are pretty difficult to compute, but a formula due to Donnelly ' '78 gets us most of the way
- The self-dual field's contribution is a bit fancier (Hsieh-Tachikawa-Yonekura '20):
 - The self-duality structure induces a quadratic refinement q of the torsion linking pairing
 - The value of the anomaly is another η -invariant plus $\operatorname{Arf}(q) q(c)$, where c is the field strength

Theorem (D.-Dierigl-Heckman-Montero, '21)

The anomaly theory described above is nontrivial on L_{11}^3 , $\mathbb{HP}^2 \times L_3^3$, Q_{11}^4 , and $\mathbb{HP}^2 \times L_4^3$; it vanishes on the other generators, except maybe X_{11} .

Note: you do not need anything about bordism to make this computation; it just told us what manifolds to look at

What physical insight does this surprise tell us? A few options:

1. Maybe type IIB string theory is actually anomalous! (**This** would be a big problem... but fortunately there are better paths forward)

What physical insight does this surprise tell us? A few options:

- 1. Maybe type IIB string theory is actually anomalous! (**This** would be a big problem... but fortunately there are better paths forward)
- 2. Insert a torsion correction term into the IIB action to make the problem go away
 - This is what we did
 - At least on spin-Mp₂(Z) manifolds, this (1) works and (2) only works for the specific anomaly that IIB has, suggesting it is something canonical

3. Alternatively: wait, shouldn't we have been using K-theory the whole time?

- 3. Alternatively: wait, shouldn't we have been using K-theory the whole time?
 - It is a difficult open problem to reconcile S-duality in IIB with the *K*-theoretic description of the RR field

- 3. Alternatively: wait, shouldn't we have been using K-theory the whole time?
 - It is a difficult open problem to reconcile S-duality in IIB with the *K*-theoretic description of the RR field
 - But we know how at least some of the elements of $\operatorname{GL}_2^+(\mathbb{Z})$ ought to act on *K*-theory, so it would be interesting to try this technique for that subgroup

There are always more computations to do whose answers would be physically interesting, but I wanted to mention a few ideas which will also require new mathematics

1. Anomalies of orbifolds and equivariant bordism

There are always more computations to do whose answers would be physically interesting, but I wanted to mention a few ideas which will also require new mathematics

- 1. Anomalies of orbifolds and equivariant bordism
 - String theorists sometimes consider more general backgrounds than manifolds, including "mildly stacky" spaces
 - These are quotients of manifolds by not-necessarily-free group actions

There are always more computations to do whose answers would be physically interesting, but I wanted to mention a few ideas which will also require new mathematics

- 1. Anomalies of orbifolds and equivariant bordism
 - String theorists sometimes consider more general backgrounds than manifolds, including "mildly stacky" spaces
 - These are quotients of manifolds by not-necessarily-free group actions
 - Are reflection-positive invertible field theories on G-orbifolds equivalent to bordism invariants of manifolds with G-actions? (See Szűcs-Galatius '18)

There are always more computations to do whose answers would be physically interesting, but I wanted to mention a few ideas which will also require new mathematics

- 1. Anomalies of orbifolds and equivariant bordism
 - String theorists sometimes consider more general backgrounds than manifolds, including "mildly stacky" spaces
 - These are quotients of manifolds by not-necessarily-free group actions
 - Are reflection-positive invertible field theories on *G*-orbifolds equivalent to bordism invariants of manifolds with *G*-actions? (See Szűcs-Galatius '18)
 - Note: equivariant bordism is difficult to compute

2. String^h structures and the Diaconescu-Moore-Witten anomaly (WIP with M. Yu)

- 2. String^h structures and the Diaconescu-Moore-Witten anomaly (WIP with M. Yu)
 - Devalapurkar defined "string^h structures," which are to string structures as $spin^c$ structures are to spin structures

- 2. String^h structures and the Diaconescu-Moore-Witten anomaly (WIP with M. Yu)
 - Devalapurkar defined "string^h structures," which are to string structures as spin^c structures are to spin structures
 - This structure looks a lot like the data needed for type IIA string theory, and implies the Diaconescu-Moore-Witten anomaly cancellation condition $W_7 = 0$

- 2. String^h structures and the Diaconescu-Moore-Witten anomaly (WIP with M. Yu)
 - Devalapurkar defined "string^h structures," which are to string structures as spin^c structures are to spin structures
 - This structure looks a lot like the data needed for type IIA string theory, and implies the Diaconescu-Moore-Witten anomaly cancellation condition $W_7 = 0$
 - Devalapurkar also proved a homotopical result relating string^h bordism to a cohomology theory called $tmf_1(3)$, and implying string^h bordism is **easier to compute** than string bordism!

- 2. String^h structures and the Diaconescu-Moore-Witten anomaly (WIP with M. Yu)
 - Devalapurkar defined "string^h structures," which are to string structures as spin^c structures are to spin structures
 - This structure looks a lot like the data needed for type IIA string theory, and implies the Diaconescu-Moore-Witten anomaly cancellation condition $W_7 = 0$
 - Devalapurkar also proved a homotopical result relating string^h bordism to a cohomology theory called $tmf_1(3)$, and implying string^h bordism is **easier to compute** than string bordism!
 - The plan: express data in IIA in terms of (twisted) string^h structures and obtain tractable computations of anomalies