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Introduction

• This talk is about categorical symmetry in QFT.

• The philosophy is that symmetries are topological defects.

❖ What is their mathematical structure?

❖ How do they act on and organise observables?

❖ How is unitarity/reflection positivity incorporated?

[Gaiotto-Kapustin-Seiberg-Willett ’14]  
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Part 1: Examples



• Quantum mechanics with a finite symmetry group .

• There are unitary operators   commuting with the Hamiltonian.

• They compose according to

• There is a ’t Hooft anomaly captured by a normalised 2-cocycle 

• The Hilbert space transforms in a projective unitary representation of .

G

Ug

UgUh = α(g, h) Ugh .

α : G × G → U(1) .

G

One dimension



• Now formulate in the language of categorical symmetries.

• Topological defects associated to oriented points:

• They generate the twisted group algebra .

• This is a finite-dimensional C*-algebra.

• I will call it a finite-dimensional algebra.

αℂ[G]

O1- †

One dimension

g h gh
= α(g, h)

g g−1
= α(g−1, g)

g g−1
=+ −

g
:=

*

[“Dagger n-categories”, Ferrer et. al. ’24]  



Two dimensions
• Two-dimensional unitary theory with finite symmetry group .

• ’t Hooft anomaly captured by a normalised 3-cocycle .

• There are topological defects  associated to oriented lines.

G

α : G × G × G → U(1)

g ∈ G

g g∨ = g−1

=

g h

gh

g h k

= α(g, h, k)

ghk ghk

g h k



Two dimensions
• Consider action on the Hilbert space on 

• This generates the group algebra . 

• It is a finite-dimensional C*-algebra/ algebra.

• However, it does not see the ’t Hooft anomaly.

S1 .

ℂ[G]

O1- †

g

=

h gh g

=
g−1

*



Two dimensions
• Consider action on the twisted sector Hilbert spaces on .

• This generates the twisted Drinfeld double .

• It is a finite-dimensional C*-algebra/ algebra.

• It sees the ’t Hooft anomaly via transgression.

S1

τℂ[G//G]

O1- †

[Dijkgraaf-Pasquier-Roche ’90][Willerton ’05]

τx(g, h) = α(g, h, x) α(ghx, g, h)
α(g, hx, h)

g

= τx(g, h)

h gh g

= τx(g−1, g)

g−1
*

x x gxx



Two dimensions
• Tambara-Yamagami symmetry:

❖ Anomaly free abelian group .

❖ Additional non-invertible line .

• Additional data fixing associators involving :

❖ Symmetric bi-character .

❖ A choice of square root .

A

'

'

χ : A × A → U(1)

s = ± 1/ |A |

'∨ = ' '2 = ⊕a∈A a

' '∨ = '

=

' '

a

' a '

= χa,b

b b

' a '

[Tambara-Yamagami ’98]



Two dimensions
• Consider action on the twisted sector Hilbert spaces on .

• This generate the Tambara-Yamagami “tube algebra”.

• This is again a finite-dimensional C*-algebra/ algebra.

• There are  irreducible C*-representations.

S1

O1- †
1
2 |A | ( |A | + 7)

'
= ∑

c
χ̄a,b χ̄b,c

' c '
= χa,b

'*
a aaaaa

b

aa b b

[Bartsch-MB-Grigoletto ’23]



Two dimensions
• What mathematical structure do we need to get a algebra on ?

• Start from a unitary fusion category:

❖ : duals of objects.

❖ : dagger on morphisms.

❖ Compatibility of .

• This ensures (almost) consistent graphical calculus on oriented 2-manifolds.

• I will call this an fusion category.

O1- † S1

∨

†

( ∨ , † )

O2- †
[“Dagger n-categories”, Ferrer et. al. ’24]  



Two dimensions
• Consider action on twisted sector Hilbert spaces on .

• This generates the tube algebra of  .

❖  is a unitary fusion category   is a -algebra.

❖ i.e. fusion structure on   algebra structure on .

❖ Categorical unitarity implies physical unitarity.

• What about higher dimensions?

S1

)

TubeS1()) = ∫S1
)

) ⟶ TubeS1()) C *

O2- † ) ⟶ O1- † TubeS1())



Three dimensions
• There are new features in three dimensions.

❖ Topological lines and surfaces.

❖ Hilbert space on closed oriented surfaces 

❖ Various types of twisted sectors.

• I will focus on an example!

Σ = S2, T2, …



Three dimensions
• Consider a split 2-group symmetry:  

❖ 0-form symmetry G.

❖ 1-form symmetry A.

❖ An action .

❖ ’t Hooft anomaly .

• What is the algebra associated to a closed oriented surface  ?

G → Aut A

λ : G × G → A∨

O1- † Σ

g

aga

g h

= τa(g, h)a

gh

a

τa(g, h) := ⟨λ(g, h), gha⟩



Three dimensions
• Consider action on twisted sectors on .

• This generates the twisted groupoid algebra .

• It is again a finite-dimensional  algebra.

• It sees the mixed ’t Hooft anomaly via the twist.

Σ = S2

τℂ[G//A]

O1- †

[Bartsch-MB-Grigoletto ’23]

g

= τa(g, h)

h gh g

= τa(g−1, g)

g−1
*

a a gaa

S2

τa(g, h) = ⟨λ(g, h), gha⟩



Three dimensions
• What mathematical structure do we need to get a algebra on any  ?

• Unitary fusion 2-category:

❖ : duals of objects.

❖ : dagger for 1-morphisms, 2-morphisms.

❖ Compatibility conditions on .

• This ensures (almost) consistent graphical calculus on oriented 3-manifolds.

• I will call this an fusion 2-category.

O1- † Σ

∨

†1 , †2

( ∨ , †1 , †2 )

O3- †
[“Dagger n-categories”, Ferrer et. al. ’24]  



Three dimensions
• Consider a 2-dimensional oriented surface .

• There is an associated tube algebra.

❖  is a unitary fusion 2-category   is a -algebra.

❖ fusion structure on   algebra structure on .

❖ Categorical unitarity implies physical unitarity.

• What is the general structure in higher dimensions?

Σ

TubeΣ()) = ∫Σ
)

) ⟶ TubeΣ()) C *

O3- † ) ⟶ O1- † TubeΣ())



Part II: General Expectations



• Introduce notion of symmetry type.

• This incorporate principles of relativity and unitarity.

• This is a tangential structure  .

❖ Relativity requires that   .

❖ Unitarity encoded in extended symmetry group

ρ : Hd → Od

SOn ⊂ Im(ρ)

Symmetry Type

Hd

1 → Hd → Ĥd → ℤ2 → 1 . Pin−
d

SOd

Od

Spind

Pin+
d

Ĥd

Od

Pin+
d

ℤ2 × Od

̂Pin +
d̂Pin −
d

bosons

fermions

bosons, T

fermions, T2 = (−1)F

fermions, T2 = 1

[Freed-Hopkins ’16]



• Introduce notion of symmetry type.

• This incorporate principles of relativity and unitarity.

• This is a tangential structure  .

❖ Relativity requires that   .

❖ Unitarity encoded in extended symmetry group

ρ : Hd → Od

SOd ⊂ Im(ρ)

Symmetry Type

Hd

1 → Hd → Ĥd → ℤ2 → 1 . Pin−
d

SOd

Od

Spind

Pin+
d

Ĥd

Od

Pin+
d

ℤ2 × Od

̂Pin +
d̂Pin −
d

bosons

fermions

bosons, T

fermions, T2 = (−1)F

fermions, T2 = 1

Examples!

[Freed-Hopkins ’16]



Symmetry Categories
• Finite symmetries are captured by a collection .

❖  ~ -dimensional topological defects in  dimensions.

❖  ~ -category whose structure depends on  .

❖ A universal feature is equivalences 

 .

“ -dimensional defects are junctions between trivial -dimensional defects”

{)n,d}, n = 0,…, d

)n,d n d

)n,d n ρ : Hd → Od

)n,d ⟶ Ω )n+1,d

n (n + 1)



Symmetry Categories
• Finite symmetries are captured by a collection .

❖  ~ -dimensional topological defects in  dimensions.

❖  ~ -category whose structure depends on  .

❖ A universal feature is equivalences 

 .

“ -dimensional defects are junctions between trivial -dimensional defects”

{)n,d}, n = 0,…, d

)n,d n d

)n,d n ρ : Hd → Od

)n,d ⟶ Ω )n+1,d

n (n + 1)

?



Symmetry Categories
• Choose a symmetry type  .

• The expectation is that   is a “  -dagger -fusion -category”.

❖ -category captures -dimensional topological defects.

❖ -fusion corresponds to fusion in transverse .

❖ structure includes compatible daggers .

• The idea is to have a (almost) consistent graphical calculus on  - manifolds.

ρ : Hd → Od

)n,d Ĥd Ed−n n

n n

Ed−n ℝd−n

Ĥd- † ( †0 , †1 , …, †n )

Hd

[Baez-Dolan ’95][“Dagger n-categories”, Ferrer et. al. ’24]  



Examples
• We already encountered examples with symmetry type  .

❖ -dagger -algebra = finite-dimensional C*-algebra.

❖ -dagger -fusion category = unitary fusion category. 

❖ -dagger -fusion 2-category = unitary fusion 2-category.

• What about other symmetry types?

❖ super or -graded analogues.

❖ supplement with real structure.

H = SO

O1 E1

O2 E1

O3 E1

Spin → ℤ2

O, Pin± →



Integration
• The action of symmetries on a QFT comes from “integration” over  -manifolds .

❖ Example:  , , finite-dimensional C*-algebra                                        .

❖ This acts on the Hilbert space on .

Hk Mk

H = SO n = k = d − 1

Md−1

)n,d ⟶ ∫Mk

)n,d

 -dagger
-fusion 

-category

Ĥd
Ed−n
n

 -dagger 
-fusion 

-category

Ĥd−k
Ed−n
(n − k)

TubeMd−1()) = ∫Md−1

)



Part III : Solitonic Symmetries 



Universal Example
• Symmetry type   but no internal symmetry.

• -dimensional topological defects ~ -dimensional TQFTs embedded in -dimensions.

• This is the realm of the tangle hypothesis.

• Symmetry categories are variations on -Hilbert spaces  

  .

ρ : Hd → Od

n n d

n

)n,d = 3456H
n,d

[Baez-Dolan ’95][Baez ’96]



Universal Example
• Let’s look at low dimensional examples.

• Consider symmetry type .

• Point-like defects:

❖  as a C*-vector space.

❖  as a C*-algebra.

❖  as a commutative C*-algebra.

H = SO

34560,0 = ℂ

34560,1 = ℂ

34560,2 = ℂ

I omit the superscript for .H = SO



Universal Example
• Let’s look at low dimensional examples.

• Consider symmetry type .

• Line defects:

❖ , as a unitary category.

❖ , as a unitary fusion category.

❖ , as a unitary braided fusion category.

❖ , as a unitary symmetric fusion category.

H = SO

34561,1 = 3456

34561,2 = 3456

34561,3 = 3456

34561,4 = 3456

I omit the superscript for .H = SO



Universal Example
• What about surfaces?

• First, isomorphism classes of invertible objects in  :

❖     

❖    

• This feeds into:

❖ commutative -Frobenius algebras.

❖ normalised commutative -Frobenius algebras.

3456H
n,d

n < d ⟶

n = d ⟶

34562,2 ∼ †

34562,3 ∼ †

{Hom(ΩH
d , U(1)) if d = odd

Hom(ΩH
d , U(1)) × ℝ>0 if d = even

Hom(ΩH
n , U(1))

[Freed-Hopkins ’16]



Universal Example
• What about surfaces?

• First, isomorphism classes of invertible objects in  :

❖     

❖    

• This feeds into:

❖ commutative -Frobenius algebras.

❖ normalised commutative -Frobenius algebras.

3456H
n,d

n < d ⟶

n = d ⟶

34562,2 ∼ †

34562,3 ∼ †

The  corresponds 
to the Euler TQFT.

ℝ>0

Z(Md) = r χ(Md)

Fix .rj = 1

{Hom(ΩH
d , U(1)) if d = odd

Hom(ΩH
d , U(1)) × ℝ>0 if d = even

Hom(ΩH
n , U(1))

[Freed-Hopkins ’16]



Solitonic Symmetries
• Consider a -dimensional sigma model with target  .

• Solitonic symmetries arise from topology of  .

• -dimensional defects ~ -dimensional TQFTs embedded in  dimensions with coupling to 

 

❖ Here  is the homotopy -groupoid of .

❖ A type of unitary higher local systems on  .

❖ Invertible part reproduces -form symmetry  .

d X

X

n n d X

)n,d := [ π≤nX , 3456H
n,d ]

π≤nX n X

X

(d−n−1) Hom(ΩH
n (X), U(1))

I assume finite .π≤nX

[Chen-Tanizaki ’23][Pace ’23][Pace-Zhu-Beaudry-Wen ’23] 



Example
• Consider a 4-dimensional sigma model with .

  

• There is a simple object  such that:

❖  is obtained by coupling to minimal TQFT .

❖ decoupled  Dijkgraaf-Witten theory.

❖ .

• This is historically the first example of a non-invertible symmetry in 4 dimensions.

H = Spin

B3ℤ2 ⟶ π≤3X ⟶ B2ℤ2

'

' 92,1

'2 = :2 = ℤ2

'∨ = '

[Kaidi-Ohmori-Zheng ’21][Choi-Cordova-Hsin-Lam-Shao ’21]

[Hsin-Lam-Seiberg ’18]



Example
• Consider a 4-dimensional sigma model with  to  .

• There are simple objects  such that:

❖  is obtained by coupling to minimal TQFT .

❖  have non-invertible fusion rules.

❖ .

• This reproduces a  type classification.

H = Spin X = ℂℙ1

B3ℤ ⟶ π≤3X ⟶ B2ℤ

'N,p

'N,p 9N,p

'N,p

'∨
N,p = 'N,2N−p

ℚ/ℤ
[Cordova-Ohmori ’22][Choi-Lam-Shao ’22][Chen-Tanizaki ’23]

[Hsin-Lam-Seiberg ’18]

Violates finiteness 
assumption!



Part IV : Applications



Applications
• Applications to gapped systems and ’t Hooft anomalies for categorical symmetries.

• Incorporate symmetry type and unitarity.

❖ Gapped systems as functors  .

❖ ’t Hooft anomalies as obstructions to functors  .

• Many known results in low dimensions provide strong consistency checks.

• There remains much to be done!

F : )d,d ⟶ 3456H
d,d

F : )d−1,d ⟶ 3456H
d−1,d



Questions?


