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Some possible goals of this talk

• This talk is about using bordism (a tool from algebraic

topology) to calculate anomalies in string theories

• Potential things one could get out of this talk
• What is bordism, and why does it have anything to do
with string theory?

• How can one extract a concrete mathematical question out
of the physics question of calculating an anomaly?

• What is the lay of the land for these computations for
various theories? What makes a given example tractable or
di�cult?
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Disclaimers

• People mean a lot of things when they say �anomaly� and I

am not talking about all of them! The focus is 't Hooft

anomalies

• �The anomaly of a string theory� is mathematically
contentious for a couple of reasons
• That phrase suggests a settled mathematical formulation of
string theory, which is not true, so the mathematically

correct thing to discuss is anomalies of supergravity

theories, which are expected to be low-energy limits of
string theories

• In order to have a quantity that can be evaluated on a
spacetime background, the whole discussion takes place
before performing the sum over such backgrounds
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What is an anomaly?

• If a group G acts linearly on a vector pace V , the G-action
sends lines through 0 to lines through 0, so there is an

induced action on projective space P(V )

• The converse is false: there are group actions on projective

spaces that do not lift to linear actions (e.g. spin-1/2
representations of SOn)

• In quantum mechanics, the space of states is the
projectivization of a Hilbert space H, but one usually
prefers to work directly with H
• And indeed, some constructions require working with H
rather than P(H), such as gauging a symmetry

• In quantum mechanics, the anomaly of a G-action on

P(H) is de�ned to be the obstruction to lifting to a linear

action of G on H
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What is an anomaly?

• More generally, in QFT or quantum gravity we need to �t

spacetime into this

• So there is data of an obstruction associated to every

choice of spacetime, and it ought to be both local and

unitary, whatever that would entail

• Following that line of logic leads to the conclusion that the

anomaly itself is a �eld theory α, but in one dimension

higher (Freed-Teleman '12); related to anomaly in�ow

• In addition, the state spaces of α must be one-dimensional:

α is an invertible �eld theory (Freed-Moore '04)
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Reflection-positive invertible field theories (IFTs)

Theorem (Freed-Hopkins '16, Grady '23)

Let IFTn
ξ denote the abelian group of n-dimensional

re�ection-positive IFTs on manifolds with ξ-structure. There is

a short exact sequence

0 −→ Hom(Ωξ
n,C×)tors −→ IFTn

ξ −→ Hom(Ωξ
n+1,Z) −→ 0.



Tangential structure

• In order to discuss a �eld theory, we have to know what

data is needed to de�ne it on a manifold

• �ξ� appears to encode precisely the topological part of that

data: a tangential structure (Lashof '63)

• This is anything like an orientation, spin structure,

principal bundle, . . . but no metric or connections!

• The point is, to specify a �eld theory, and therefore de�ne

IFTn
ξ , you need to know the dimension and the tangential

structure of the possible spacetimes of the theory
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Bordism

• We need to de�ne Ωξ
n

• This is a bordism group: speci�cally, it is the

commutative monoid of closed n-manifolds with

ξ-structure, modulo those which are boundaries of compact

(n+ 1)-dimensional ξ-manifolds

• Surprise! It turns out Ωξ
n is always an abelian group � the

inverse of M is, roughly speaking, M with the opposite

orientation, because ∂(M × [0, 1]) ∼= M qMop.

• This group is called the n-dimensional ξ-bordism group
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Reflection-positive invertible field theories (IFTs)

Theorem (Freed-Hopkins '16, Grady '23)

Let IFTn+1
ξ denote the abelian group of (n+ 1)-dimensional

re�ection-positive IFTs on manifolds with ξ-structure. There is

a short exact sequence

0 −→ Hom(Ωξ
n+1,C

×)tors −→ IFTn+1
ξ −→ Hom(Ωξ

n+2,Z) −→ 0.

Interpretation for an anomaly of an n-dimensional theory:

• The quotient is a free group of characteristic classes in

dimension (n+ 2), namely the anomaly polynomial or

local anomaly, visible perturbatively

• The sub is the topological anomaly theories, and is not

seen perturbatively. Sometimes called the global anomaly



• We will focus on the situation when the local anomaly is

trivial, since the local anomaly can be addressed with

perturbative methods

• With this assumption, pulling back to the sub in the short

exact sequence, we want to study torsion homomorphisms

Ωξ
n+1 → C×

• The �rst step, then, is to determine the isomorphism type

of this bordism group and �nd manifolds which represent a

generating set
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Best case: the obstruction vanishes!

• Sometimes Ωξ
n+1 = 0: every closed manifold that admits a

ξ-structure is the boundary of another ξ-manifold

• E.g. n+ 1 = 2, ξ = orientation: all closed, oriented surfaces

are disjoint unions of many-holed tori and can be ��lled in�

• We saw that the anomaly vanishes on manifolds which are

boundaries, so in this setting the anomaly must be trivial!
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Example: E8 × E8 heterotic string theory

• Starting data on a manifold M : a spin structure and two

principal E8-bundles P,Q→M

• To cancel the perturbative anomaly, need the
Green-Schwarz data of a trivialization of
λ(M)− c(P )− c(Q) ∈ H4(M ;Z)
• λ is the � 12p1� class on spin manifolds
• c is the canonical generator of H4(BE8;Z)

• This trivialization is an example of a twisted string

structure
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Example: E8 × E8 heterotic string theory

How hard is the computation of Ωξ
11?

• Generally speaking, bordism computations increase in
di�culty as one ascends the Whitehead tower of the
orthogonal group
• Unoriented: determined by mod 2 homology (Thom '54)

• Oriented: mostly determined by Z homology (Wall '60)
• Spin: usually more complicated than ordinary homology
(Anderson-Brown-Peterson '67)

• String: not known above dimension 49 (Giambalvo '71,
Hovey-Ravenel '95, Mahowald-Gorbounov '95); di�cult
even in string-theoretic dimensions
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• Witten '86 reduced from twisted string bordism to twisted

spin bordism (much easier!)

• Stong '86 then showed Ωξ
11 = 0

• Conclusion: the E8 × E8 heterotic string is anomaly-free
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Next-best case

• If Ωξ
n+1 6= 0, the anomaly isn't automatically 0

• Find a set of generators for Ωξ
n+1, then evaluate the

anomaly on that set

• In practice, this set is not so big

• Freed-Hopkins '21 (M-theory with parity symmetry), D.-Yu

'22 (a 4d U-duality symmetry), D. '23,

Basile-D.-Delgado-Montero '23 (E8 × E8 heterotic string

theory)
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E8 × E8 heterotic string theory, again

• E8 × E8 heterotic string theory has a Z/2 symmetry which

switches the two E8-bundles

• Is this Z/2 symmetry anomalous?

• Canceling the anomaly is important for the 9d CHL string

to be well-de�ned

• Witten's argument breaks the Z/2 symmetry, so does not

apply here
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E8 × E8 heterotic string theory, again

Theorem (D., '23, Basile-D.-Delgado-Montero, '23)

Let ξ denote the tangential structure for the E8 × E8 heterotic

string with its Z/2 symmetry.

1. Ωξ
11 is isomorphic to either Z/8⊕ Z/8, Z/16⊕ Z/4,

Z/32⊕ Z/2, or Z/64. A generating set of manifolds is

Bott× RP3 and a certain (S4 × S4)-bundle over RP3.

2. The anomaly theory αHE : Ωξ
11 → C× vanishes.

Note: Tachikawa-Yamashita '22 provide a di�erent (and very

cool!) argument for anomaly vanishing, which has not yet been

shown to be mathematically equivalent to ours
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How to calculate the bordism group

• The Pontrjagin-Thom theorem identi�es Ωξ
∗ with the

homotopy groups of an object MT ξ called a Thom

spectrum

• Everything in homotopy theory has an enormous amount

of algebraic data associated to it, e.g. cohomology groups,

Steenrod operations, . . .
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How to calculate the bordism group

• The point of algebraic topology is that topological facts,

such as the size of a homotopy group, constrain

algebraic facts

• Now turn it around � use algebraic information to

constrain topology

• In general the relationship is subtle, so rather than make

these inferences �by hand,� work with well-studied

machines that organize the �ow of information back and

forth
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Spectral sequences

• Common technique: a spectral sequence

• �It has been suggested that the name `spectral' was given

because, like spectres, spectral sequences are terrifying,

evil, and dangerous. I have heard no one disagree with this

interpretation, which is perhaps not surprising since I just

made it up.� � Ravi Vakil



Spectral sequences

• A spectral sequence begins with the E2-page, an

approximation of the thing you want to calculate;

successive pages re�ne that approximation until you get

the correct answer

• Looks scary (so much is happening!) but that's really

structure we can use to solve this computation

• In this computation we use the Adams spectral

sequence
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Worst case: the anomaly is nonzero!

• A nonzero anomaly is not necessarily a bad thing

• However, the anomalies of two dual theories should be the

same, and there are lots of string dualities

• Upshot: in many situations of interest, physical

expectation is that the anomaly vanishes

• And yet, sometimes things go wrong!
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Type IIB string theory

• Type IIB string theory has an SL2(Z) symmetry given by

S-duality

• More accurately: on bosons this is a well-de�ned

SL2(Z)-action, but on fermions it is projective, and one

must lift to the metaplectic group Mp2(Z)

• So the tangential structure is Spin×{±1} Mp2(Z)
• We have Spin×Mp2(Z), but the two fermion parity
operators act identically so we can identify them

• In fact, including worldsheet orientation reversal

(Tachikawa-Yonekura '18) enlarges the duality group to

GL2(Z) and the tangential structure to Spin×{±1} GL+
2 (Z)
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How hard is the bordism computation?

• Spin×{±1} GL+
2 (Z)-structures are twisted spin structures,

so this is less complicated than the twisted string examples

• Many examples of twisted spin bordism computations in

the literature (see in particular Beaudry-Campbell '18)

• Comes down to: how complicated is the classifying

space of GL2(Z)?

• Turns out, not complicated: you can replace GL2(Z)
with the dihedral group D24
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Bordism results

Theorem (D.-Dierigl-Heckan-Montero '21, '23)

1. Ω
Spin×{±1}GL+

2 (Z)
11

∼= Z/8⊕ (Z/2)⊕9 ⊕ Z/27⊕ Z/3.

2. The following manifolds' bordism classes generate that

bordism group: Q11
4 , HP2 × L3

4, RP11, HP2 × RP3,

S1 ×Milnor's X10, an RP5-bundle over RP6, L11
3 , and

HP2 × L3
3.
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Evaluating the anomaly

• Each kind of particle contributes a term to the anomaly

• The fermions' contribution are η-invariants

• In general, η-invariants are pretty di�cult to compute, but

a formula due to Donnelly ' '78 gets us most of the way

• The self-dual �eld's contribution is a bit fancier
(Hsieh-Tachikawa-Yonekura '20):
• The self-duality structure induces a quadratic re�nement q
of the torsion linking pairing

• The value of the anomaly is another η-invariant plus
Arf(q)− q(c), where c is the �eld strength
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The anomaly is nonzero! Oh dear

Theorem (D.-Dierigl-Heckman-Montero, '21)

The anomaly theory described above is nontrivial on L3
11,

HP2 × L3
3, Q

4
11, and HP2 × L3

4; it vanishes on the other

generators, except maybe X11.

Note: you do not need anything about bordism to make this

computation; it just told us what manifolds to look at



The anomaly is nonzero! Oh dear

What physical insight does this surprise tell us? A few

options:

1. Maybe type IIB string theory is actually anomalous! (This

would be a big problem. . . but fortunately there are

better paths forward)

2. Insert a torsion correction term into the IIB action to make
the problem go away
• This is what we did
• At least on spin-Mp2(Z) manifolds, this (1) works and (2)
only works for the speci�c anomaly that IIB has,
suggesting it is something canonical
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The anomaly is nonzero! Oh dear

3. Alternatively: wait, shouldn't we have been using K-theory
the whole time?

• It is a di�cult open problem to reconcile S-duality in IIB
with the K-theoretic description of the RR �eld

• But we know how at least some of the elements of GL+
2 (Z)

ought to act on K-theory, so it would be interesting to

try this technique for that subgroup
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Things to study in the future

There are always more computations to do whose answers

would be physically interesting, but I wanted to mention a few

ideas which will also require new mathematics

1. Anomalies of orbifolds and equivariant bordism

• String theorists sometimes consider more general
backgrounds than manifolds, including �mildly stacky�
spaces

• These are quotients of manifolds by not-necessarily-free
group actions

• Are re�ection-positive invertible �eld theories on

G-orbifolds equivalent to bordism invariants of

manifolds with G-actions? (See Sz¶cs-Galatius '18)
• Note: equivariant bordism is di�cult to compute
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Things to study in the future

2. Stringh structures and the Diaconescu-Moore-Witten
anomaly (WIP with M. Yu)

• Devalapurkar de�ned �stringh structures,� which are to
string structures as spinc structures are to spin structures

• This structure looks a lot like the data needed for type IIA
string theory, and implies the

Diaconescu-Moore-Witten anomaly cancellation

condition W7 = 0
• Devalapurkar also proved a homotopical result relating
stringh bordism to a cohomology theory called tmf 1(3),
and implying stringh bordism is easier to compute than
string bordism!

• The plan: express data in IIA in terms of (twisted) stringh

structures and obtain tractable computations of anomalies
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