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| work at CERN.



| work at CERN.

Accelerate particles to high energy, collide them and measure
the outcome.

Compare against theoretical predictions.

Theoretical prediction: Scattering Amplitudes (S-matrix)
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Feynman diagram:
compute probability of a given outcome




Crossing symmetry

« Scattering amplitudes exhibit an interesting property.
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Crossing symmetry

Scattering amplitudes exhibit an interesting property.

Crossing symmetry

N ~ A
S  (s,1) S  (,9)
VAN /N

s ~ energy [ ~ angle

Useful for the computation.
First found through the computation (~50’s)

Rigorous proof in some cases. [Bros, Epstein, Glaser], ....., [Mizera]
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In the presence of certain® categorical symmetries,
crossing symmetry of S-matrix is modified.
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In the presence of certain® categorical symmetries,
crossing symmetry of S-matrix is modified.
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* Theories in 1+1 dimensions.

« Use integrable theories to check the claim but applies to non-integrable as well.
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Categorical Symmetries in 1+1 dim

« Symmetry generators in QFT: (d-1)-dim topological operators

/ S’\-/ [Gaiotto, Kapustin, Seiberg, Willet]
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Categorical Symmetries in 1+1 dim
Symmetry generators in QFT: (d-1)-dim topological operators
/ S’\/ [Gaiotto, Kapustin, Seiberg, Willet]
8a 8a

They can be multiplied. 8a8b = 8¢ 8ape €GC

Categorical symmetries (in 1+1 dim):

Fusion category gagb — 2 Nabcgc (N~ € Zs)
<

Cc

Simplest 1+1-d system with non-invertible symmetry:

Ising model at critical temperature (Ising CFT)



Non-Invertible Kramers-Wannier
» 2d Ising model: Z=) exp [ﬂz al-O'J]
{o} <ij>

Ordered | Disordered .

Kramers-Wannier duality e Vv & tanh ﬂhigh
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« Symmetry of 2d Ising CFT
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Non-Invertible Kramers-Wannier
» 2d Ising model: Z=) exp [ﬂz al-O'J]
{o} <ij>

Ordered | Disordered .

@

Kramers-Wannier symmetry ﬂ/

Symmetry of 2d Ising CFT

| +)
=Y

2 _ 2 _ _ _
n-=1, N =1+n, Nn=nN =N e e 10
In Ising CFT, scattering amplitudes are trivial: S(s,7) = — 1

KW symmetry broken by (relevant) deformation

Nontrivial theory preserving KW symmetry...?



Flow from ftricritical Ising

« Ising CFT is the simplest unitary minimal model (%5 4).

« Next simplest is tricritical Ising CFT (A 4 5).

« (Categorical symmetric deformation of tricritical:  (Chang, Lin, shao, wang, Yin]
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Flow from ftricritical Ising

« Ising CFT is the simplest unitary minimal model (%5 4).

« Next simplest is tricritical Ising CFT (A 4 5).

« (Categorical symmetric deformation of tricritical:  (Chang, Lin, shao, wang, Yin]

Tricritical Ising
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Gapped \ N\ /\_/ Ordered \ N\ / Disordered \/



Action on vacua

VAVAV

=) 10y [|+)

« Z,-defect exchanges | + ) and | —) \
n:l+)<|-)
. J-defect: NNO)=|+)+]|-)

N+)=H]-)=10)

» “Superposition” of disordered and ordered vacua in Ising



Remarks

Tricritical Ising

— 13 + ¢ 3

Gapped \ /N\/\/ Ordered \_N\J Disordered \_/

« 3 is the minimal number of vacua allowed by categorical sym.

100 010 001 =1, N2=14n,
t=[o10|, N=|101|, n=(010
001 010 100/ Ny =gN =N

Entries need to be non-negative integers
« Similar pattern persists for higher minimal models

ﬂn,n+1 - (/)1,3 — gapped with (n'l) vacua %n,n+1 + ¢1,3 - %n—l,n



2.Integrable flow from tricritical Ising and S-matrix



Integrability along the flow
— P13

Tricritical Ising ———

« At UV CFT fixed point, there exist co many higher spin charges.

because of Virasoro

« Perturbation by (/51,3 preserve higher spin charges.

[Zamolodchikov 1989]
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Integrability along the flow
— P13

Tricritical Ising ———

At UV CFT fixed point, there exist co many higher spin charges.

because of Virasoro

Perturbation by (/51,3 preserve higher spin charges.

[Zamolodchikov 1989]

Multi-particle S-matrix factorizes to 2—2 S-matrices.

[Shankar, Witten] [Parke]

2—2 S-matrices satisfy the Yang-Baxter equation.

b

Imposing unitarity, crossing & YB, the S-matrix can be almost
uniquely “bootstrapped”. [zamolodchikov 1991]



S-matrix by Zamolodchikov
» Particles in IR = kinks interpolating between adjacent vacua.

1/2

1/2 etc . O 1/2 1 *Warning: Change of notation!
» It also depends on total energy: s = (p, + p,)* = 4m* cosh*(6/2)

s+t =4m? t=—4m?sinh*(0/2)




S-matrix by Zamolodchikov
» Particles in IR = kinks interpolating between adjacent vacua.

1/2

1/2 etc . O 1/2 1 *Warning: Change of notation!
» It also depends on total energy: s = (p, + p,)* = 4m* cosh*(6/2)

s+t =4m? t=—4m?sinh*(0/2)

« Crossing symmetry & unitarity

a ])

Sab(g) = ¢ b = @ ¢ = 8b(im —0)
d a b

01 92 92 9]




S-matrix by Zamolodchikov
« Imposing crossing & unitarity & YB,

a b d e b
CHOESS b=t L =Sl —0) Y. S50)S5(—0) = = Gac
c d d a
01 0> 223 0, C ')
¢ 01 6 03 91

we can fix S-matrix uniquely (up to overall “CDD” factor) as

sinh (%) Opg + sinh (iw—@) Ouc

n

§ab(8)—Z(9) <%>% da,dc
de — dpdy dbdd

(n=3, dy=d;=1, d1/2:\/§)




S-matrix by Zamolodchikov
« Imposing crossing & unitarity & YB,

a b d e b
SHOESS b= T =S —0) 3, S(0)Si(-0) = = ac
c d d a
91 (92 02 91 C )

we can fix S-matrix uniquely (up to overall “CDD” factor) as

91 (92 93 9 1

Aafb — dadc 2m
Sdc (9) T Z(H) (W) dbdd

(n=3, dy=d;=1, d1/2:\/§)

n

160
[ dode i (£) Gpg + sinh (i2=2) 54

« We expect that it also preserves categorical symmetries:




Paradox




Paradox

dpdg

. We found that S commutes with n (Z,), but not with /.

3 o U o U
2-J-- 2 2 2 2
2 ? 1p ?7 0L L
= + N - Sei(0) =S4z 17 (0)
NEON-. oL \-- 2 2
4 0 0 5 0 0 5 0

» The following 4 properties are mutually incompatible.

« Unitarity

» Crossing
 Integrability (YB)

« Categorical symmetry

32 d.d. . . i
352(0) = 2(0) () [ sinth (£) Gy +sinh (“5=2) 8,



Paradox

s [ [dade R
S32(0) = 2(60) (e ) { T, Sinb () da + sinh (52) b

» The following 4 properties are mutually incompatible.

* Unitarity Q basic principle
» Crossing

 Integrability (YB)

« Categorical symmetry



Paradox

M) e dad, sinh (2) dpg + sinh (ﬂ) )
dydy n n ac

» The following 4 properties are mutually incompatible.

* Unitarity Q basic principle

» Crossing

 Integrability (YB) Q deformation of CFT

« Categorical symmetry Q deformation of CFT



Paradox

M) 3 dad, sinh (2) 5bd + sinh (ﬂ) 0
dydy n n ac

» The following 4 properties are mutually incompatible.

* Unitarity Q basic principle

* Crossing

 Integrability (YB) Q deformation of CFT

« Categorical symmetry Q deformation of CFT

« The only viable option is to give up crossing.



New proposal

d.d.
dpdg

sinh (%) Opa + sinh (z'7rn—9) Oac

S32(0) = 2(0) (

dede
dbdd

%% dadc - 0 K im—6
) {\/; sinh (g) Opq + sinh (T) 5ac:|
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New proposal
d,d.

sinh (%) Opg + sinh (iw_e) Oge

n

dpdg

R O3

Unitarity Yang-Baxter Categorical

« Crossing symmetry is modified:

Sae(0) =

« Physical origin? (The topic of the rest of the talk)



1.Non-invertible symmetries in 1+1 dim
2.Integrable flow from tricritical Ising and S-matrix
3. Derivation of modified crossing rules
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Key physical input

533(9)2 d b \/\/\/
0 1/2 1

04 02

* Inthe IR, the action of a kink on vacua = the action of symmetry line

N(=:v)

 The vacua are in 1-to-1 correspondence with symmetry lines.
|0) & 1 |1/2) & N |1) &5

(Regular representation of fusion category)

- All the vacua can be obtained from | Q) by acting symmetry lines.

N10) =[1/2) n|0)=11)



Warm up: action of symmetry line
 Consider a path integral on a large disk with BC “0”

(0|0)) = O =1 (State in open Hilbert space of TQFT)
0

« Other vacua can be obtained by acting symmetry lines.

. CL,' "o)~~‘
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‘ee’l, Quantum dim
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Consider a path integral on a large disk with BC “0”

(0|0)) = O =1 (State in open Hilbert space of TQFT)
0

Other vacua can be obtained by acting symmetry lines.
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Warm up: action of symmetry line
- Now consider a state with a kink interpolating @ and b vacua

[ 0
a; b)) = w {a;bla;b)y = /d d,d free = VT N



Warm up: action of symmetry line
- Now consider a state with a kink interpolating @ and b vacua

[ 0
. — ‘a ’ . . — = \/dadpd, Ny o°
’CL, b>> — W «Cl, b | a, b» =1/ dadbdv t‘::;:@ = Vdadpdy Nopa
« Matrix element between single-kink states:

{(a’;b'| Ly |a;b))
V (asblasb) (a’;b'|a’;b!

= = (dada,dbdb,dgdg)_

_ 1/a|p a a
- (dada’ dbdb/> [v b b/]



Warm up: action of symmetry line
- Now consider a state with a kink interpolating @ and b vacua

[ 0
. — ‘a ’ . . — = \/dadpd, Ny o°
’CL, b>> — W «Cl, b | a, b» =1/ dadbdv t‘::;:@ = Vdadpdy Nopa
« Matrix element between single-kink states:

{(a’;b'| Ly |a;b))
V (asblasb) (a’;b'|a’;b!

= = (dada,dbdb,dgdg)_

¢ a a

= (dgdgrdpdy)*? [v b b,] F-symbol

* Our S-matrix commutes with this action of non-invertible symmetries.



Modified crossing for S-matrix

* The IR dynamics is described by a nontrivial TQFT.
* Normalizations of in- and out-states are corrected by TQFT.

« Corrections depend on the channels we consider.



Modified crossing for S-matrix

* Kink creation operators are generally non-local.

Unclear how to get S-matrix from LSZ reduction.

« Use alternative (discussed in Itzykson-Zuber Ch.5)

S({pi}) = limg o0 [ T dvye @) [T (n - 8, )G{z(vp)})




Modified crossing for S-matrix

* Kink creation operators are generally non-local.

Unclear how to get S-matrix from LSZ reduction.

« Use alternative (discussed in ltzykson-Zuber Ch.5) ¢ 4
S({pi}) = limg o0 [ T dvye @) [T (n - 8, )G{z(vp)}) T
¢ ¢

* |n our case, 59°(0) o o‘o
>

 But we need to take into account normalization.
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Modified crossing for S-matrix

 Thus the correct expression should be

Sab(e) — o analyt. cont.
dc e e
A ) ’ ) ’
¢ v 0 P T ]
dy vy Sv b dy vy $w
) ] |} ) (] ()
\ el

* Numerator : disk correlation function, crossing symmetric.

 Denominator : depend on the channel we consider.



Modified crossing for S-matrix

Thus the correct expression should be
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analyt. cont.
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Numerator : disk correlation function, crossing symmetric.

Denominator : depend on the channel we consider.

Modified crossing:

I".Cl..‘\ I"H~~\
Peaaaa" A Scaaas" “

dy o YV v Y
Lesmmeal L LoD P d,d.
L ) 4 L) 4 a

ab _ ‘Q.C.c‘ ‘s.c.c' be (; . Sab 0 —
Sdc (9) - SO0 e S e Sad(“r 0) dC( ) dpdy

) ’ ) ’
[} L} [} [ ] [}

dy vy v dy vy
VAN
“'~-" “.-"

Spalim —0)
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Conclusion

Pecaane A Neao..-®

dy o vd v Y

dc o SO0 e O e ad\tTr de - d.d ad 20

2 ) [ 2 ) [ b d
P T P T

dt vy v dt vy v
R [}
A J ) ’ )

\ “-C.“ “-;"

In RG flows to gapped phase in 1+1 dim, non-invertible symmetries
and anomalies lead to modified crossing symmetry.

Physically, it comes from corrections to norms of in- and out-states
due to TQFT dynamics.



Conclusion

"’.CL.~~\ 2 a s,
Lal X A Pecaee"’
dy o Y v Y
SO = | —she e g ) Sa2(0) = [ Sede gte i g)
de = e e ad\'T de 4o, Zad (s
2 ) [ 2 ) [ b d
’ [ ] [ ] ’ [ ] [ ]
dt vy v dt vy v
(] ) ) [ ] )
L) [ S [}
\ “-.“ “-;"

In RG flows to gapped phase in 1+1 dim, non-invertible symmetries
and anomalies lead to modified crossing symmetry.

Physically, it comes from corrections to norms of in- and out-states
due to TQFT dynamics.

- Many other examples: ¢, ;-deformed 4, .| , ¢, ;-deformed tricritical

[Zamolodchikov] vs [Klassen-Melzer] vs [Smirnov] [Colomo, Koubek, Mussardo]

Similar modified crossing observed in Chern-Simons matter in 2+1 d.

[Mehta, Patel, Prakash, Minwalla, Sharmal,...

In our examples, 1. braiding is not important. 2. TQFT d.o.f is more hidden.
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S-matrix bootstrap with categorical symmetry (Haagerup fusion category)

[To appear with Copetti, Cordoval [WIP]



Fibonacci
.

Al/Q(g*) -

Found integrable theories at the cusps of the allowed region.
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« S-matrix bootstrap with categorical symmetry (Haagerup fusion category)

[To appear with Copetti, Cordoval

[WIP]

* Modified crossing in monopole scattering?

/
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[Csaki, Hong, Shirman, Telem, Terning, Waterbury]

[van Beest, Boyle Smith, Delmastro, Komargodski,
Tong]

[van Beest, Boyle Smith, Delmastro, Mouland,
Tong]

« Toy model for IR effects (Faddeev-Kulish) in gravity and gauge theory?



Back ups
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Why are Symmetries Important?

Symmetries: Fundamental concepts in physics.

Constrain the Renormalization Group flows.

* once you know your theory, it's relatively easy to deduce
consequence on observables (~ experiment)

Relevant for (collider) experiments (~ scattering amplitudes):

K° K+

Symmetries: organizing principles for particles and resonances.

K- K°

« A variety of modern refinements / generalizations.

higher-form symmetries, categorical (non-invertible) symmetries, 2-groups,...

[Gaiotto, Kapustin, Seiberg, Willet], [Frolich, Fuchs, Runkel, Schwiegert], [Tachikawa, Bhardwaj], [Chang, Lin, Shao,
Wang, Yin], [Benini, Cordova, Hsin], [Cordova, Dumitrescu, Intriligator]..... and many others

rt



However, the implication of modern symmetries on
scattering amplitudes has not been sufficiently explored.



