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Some possible goals of this talk

e This talk is about using bordism (a tool from algebraic
topology) to calculate anomalies in string theories
® Potential things one could get out of this talk
® What is bordism, and why does it have anything to do
with string theory?
® How can one extract a concrete mathematical question out
of the physics question of calculating an anomaly?
® What is the lay of the land for these computations for
various theories? What makes a given example tractable or
difficult?
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Disclaimers

® People mean a lot of things when they say “anomaly” and 1
am not talking about all of them! The focus is 't Hooft
anomalies

® “The anomaly of a string theory” is mathematically
contentious for a couple of reasons

® That phrase suggests a settled mathematical formulation of
string theory, which is not true, so the mathematically
correct thing to discuss is anomalies of supergravity
theories, which are expected to be low-energy limits of
string theories

® In order to have a quantity that can be evaluated on a
spacetime background, the whole discussion takes place
before performing the sum over such backgrounds
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e [f a group G acts linearly on a vector pace V, the G-action
sends lines through 0 to lines through 0, so there is an
induced action on projective space P(V)

® The converse is false: there are group actions on projective
spaces that do not lift to linear actions (e.g. spin-1/2
representations of SO,,)

® In quantum mechanics, the space of states is the

projectivization of a Hilbert space H, but one usually
prefers to work directly with H

® And indeed, some constructions require working with H
rather than P(H), such as gauging a symmetry
¢ [n quantum mechanics, the anomaly of a G-action on
P(H) is defined to be the obstruction to lifting to a linear
action of G on H
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What is an anomaly?

® More generally, in QFT or quantum gravity we need to fit
spacetime into this

® So there is data of an obstruction associated to every
choice of spacetime, and it ought to be both local and
unitary, whatever that would entail

¢ Following that line of logic leads to the conclusion that the
anomaly itself 4s a field theory «, but in one dimension
higher (Freed-Teleman '12); related to anomaly inflow

® In addition, the state spaces of o must be one-dimensional:
a is an invertible field theory (Freed-Moore '04)



Reflection-positive invertible field theories (IFTs)

Theorem (Freed-Hopkins '16, Grady '23)

Let IFT¢ denote the abelian group of n-dimensional
reflection-positive IFTs on manifolds with &-structure. There is
a short exact sequence

0 — Hom (95, C*)yors — IFTE — Hom(Q,,1,Z) — 0.
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Tangential structure

® In order to discuss a field theory, we have to know what
data is needed to define it on a manifold

e “&” appears to encode precisely the topological part of that
data: a tangential structure (Lashof '63)

® This is anything like an orientation, spin structure,
principal bundle, ... but no metric or connections!

® The point is, to specify a field theory, and therefore define

IFT¢, you need to know the dimension and the tangential
structure of the possible spacetimes of the theory
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Bordism

e We need to define Q%

¢ This is a bordism group: specifically, it is the
commutative monoid of closed n-manifolds with
&-structure, modulo those which are boundaries of compact
(n + 1)-dimensional ¢-manifolds

® Surprise! It turns out Q4 is always an abelian group — the
inverse of M is, roughly speaking, M with the opposite
orientation, because 9(M x [0,1]) = M II M°P.

® This group is called the n-dimensional {-bordism group



Reflection-positive invertible field theories (IFTs)

Theorem (Freed-Hopkins '16, Grady '23)

Let IFT?Jrl denote the abelian group of (n + 1)-dimensional
reflection-positive IFTs on manifolds with &-structure. There is
a short exact sequence

0 — Hom (€, ;,C*)ors — IFTPT — Hom(€,,,,

Z) — 0.
Interpretation for an anomaly of an n-dimensional theory:

® The quotient is a free group of characteristic classes in
dimension (n + 2), namely the anomaly polynomial or
local anomaly, visible perturbatively

® The sub is the topological anomaly theories, and is not
seen perturbatively. Sometimes called the global anomaly



¢ We will focus on the situation when the local anomaly is
trivial, since the local anomaly can be addressed with
perturbative methods



¢ We will focus on the situation when the local anomaly is
trivial, since the local anomaly can be addressed with
perturbative methods

e With this assumption, pulling back to the sub in the short
exact sequence, we want to study torsion homomorphisms
Qi 41— C



¢ We will focus on the situation when the local anomaly is
trivial, since the local anomaly can be addressed with
perturbative methods

e With this assumption, pulling back to the sub in the short
exact sequence, we want to study torsion homomorphisms
Qi 41— C

e The first step, then, is to determine the isomorphism type
of this bordism group and find manifolds which represent a
generating set
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Best case: the obstruction vanishes!

® Sometimes sz 41 = 0: every closed manifold that admits a

&-structure is the boundary of another &-manifold
¢ E.g. n+1=2,¢&=orientation: all closed, oriented surfaces
are disjoint unions of many-holed tori and can be “filled in”

® We saw that the anomaly vanishes on manifolds which are
boundaries, so in this setting the anomaly must be trivial!
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Example: Es x E5 heterotic string theory

¢ Starting data on a manifold M: a spin structure and two
principal Eg-bundles P,QQ — M
® To cancel the perturbative anomaly, need the
Green-Schwarz data of a trivialization of
AM) = e(P) = ¢(Q) € HY(M; Z)
® )\ is the “%pl” class on spin manifolds
® cis the canonical generator of H*(BFg;Z)
e This trivialization is an example of a twisted string

structure
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Example: Es x E5 heterotic string theory

How hard is the computation of Qﬁl?

® Generally speaking, bordism computations increase in
difficulty as one ascends the Whitehead tower of the
orthogonal group
® Unoriented: determined by mod 2 homology (Thom ’54)
® QOriented: mostly determined by Z homology (Wall ’60)
® Spin: usually more complicated than ordinary homology
(Anderson-Brown-Peterson ’67)
® String: not known above dimension 49 (Giambalvo ’71,
Hovey-Ravenel '95, Mahowald-Gorbounov ’95); difficult
even in string-theoretic dimensions
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Example: Es x E5 heterotic string theory

® Witten '86 reduced from twisted string bordism to twisted
spin bordism (much easier!)

® Stong ’86 then showed Qi =0

e Conclusion: the Eg x Eg heterotic string is anomaly-free
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Next-best case

o [f sz+1 # 0, the anomaly isn’t automatically 0

® Find a set of generators for Qi 41, then evaluate the
anomaly on that set

® In practice, this set is not so big

® Freed-Hopkins 21 (M-theory with parity symmetry), D.-Yu
'22 (a 4d U-duality symmetry), D. ’23,
Basile-D.-Delgado-Montero 23 (Eg x Eg heterotic string
theory)
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Es x Es heterotic string theory, again

® g X FEg heterotic string theory has a Z/2 symmetry which
switches the two Eg-bundles

¢ Is this Z/2 symmetry anomalous?

® (Canceling the anomaly is important for the 9d CHL string
to be well-defined

e Witten’s argument breaks the Z/2 symmetry, so does not
apply here
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Theorem (D., '23, Basile-D.-Delgado-Montero, ’23)
Let £ denote the tangential structure for the Eg X Eg heterotic
string with its 7.2 symmeltry.
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Es x Es heterotic string theory, again

Theorem (D., '23, Basile-D.-Delgado-Montero, ’23)
Let £ denote the tangential structure for the Eg X Eg heterotic
string with its 7.2 symmeltry.
1. le is isomorphic to either /8 © /8, Z/16 & Z/4,
7)32®7)2, or Z.]64. A generating set of manifolds is
Bott x RP? and a certain (S* x S*)-bundle over RP?.

2. The anomaly theory apg: Q”’lrl — C* vanishes.
Note: Tachikawa-Yamashita '22 provide a different (and very

cool!) argument for anomaly vanishing, which has not yet been
shown to be mathematically equivalent to ours
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How to calculate the bordism group

® The Pontrjagin-Thom theorem identifies Of with the
homotopy groups of an object MT¢ called a T hom
spectrum

® Everything in homotopy theory has an enormous amount

of algebraic data associated to it, e.g. cohomology groups,
Steenrod operations, ...
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How to calculate the bordism group

® The point of algebraic topology is that topological facts,
such as the size of a homotopy group, constrain
algebraic facts

e Now turn it around — use algebraic information to
constrain topology

® In general the relationship is subtle, so rather than make
these inferences “by hand,” work with well-studied
machines that organize the flow of information back and
forth



Spectral sequences

¢ Common technique: a spectral sequence

® “Tt has been suggested that the name ‘spectral’ was given
because, like spectres, spectral sequences are terrifying,
evil, and dangerous. I have heard no one disagree with this
interpretation, which is perhaps not surprising since I just
made it up.” — Ravi Vakil



Spectral sequences

® A spectral sequence begins with the /o-page; an
approximation of the thing you want to calculate;
successive pages refine that approximation until you get
the correct answer



Spectral sequences

® A spectral sequence begins with the /o-page; an
approximation of the thing you want to calculate;
successive pages refine that approximation until you get
the correct answer

® Looks scary (so much is happening!) but that’s really
structure we can use to solve this computation



Spectral sequences

® A spectral sequence begins with the /o-page; an
approximation of the thing you want to calculate;
successive pages refine that approximation until you get
the correct answer

® Looks scary (so much is happening!) but that’s really
structure we can use to solve this computation

® In this computation we use the Adams spectral
sequence



The £,-page

t—s—
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Worst case: the anomaly is nonzero!

® A nonzero anomaly is not necessarily a bad thing

® However, the anomalies of two dual theories should be the
same, and there are lots of string dualities

Upshot: in many situations of interest, physical
expectation is that the anomaly vanishes

And yet, sometimes things go wrong!
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Type IIB string theory

e Type IIB string theory has an SLg(Z) symmetry given by
S-duality

® More accurately: on bosons this is a well-defined
SLa(Z)-action, but on fermions it is projective, and one
must lift to the metaplectic group Mpy(Z)

® So the tangential structure is Spin X (413 Mp,(Z)

® We have Spin x Mp,(Z), but the two fermion parity
operators act identically so we can identify them

® In fact, including worldsheet orientation reversal
(Tachikawa-Yonekura ’18) enlarges the duality group to
GL2(Z) and the tangential structure to Spin X 41} GL3 (Z2)



How hard is the bordism computation?

® Spin X (41} GLJ (Z)-structures are twisted spin structures,
so this is less complicated than the twisted string examples



How hard is the bordism computation?

® Spin X (41} GLJ (Z)-structures are twisted spin structures,
so this is less complicated than the twisted string examples

® Many examples of twisted spin bordism computations in
the literature (see in particular Beaudry-Campbell '18)



How hard is the bordism computation?

® Spin X (41} GLJ (Z)-structures are twisted spin structures,
so this is less complicated than the twisted string examples

® Many examples of twisted spin bordism computations in
the literature (see in particular Beaudry-Campbell '18)

® Comes down to: how complicated is the classifying
space of GLy(Z)?



How hard is the bordism computation?

® Spin X (41} GLJ (Z)-structures are twisted spin structures,
so this is less complicated than the twisted string examples

® Many examples of twisted spin bordism computations in
the literature (see in particular Beaudry-Campbell '18)

® Comes down to: how complicated is the classifying
space of GLy(Z)?

® Turns out, not complicated: you can replace GLy(7Z)
with the dihedral group Doy
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Bordism results

Theorem (D.-Dierigl-Heckan-Montero ’21, '23)

Spinx GLI(z
1 Qllle {+13GL3 (

)~ 7/80 (2/2)% © /21 © 7/3.



Bordism results

Theorem (D.-Dierigl-Heckan-Montero ’21, '23)

in 5
1oy ® o 784 (2/2)%0 © 227 @ 2/3.

2. The following manifolds’ bordism classes generate that
bordism group: QL1 HP? x L3, RP!, HP? x RP?,
S1 x Milnor’s X1, an RP°-bundle over RPS, Lzl%l, and
HP? x L3.
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Evaluating the anomaly

Fach kind of particle contributes a term to the anomaly

The fermions’ contribution are n-invariants

In general, np-invariants are pretty difficult to compute, but
a formula due to Donnelly ’ ’78 gets us most of the way

The self-dual field’s contribution is a bit fancier
(Hsieh-Tachikawa-Yonekura "20):

® The self-duality structure induces a quadratic refinement ¢
of the torsion linking pairing

® The value of the anomaly is another n-invariant plus
Arf(q) — q(c), where c is the field strength



The anomaly is nonzero! Oh dear

Theorem (D.-Dierigl-Heckman-Montero, '21)

The anomaly theory described above is nontrivial on L3,
HP? x L3, Q},, and HP? x L3; it vanishes on the other
generators, except maybe Xq1.

Note: you do not need anything about bordism to make this
computation; it just told us what manifolds to look at
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The anomaly is nonzero! Oh dear

What physical insight does this surprise tell us? A few
options:

1. Maybe type IIB string theory is actually anomalous! (This
would be a big problem. .. but fortunately there are
better paths forward)

2. Insert a torsion correction term into the IIB action to make
the problem go away

® This is what we did

® At least on spin-Mp,(Z) manifolds, this (1) works and (2)
only works for the specific anomaly that IIB has,
suggesting it is something canonical
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The anomaly is nonzero! Oh dear

3. Alternatively: wait, shouldn’t we have been using K-theory
the whole time?
® [t is a difficult open problem to reconcile S-duality in IIB
with the K-theoretic description of the RR field
* But we know how at least some of the elements of GL3 (Z)
ought to act on K-theory, so it would be interesting to
try this technique for that subgroup
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Things to study in the future

There are always more computations to do whose answers
would be physically interesting, but I wanted to mention a few
ideas which will also require new mathematics
1. Anomalies of orbifolds and equivariant bordism
® String theorists sometimes consider more general
backgrounds than manifolds, including “mildly stacky”
spaces
® These are quotients of manifolds by not-necessarily-free
group actions
® Are reflection-positive invertible field theories on
G-orbifolds equivalent to bordism invariants of
manifolds with G-actions? (See Sztics-Galatius ’18)
® Note: equivariant bordism is difficult to compute
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Things to study in the future

2. String” structures and the Diaconescu-Moore-Witten
anomaly (WIP with M. Yu)

® Devalapurkar defined “string” structures,” which are to
string structures as spin® structures are to spin structures

® This structure looks a lot like the data needed for type ITA
string theory, and implies the
Diaconescu-Moore-Witten anomaly cancellation
condition W; =0

® Devalapurkar also proved a homotopical result relating
string” bordism to a cohomology theory called tmf,(3),
and implying string” bordism is easier to compute than
string bordism!

® The plan: express data in IIA in terms of (twisted) string”
structures and obtain tractable computations of anomalies



