Unitary Categorical Symmetry

String-Math 2024

Mathew Bullimore

The Team

Thomas Bartsch

Andrea Grigoletto

ntroduction

- This talk is about categorical symmetry in QFT.
- The philosophy is that symmetries are topological defects.

- * What is their mathematical structure?
- * How do they act on and organise observables?
- * How is unitarity / reflection positivity incorporated?

[Gaiotto-Kapustin-Seiberg-Willett '14]

- Part 1: Examples.
- Part 2: General Expectations.
- Part 3: Solitonic Symmetries.
- Part 4: Further Applications.

Plan

Part 1: Examples

One dimension

- Quantum mechanics with a finite symmetry group *G*.
- There are unitary operators U_g commuting with the Hamiltonian.
- They compose according to

- There is a 't Hooft anomaly captured by a normalised 2-cocycle $\alpha : G \times G \to U(1)$.
- The Hilbert space transforms in a projective unitary representation of G.

 $U_g U_h = \alpha(g, h) U_{gh} \, .$

()ne dimension

- Now formulate in the language of categorical symmetries.
- They generate the twisted group algebra ${}^{\alpha}\mathbb{C}[G]$.

- This is a finite-dimensional C*-algebra.
- I will call it a finite-dimensional O_1 † algebra.

["Dagger n-categories", Ferrer et. al. '24]

- Two-dimensional unitary theory with finite symmetry group *G*.
- 't Hooft anomaly captured by a normalised 3-cocycle α : $G \times G \times G \to U(1)$.
- There are topological defects $g \in G$ associated to oriented lines.

• Consider action on the Hilbert space on S^1 .

- This generates the group algebra $\mathbb{C}[G]$.
- It is a finite-dimensional C*-algebra / O_1 † algebra.
- However, it does not see the 't Hooft anomaly.

• Consider action on the twisted sector Hilbert spaces on *S*¹.

$$g \quad h \qquad gh$$

$$f \quad x = \tau_x(g, h) \quad f \quad x$$

- This generates the twisted Drinfeld double ${}^{\tau}\mathbb{C}[G/\!\!/G]$.
- It is a finite-dimensional C*-algebra / O_1 † a
- It sees the 't Hooft anomaly via transgressio

algebra.

$$\tau_x(g,h) = \frac{\alpha(g,h,x) \, \alpha({}^{gh}x,g,h)}{\alpha(g,{}^{h}x,h)}$$
on.

[Dijkgraaf-Pasquier-Roche '90][Willerton '05]

- Tambara-Yamagami symmetry:
 - * Anomaly free abelian group *A*.
 - * Additional non-invertible line \mathcal{N} .

$$\mathcal{N}^{\vee} = \mathcal{N} \qquad \mathcal{N}^2 = \bigoplus_{a \in A} a$$

- Additional data fixing associators involving \mathcal{N} :
 - * Symmetric bi-character $\chi : A \times A \rightarrow U(1)$.

* A choice of square root $s = \pm 1/\sqrt{|A|}$.

[Tambara-Yamagami '98]

• Consider action on the twisted sector Hilbert spaces on S^1 .

- This generate the Tambara-Yamagami "tube algebra".
- This is again a finite-dimensional C*-algebra / O_1 † algebra.
- There are $\frac{1}{2}|A|(|A|+7)$ irreducible C*-representations.

[Bartsch-MB-Grigoletto '23]

- What mathematical structure do we need to get a O_1 \dagger algebra on S^1 ?
- Start from a unitary fusion category:
 - * V: duals of objects.
 - * †: dagger on morphisms.
 - * Compatibility of (\vee, \dagger) .
- This ensures (almost) consistent graphical calculus on oriented 2-manifolds.
- I will call this an O_2 \dagger fusion category.

["Dagger n-categories", Ferrer et. al. '24]

- Consider action on twisted sector Hilbert spaces on *S*¹.
- This generates the tube algebra of C.

Tubes

- * C is a unitary fusion category \longrightarrow Tube_{S1}(C) is a C * -algebra.
- * i.e. O_2 \dagger fusion structure on C $\longrightarrow O_1$ \dagger algebra structure on Tube_{S1}(C).
- Categorical unitarity implies physical unitarity.
- What about higher dimensions?

$$g_1(\mathbf{C}) = \int_{S^1} \mathbf{C}$$

- There are new features in three dimensions.
 - * Topological lines and surfaces.
 - * Hilbert space on closed oriented surfaces $\Sigma = S^2, T^2, ...$
 - * Various types of twisted sectors.
- I will focus on an example!

- Consider a split 2-group symmetry:
 - * 0-form symmetry G.
 - * 1-form symmetry A.
 - * An action $G \rightarrow \operatorname{Aut} A$.
 - * 't Hooft anomaly $\lambda : G \times G \to A^{\vee}$.

• What is the O_1 - \dagger algebra associated to a closed oriented surface Σ ?

 $\tau_a(g,h) := \langle \lambda(g,h), {}^{gh}a \rangle$

• Consider action on twisted sectors on $\Sigma = S^2$.

- This generates the twisted groupoid algebra ${}^{\tau}\mathbb{C}[G//A]$.
- It is again a finite-dimensional O_1 † algebra.
- It sees the mixed 't Hooft anomaly via the twist. –

$$\tau_a(g,h) = \langle \lambda(g,h), g^h a \rangle$$

[Bartsch-MB-Grigoletto '23]

- What mathematical structure do we need to get a O_1 \dagger algebra on any Σ ?
- Unitary fusion 2-category:
 - V: duals of objects.
 - * \dagger_1 , \dagger_2 : dagger for 1-morphisms, 2-morphisms.
 - * Compatibility conditions on $(\vee, \dagger_1, \dagger_2)$.
- This ensures (almost) consistent graphical calculus on oriented 3-manifolds.
- I will call this an O_3 † fusion 2-category.

["Dagger n-categories", Ferrer et. al. '24]

- Consider a 2-dimensional oriented surface Σ .
- There is an associated tube algebra.

- * C is a unitary fusion 2-category \longrightarrow Tube_{Σ}(C) is a C * -algebra.
- * O_3 † fusion structure on $\mathbb{C} \longrightarrow O_1$ † algebra structure on Tube_{Σ}(\mathbb{C}).
- Categorical unitarity implies physical unitarity.
- What is the general structure in higher dimensions?

Tube_{Σ}(C) = \int_{Σ} C

Part II: General Expectations

- Introduce notion of symmetry type.
- This incorporate principles of relativity and
- This is a tangential structure $\rho : H_d \to O_d$.
 - * Relativity requires that $SO_n \subset Im(\rho)$.
 - Unitarity encoded in extended symmetry

$$1 \to H_d \to \hat{H}_d \to \mathbb{Z}_2 \to 1 \,.$$

Symmetry Type

l unitarity.	H_d	\hat{H}_d	
	SOd	0 _d	bosons
y group	Spin _d	Pin_d^+	fermions
	0 _d	$\mathbb{Z}_2 \times O_d$	bosons, T
	Pin_d^+	\widehat{Pin}_d^+	fermions, $T^2 = (-$
	Pin_d^-	\widehat{Pin}_d^-	fermions, $T^2 = 1$

[Freed-Hopkins '16]

- Introduce notion of symmetry type.
- This incorporate principles of relativity and
- This is a tangential structure $\rho : H_d \to O_d$.
 - * Relativity requires that $SO_d \subset Im(\rho)$.
 - Unitarity encoded in extended symmetry

$$1 \to H_d \to \hat{H}_d \to \mathbb{Z}_2 \to 1.$$

Symmetry Type

			Examples!
l unitarity.	H _d	Ĥ _d	
	SOd	0 _d	bosons
y group	Spin _d	Pin_d^+	fermions
	0 _d	$\mathbb{Z}_2 \times O_d$	bosons, T
	Pin_d^+	\widehat{Pin}_d^+	fermions, $T^2 = (-$
	Pin_d^-	\widehat{Pin}_d^-	fermions, $T^2 = 1$

[Freed-Hopkins '16]

- Finite symmetries are captured by a collection $\{C_{n,d}\}, n = 0, ..., d$.
 - * $C_{n,d} \sim n$ -dimensional topological defects in *d* dimensions.
 - * $C_{n,d} \sim n$ -category whose structure depends on $\rho : H_d \to O_d$.
 - * A universal feature is equivalences

"*n*-dimensional defects are junctions between trivial (n + 1)-dimensional defects"

Symmetry Categories

 $C_{n,d} \longrightarrow \Omega C_{n+1,d}$.

- Finite symmetries are captured by a collection $\{C_{n,d}\}, n = 0, ..., d$.
 - * $C_{n,d} \sim n$ -dimensional topological defects in *d* dimensions.
 - * $C_{n,d} \sim n$ -category whose structure dependence
 - * A universal feature is equivalences

 $C_{n,d}$ –

"*n*-dimensional defects are junctions between trivial (n + 1)-dimensional defects"

Symmetry Categories

ds on
$$\rho: H_d \to O_d$$
?

$$\rightarrow \Omega C_{n+1,d}$$
.

- Choose a symmetry type $\rho: H_d \to O_d$.
- The expectation is that $C_{n,d}$ is a " \hat{H}_d -dagger
 - * *n*-category captures *n*-dimensional topological defects.
 - * E_{d-n} -fusion corresponds to fusion in transverse \mathbb{R}^{d-n} .
 - * \hat{H}_d + structure includes compatible daggers (\dagger_0 , \dagger_1 , ..., \dagger_n).
- The idea is to have a (almost) consistent graphical calculus on H_d manifolds.

r
$$E_{d-n}$$
-fusion *n*-category".

[Baez-Dolan '95]["Dagger n-categories", Ferrer et. al. '24]

Examples

- We already encountered examples with symmetry type H = SO.
 - * O_1 -dagger E_1 -algebra = finite-dimensional C*-algebra.
 - * O_2 -dagger E_1 -fusion category = unitary fusion category.
 - * O_3 -dagger E_1 -fusion 2-category = unitary fusion 2-category.
- What about other symmetry types?
 - * Spin \rightarrow super or \mathbb{Z}_2 -graded analogues.
 - * $O, Pin^{\pm} \rightarrow$ supplement with real structure.

Integration

• The action of symmetries on a QFT comes from "integration" over H_k -manifolds M_k .

 $C_{n,d} \longrightarrow$

 \hat{H}_d -dagger E_{d-n} -fusion *n*-category

* This acts on the Hilbert space on M_{d-1} .

$$\int_{M_k} \mathbf{C}_{n,d}$$

 \hat{H}_{d-k} -dagger E_{d-n} -fusion (n - k)-category

* Example: H = SO, n = k = d - 1, finite-dimensional C*-algebra Tube_{M_{d-1}}(C) =

Part III : Solitonic Symmetries

- Symmetry type $\rho: H_d \to O_d$ but no internal symmetry.
- *n*-dimensional topological defects ~ *n*-dimensional TQFTs embedded in *d*-dimensions.
- This is the realm of the tangle hypothesis.
- Symmetry categories are variations on *n*-Hilbert spaces

$$_d = \operatorname{Hilb}_{n,d}^H$$
.

[Baez-Dolan '95][Baez '96]

+

- Let's look at low dimensional examples.
- Consider symmetry type H = SO.
- Point-like defects:
 - * $Hilb_{0,0} = \mathbb{C}$ as a C*-vector space.
 - * $Hilb_{0,1} = \mathbb{C}$ as a C*-algebra.
 - * $Hilb_{0,2} = \mathbb{C}$ as a commutative C*-algebra.

Universal Example

I omit the superscript for H = SO.

- Let's look at low dimensional examples.
- Consider symmetry type H = SO. -----
- Line defects:
 - * $Hilb_{1,1} = Hilb$, as a unitary category.
 - * $Hilb_{1,2} = Hilb$, as a unitary fusion category.
 - * $Hilb_{1,3} = Hilb$, as a unitary braided fusion category.
 - * $Hilb_{1,4} = Hilb$, as a unitary symmetric fusion category.

I omit the superscript for H = SO.

- What about surfaces?
- First, isomorphism classes of invertible objects in $Hilb_{n,d}^H$:
 - * $n < d \longrightarrow \operatorname{Hom}(\Omega_n^H, U(1))$ * $n = d \longrightarrow \begin{cases} \operatorname{Hom}(\Omega_d^H, U(1)) & \text{if } d = \text{odd} \\ \operatorname{Hom}(\Omega_d^H, U(1)) \times \mathbb{R}_{>0} & \text{if } d = \text{even} \end{cases}$
- This feeds into: [Freed-Hopkins '16]
 - * Hilb_{2.2} ~ commutative \dagger -Frobenius algebras.
 - * Hilb_{2.3} ~ normalised commutative \dagger -Frobenius algebras.

- What about surfaces?
- First, isomorphism classes of invertible objects in $Hilb_{n,d}^H$:
 - * $n < d \longrightarrow \operatorname{Hom}(\Omega_n^H, U(1))$ * $n = d \longrightarrow \begin{cases} \operatorname{Hom}(\Omega_d^H, U(1)) & \text{if } d = \text{odd} \\ \operatorname{Hom}(\Omega_d^H, U(1)) \times \mathbb{R}_{>0} & \text{if } d = \text{even} \end{cases}$
- This feeds into:
 - * Hilb_{2.2} ~ commutative \dagger -Frobenius algebras.
 - * Hilb_{2.3} ~ normalised commutative \dagger -Frobenius algebras.

[Freed-Hopkins '16]

The $\mathbb{R}_{>0}$ corresponds to the Euler TQFT.

 $Z(M_d) = r^{\chi(M_d)}$

Fix $r_i = 1$.

- Solitonic symmetries arise from topology of *X*.

$$C_{n,d} :=$$

- * Here $\pi_{< n} X$ is the homotopy *n*-groupoid of *X*.
- * A type of unitary higher local systems on *X*.
- * Invertible part reproduces (d-n-1)-form symmetry Hom $(\Omega_n^H(X), U(1))$.

• Consider a *d*-dimensional sigma model with target *X*. I assume finite $\pi_{< n} X$.

• *n*-dimensional defects ~ *n*-dimensional TQFTs embedded in *d* dimensions with coupling to *X* $[\pi_{< n}X, \operatorname{Hilb}_{n,d}^H]$

[Chen-Tanizaki '23][Pace '23][Pace-Zhu-Beaudry-Wen '23]

- Consider a 4-dimensional sigma model with H = Spin. $B^3\mathbb{Z}_2 \longrightarrow \pi_{<3}X \longrightarrow B^2\mathbb{Z}_2$
- There is a simple object *N* such that:

* \mathcal{N} is obtained by coupling to minimal TQFT $\mathcal{A}_{2,1}$.

* $\mathcal{N}^2 = \mathcal{I}_2 = \text{decoupled } \mathbb{Z}_2$ Dijkgraaf-Witten theory. $* \mathcal{N}^{\vee} = \mathcal{N}$

• This is historically the first example of a non-invertible symmetry in 4 dimensions.

Example

[Hsin-Lam-Seiberg '18]

[Kaidi-Ohmori-Zheng '21][Choi-Cordova-Hsin-Lam-Shao '21]

- Consider a 4-dimensional sigma model with H = Spin to $X = \mathbb{CP}^{\perp}$.
- There are simple objects $\mathcal{N}_{N,p}$ such that:
 - * $\mathcal{N}_{N,p}$ is obtained by coupling to minimal TQFT $\mathscr{A}_{N,p}$.
 - * $\mathcal{N}_{N,p}$ have non-invertible fusion rules.

*
$$\mathcal{N}_{N,p}^{\vee} = \mathcal{N}_{N,2N-p}$$
.

• This reproduces a \mathbb{Q}/\mathbb{Z} type classification.

Example

 $B^3\mathbb{Z} \longrightarrow \pi_{<3}X \longrightarrow B^2\mathbb{Z}$

Violates finiteness assumption!

[Hsin-Lam-Seiberg '18]

[Cordova-Ohmori '22][Choi-Lam-Shao '22][Chen-Tanizaki '23]

Applications

- Applications to gapped systems and 't Hooft anomalies for categorical symmetries.
- Incorporate symmetry type and unitarity.
 - * Gapped systems as functors $F : \mathbb{C}_{d,d} \longrightarrow \operatorname{Hilb}_{d,d}^{H}$.
 - * 't Hooft anomalies as obstructions to functors $F : \mathbb{C}_{d-1,d} \longrightarrow \operatorname{Hilb}_{d-1,d}^{H}$.
- Many known results in low dimensions provide strong consistency checks.
- There remains much to be done!

Questions?