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Overview

I Chiral homology: derived conformal blocks

I Chiral Weyl algebras

I Trace map on chiral Weyl algebras
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Chiral homology: derived conformal blocks

The spaces of conformal blocks of two-dimensional conformal field
theories have many interesting properties and connections to many
different areas of mathematics and physics.

There are spaces of derived conformal blocks (chiral homologies)
and the usual conformal blocks are their degree 0 part.

Hch
0 = conformal blocks

Hch
1

···
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Chiral homology: derived conformal blocks

Here we briefly recall the notion of chiral homology (by Beilinson
and Drinfeld). Suppose that the space of local operators in our
two-dimensional conformal field theory Tcft can be described by a
(quasi-conformal) vertex algebra V [Tcft].

One can construct a vertex algebra bundle VX [Tcft]→ X over a
smooth Riemann surface X from V [Tcft]. This bundle is a left
DX -module,i.e, a holomorphic (∞−dim) vector bundle with a
holomorphic connection.

VX [Tcft]
flat connection

VX [Tcft]|x = V [Tcft]
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Chiral homology: derived conformal blocks

From the left DX -module VX [Tcft], we can get a right DX -module

AX [Tcft] := VX [Tcft]⊗ ωX .

The vertex algebra bundle structure on VX [Tcft] gets translated to
the chiral algebra (in the sense of Beilinson and Drinfeld) structure
on AX [Tcft].

Beilinson and Drinfeld construct a chain complex Cch
• (X ,AX [Tcft])

which is a 2d chiral version of the usual Hochschild chain complex.
The chiral homology is defined to be the homology of this complex

Hch(X ,AX [Tcft]) := H(Cch
• (X ,AX [Tcft])).
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Chiral homology: derived conformal blocks

By [Rozenblyum,2021], there is no higher chiral homology in the
usual rational WZW model. In fact, there is a general open
question:

Let V be a rational VOA. For any curve X , we have the
corresponding chiral algebra AX . Is it true that all the higher chiral
homologies of AX vanish?

Beyond rational theories, one encounters

I dimHch
0 = +∞ (chiral bosons).

I Hch
>0 6= 0 (symplectic bosons).
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Consider a holomorphic vector bundle E which is equipped with a
symplectic pairing 〈−,−〉 : E ⊗ E → ωX . Then the cohomology
H•(X ,E ) has a (-1)-shifted symplectic pairing∫

X
〈−,−〉 : H•(X ,E )⊗ H•(X ,E )→ C.

We denote the BV algebra O(H•(X ,E )) by OE .

The chiral quantum field theory (symplectic bosons) with
Lagrangian ∫

X
〈∂̄φ, φ〉, φ ∈ E = Ω0,•(X ,E ).

The algebraic structure of quantum observables in this theory is
captured by the chiral Weyl algebra AE associated to E .
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It is expected that∫
DE · e

1
~
∫
X 〈∂̄Eφ,φ〉O1 · · · On ∼ Chiral homology of AE .

If we take E = F ⊗ ω
1
2
X for a symplectic holomorphic vector bundle

F ,w(−,−) : F ⊗ F → OX . Then the chiral homology of AE forms
a D-module on the moduli space of bundles which quantizes the
Gaiotto Lagrangian ([Gaiotto], [Hitchin], [Ginzburg and
Rozenblyum]) inside the Hitchin moduli space.
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Theorem ([G])

The above path integral can be explicitly constructed as a map

TrAE
: C ch(X ,AE )→ OE

and satisfying
(d + ∆BV)TrAE

= 0.

Furthermore, the chain map TrAE
is a quasi-isomorphism.

I The chiral homology (=BV cohomology of OE ) is
concentrated in degree • = dimH0(X ,E ).

I The same method applies to chiral bosons and symplectic
Fermions (have infinite-dimensional chiral homology groups).

I The variation of the analytic torsion T (E ) can be expressed as
TrAE

(J) for a current J.

I It is possible to generalize this to nonlinear symplectic bosons
(chiral differential operators) and extend the Witten genera to
higher genus curves.
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Thank you!
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Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

A case study: m!

Enumerative problem: cm = #
{

arrangements of m distinct objects
into m distinct boxes

}

Solution: cm = m! =

{
m · cm−1 m > 1
1 m = 1

Pro: exact
Con: recursive

Asymptotics: cm =
√

2πm
(m

e

)m(
1 + O

(
m−1))

Con: asymptotically exact
Pro: closed-form
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Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

ψ-class intersection numbers

⟨⟨τd1 · · · τdn⟩⟩ =
∫
Mg,n

n∏
i=1

ψ
di
i (2di+1)!! d1+· · ·+dn = 3g−3+n

• Compute the perturbative expansion of topological 2d gravity

• Feynman diagrams of the Airy matrix model

• Volumes of moduli spaces of metric ribbon graphs

• Building block for all tautological intersection numbers



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Recursive solution: Virasoro constraints

Witten conjecture/Kontsevich theorem, early ’90s:

⟨⟨τd1 · · · τdn⟩⟩ =
n∑

m=2

(2dm + 1) ⟨⟨τd1+dm−1τd2
· · · τ̂dm · · · τdn⟩⟩

+
1
2

∑
a+b=d1−2

(
⟨⟨τaτbτd2

· · · τdn⟩⟩+
∑

g1+g2=g
I1⊔I2={d2,...,dn}

⟨⟨τaτI1⟩⟩⟨⟨τbτI2⟩⟩

)

Virasoro constraints/topological recursion.



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Large genus asymptotics

Uniformly in d1, . . . ,dn as g → ∞:

⟨⟨τd1 · · · τdn⟩⟩ =
2n

4π
Γ(2g − 2 + n)
( 2

3 )
2g−2+n

(
1 + O

(
g−1))

Proved by Aggarwal (2020), Guo–Yang, (2021)
(combinatorial analysis of Virasoro constraints/determinantal formula)

Questions
• Universal strategy, adaptable to different problems?
• ‘Geometric’ meaning?
• Subleading corrections?
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Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Large genus asymptotics: our result

Answers [EGGGL]
• Universal strategy: resurgence + determinantal formula
• Geometric meaning: Airy functions

y2 − x = 0 quantisation−−−−−−−→
(

 h2 d2

dx2 − x
)
ψ(x ,  h) = 0

• Subleading corrections: algorithm + properties

Uniformly in d1, . . . ,dn:

⟨⟨τd1 · · · τdn⟩⟩ = S
2n

4π
Γ(2g − 2 + n)

A2g−2+n

(
1 +

A
2g − 3 + n

α1 + · · ·

+
Ak

(2g − 3 + n)k αk + O
(
g−k−1))
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S = 1
Stokes constant
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A = 2/3

ψ ∼ 1√
2x1/4 e± A

 h x−3/2



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Large genus asymptotics: our result

Answers [EGGGL]
• Universal strategy: resurgence + determinantal formula
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Computable; polynomial in
n and multiplicities of di



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Large genus asymptotics: our result

Answers [EGGGL]
• Universal strategy: resurgence + determinantal formula
• Geometric meaning: Airy functions

y2 − x = 0 quantisation−−−−−−−→
(
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)
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A2g−2+n

(
1 +

A
2g − 3 + n

α1 + · · ·

+
Ak

(2g − 3 + n)k αk + O
(
g−k−1))

α1 = − 17−15n+3n2
12 −

(3−n)(n−p0)
2 −

(n−p0)
2

4

where p0 = # {di = 0 }



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Darboux method

• φ̃( h) =
∑

m am hm Borel−−→ φ̂(s) =
∑

m
am
m!

sm

• Suppose φ̂ has log singularities A1, . . . ,An:

φ̂(s) ∼ −
Si

2π
ψ̂i(s − A) log(s − Ai)

Si are the Stokes constants, ψ̂i(s) =
∑

m
bi,m
m!

sm are holomorphic

• Large m asymptotics:

am =
S1

2π
Γ(m)

Am
1

(
b1,0 +

A1

m − 1
b1,1 +

A2
1

(m − 1)(m − 2)
b1,2 + · · ·

)
+ · · ·

+
Sn

2π
Γ(m)

Am
n

(
bn,0 +

An

m − 1
bn,1 +

A2
n

(m − 1)(m − 2)
bn,2 + · · ·

)



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Darboux method: summary

Upshot:

Borel plane singularities =⇒ large order asymptotics

• Fact 1: Borel plane sings are well-understood for exponential
integrals

• Fact 2: Borel plane sings behave well under sums/products

Example: Ai(x ,  h) · Bi(x ,  h)

(the expansion coeff’s of Ai and Bi are explicit, but the ones of Ai · Bi are not)



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Determinantal formula

Take the generating series

Wn(x1, . . . , xn;  h) =
∑
g⩾0

 h2g−2+n
∑

d1,...,dn

#
⟨⟨τd1 · · · τdn⟩⟩

xd1
1 · · · xdn

n

Det. formula [Bergère–Eynard, Bertola–Dubrovin–Yang]:

Wn(x1, . . . , xn;  h) =
sum over permutations of Sn

involving Ai and Bi

Example: n = 2

W2 =
Ai1Bi1Ai ′2Bi ′2 +

1
2 Ai1Bi ′1Ai2Bi ′2 +

1
2 Ai1Bi ′1Bi2Ai ′2

(x1 − x2)2 + (x1 ↔ x2)

where Aii = Ai(xi ,  h), Bii = Bi(xi ,  h).
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Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Singularity structure of Ŵn

Singularity strct
of Âi, B̂i

=⇒ Singularity strct
of Ŵn

• 2n log singularities of Ŵn, located at

+ 4
3 x3/2

i and − 4
3 x3/2

i , i = 1, . . . ,n

• Stokes constants: S = 1

• Holom. funct multiplying the log:

A at + 4
3 x3/2

i : replace each Âii with B̂ii

B at − 4
3 x3/2

i : replace each B̂ii with Âii



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Bessel

Norbury’s intersection numbers (super WP/JT, BGW tau function):

⟨⟨τd1 · · · τdn⟩⟩
Θ =

∫
Mg,n

Θg,n

n∏
i=1

ψ
di
i (2di + 1)!!

= S
2n

4π
Γ(2g − 2 + n)

A2g−2+n

(
1 +

A
2g − 3 + n

α1 + · · ·

+
Ak

(2g − 3 + n)k αk + O
(
g−k−1))

where:
• S = 2

Stokes constants of the Bessel ODE

• A = 2
leading exp behaviour of K0

• αk polynomials in n and multiplicities of di

are computable from the asymptotic expansion coeffs of K0



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

r-Airy

Witten’s r-spin intersection numbers (FJRW theory, top. gravity coupled
to a WZW theory):

⟨⟨τa1,d1 · · · τan,dn⟩⟩
r-spin =

∫
Mg,n

cw(a1, . . . ,an)

n∏
i=1

ψ
di
i (rdi + ai)!(r)

=
2n

2π
Γ(2g − 2 + n)

rg−1−|d|

[
Sr ,1

|Ar ,1|2g−2+n

(
α
(r ,1)
0 +

|Ar ,1|

2g − 3 + n
α
(r ,1)
1 + · · ·

)
+ · · ·

+
Sr ,⌊ r−1

2 ⌋

|Ar ,⌊ r−1
2 ⌋|

2g−2+n

(
α
(r ,⌊ r−1

2 ⌋)
0 +

|Ar ,⌊ r−1
2 ⌋|

K

2g − 3 + n
α
(r ,⌊ r−1

2 ⌋)
1 + · · ·

)

+
δeven

r

2

Sr , r
2

|Ar , r
2
|2g−2+n

(
α
(r , r

2 )

0 +
|Ar , r

2
|K

2g − 3 + n
α
(r , r

2 )

1 + · · ·
)]

where Sr ,α, Ar ,α, α(r ,α)
k are obtained from the r-Airy ODE.



Thank you for the attention!



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Weil–Petersson volumes?

Weil–Petersson volumes satisfy the determinantal formula.

Problem

Understand the WP quantum curve:

y2 −
sin2(2π

√
x)

4π2 = 0 quantisation−−−−−−−→ ??

(aka wave/Baker–Akhiezer function)



Motivation Intersection numbers Resurgence Determinantal formula More enumerative problems

Visualising the large genus asymptotics

2g − 3 + n
2/3

 ⟨⟨τd1 · · · τdn⟩⟩
2n

4π
Γ(2g−2+n)
(2/3)2g−2+n

− 1

 = α1(n,p0) + O
(
g−1)

For n = 2:

0 10 20 30 40 50 60

−0.2

−0.6

−1.0

−1.4

0
g

(d1,d2) = (0, 3g − 1)
(d1,d2) = (1, 3g − 2)
(d1,d2) = (2, 3g − 3)
(d1,d2) = (3, 3g − 4)



String Math 2024 
ICTP, Trieste

Modular Resurgent Structures and Spectral Traces of local ℙ2

Veronica Fantini 
IHÉS 

Based on arXiv:2404.11550 and arXiv:2404.10695 joint with C. Rella



Resurgence

• Resurgence provides an effective tool to study perturbative expansions by computing sub-leading order contributions [Écalle] 

 

• Among its different applications in mathematics and physics, it has been largely applied in topological strings [Alexandrov, 
Alim, Couso-Santamaría, Edelstein, Grassi, Gu, Iwaki, Kashani-Poor, Klemm, Mariño, Pasquetti, Pioline, Rella, Schiappa, Schwick, Teschner, Vonk, …] 

• Also particularly interesting is studying resurgence of the asymptotic expansions of analytic functions: indeed the 
resurgent structures reveal certain properties of the original analytic function  

 analytic  

• By studying the resurgent structure of the first fermionic spectral trace of local  we show that the generating functions 
of the Stokes constants are holomorphic quantum modular forms [VF -Rella] 

modular resurgent structures  holomorphic quantum modular forms

ϕ0(ℏ) =
∞

∑
n=0

anℏn ∈ ℂ[[ℏ]]1 ⇝ e− ω
ℏ ϕω(ℏ)  with ϕω(ℏ) ∈ ℂ[[ℏ]]1 , ω ∈ Ω ⊆ ℂ

Φ0(ℏ) ⇝ ϕ0(ℏ) ∈ ℂ[[ℏ]]1 ⇝ e− ω
ℏ ϕω(ℏ)  with ϕω(ℏ) ∈ ℂ[[ℏ]]1 , ω ∈ Ω ⊆ ℂ

ℙ2

⇝

Going beyond perturbation theory and characterizing analytic functions through their asymptotics
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First fermionic spectral trace of local ℙ2

Non perturbative completion of the topological string free energies

3

• The Topological String/Spectral Theory correspondence (TS/ST) identifies as non-perturbative completion of 
topological strings on toric CY 3-folds  the spectral determinant  of certain quantum mechanical operators  built from 
the quantization of the mirror curve  where   [Grassi—Hatsuda—Mariño]   

                                            with  

                                                    , where  

• The spectral determinat  is an entire function of  and it is analytic in   

• The th fermonic spectral trace  is defined as the expansion at the orbifold point:    

       

with  and , and where  is the q-Pochhammer symbol

X Ξ 𝖮X
Σκ κ ∈ ℳcpx

X = 𝒪(−3) → ℙ2 Σκ = {x, y ∈ ℂ |ex + ey + e−x−y + κ = 0} κ ∈ ℍ/Γ1(3)

𝖮ℙ2(𝗑, 𝗒) := e𝗑 + e𝗒 + e−𝗑−𝗒 [𝗑, 𝗒] = 𝗂ℏ

Ξ(κ, ℏ) = det(1 + κ 𝖮−1
ℙ2 ) κ ℏ

N Z(N, ℏ) Ξ(κ, ℏ) = 1 +
∞

∑
N=1

Z(N, ℏ) κN

Z(1,ℏ) =
1

3𝖻
e− π𝗂

36 𝖻2+ π𝗂
12 𝖻−2+ π𝗂

4
(q2/3; q)2

∞

(q1/3; q)∞

(e2π𝗂/3; q̃)∞

(e−2π𝗂/3; q̃)2
∞

q = e2π𝗂𝖻2 = e3𝗂ℏ q̃ = e−2π𝗂/𝖻2 = e2π𝗂τ (a; q)∞

holomorphic/anti-holomorphic block
ℏ ∝ τ−1



Resurgence Structure of strong asymptotics  

• Singularities are simple poles at   

 

• Stokes constants  

• L-function   

ψ(τ) ∈ ℂ[[τ]]1

ηm = 𝒜∞m , m ∈ ℤ≠0

𝒜∞ =
2π
3

𝗂

{Rm , m ∈ ℤ≠0}

L∞(s) :=
1
3 ∑

m>0

Rm

ms
= ζ(s + 1)L(s, χ3,2)

Λ∞(s) :=
3 s

2 −1

πs+1
Γ( s + 1

2 )2L∞(s)

Resurgent Structure of the asymptotics of log Z(1,ℏ)
Similar resurgent structures appear in both the strong/weak coupling regimes

Resurgence Structure of eak asymptotics  

• Singularities are simple poles at  

 

• Stokes constants      

• L-function  

ϕ(ℏ) ∈ ℂ[[ℏ]]1

ρm = 𝒜0m , m ∈ ℤ≠0

𝒜0 =
4π2

3
𝗂

{Sm , m ∈ ℤ≠0}

L0(s) :=
1

3 3𝗂 ∑
m>0

Sm

ms
= ζ(s)L(s + 1, χ3,2)

Λ0(s) := − i
3 s

2 −2

πs+1
Γ( s

2 )Γ( s
2

+ 1)L0(s)

[Rella]

4

Λ0(s) = Λ∞(−s)



Quantum Modularity
Modular properties of the generating functions of the Stokes constants

Let , the generating functions of the Stokes constants in both regimes are defined respectively as follows 

                         

Theorem [VF—Rella] The functions  are holomorphic quantum modular functions for the group  

Let  be the Fricke involution of respectively   

Theorem [VF—Rella] The functions  are holomorphic quantum modular functions for the group  

Recall that for local , the moduli space  and the free energies are quasi-modular functions for  
[Aganagic—Bouchard—Klemm, Coates—Iritani]

q = e2πiy

f0(y) := ∑
m>0

Sm qm = 3 log
(e2π𝗂/3 q; q)∞

(e−2π𝗂/3 q; q)∞
f∞(y) := ∑

m>0

Rm qm = 3 log
(q2; q3)∞

(q1; q3)∞

f0 , f∞ : ℍ → ℂ Γ1(3)

f ⋆
0 , f ⋆

∞ f0 , f∞

f ⋆
0 , f ⋆

∞ : ℍ → ℂ Γ1(3)

ℙ2 ℳcpx ≅ ℍ/Γ1(3) Γ1(3)

5



Modular Resurgent Structures

Definition [VF—Rella] An asymptotic series  has a modular resurgent structure if the following conditions holds. 

• The Borel transform of  has a tower of singularities at , for some constant   

• For every  the resurgent series at the singularity  is the Stokes constant  

• The Stokes constants  are the coefficients of an L-function  analytic for                                               

and which admits a meromorphic continuation 

Conjecture [VF—Rella]  Let  be a -series with . If its asymptotic series   as  and  
has a modular resurgent structure, then  is a holomorphic quantum modular form for . 

modular resurgent structures  holomorphic quantum modular forms

f̃ ∈ ℂ[[y]]1

f̃ ζn = 𝒜n , n ∈ ℤ≠0 𝒜 ∈ ℂ

n ∈ ℤ≠0 ζn An ∈ ℂ

An L(s) = ∑
n≠0

An

ns
ℜ(s) > α

f : ℍ → ℂ q q = e2πiy f̃ ∈ ℂ[[y]]1 y → 0 ℑ(y) > 0
f(y) Γ ⊆ 𝖲𝖫2(ℤ)

⇝

Resurgent series coming from holomorphic quantum modular forms
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Highlights

• Weak/Strong asymptotics of  have modular resurgent structures:  are holomorphic quantum modular functions  

• L-functions play a crucial role in defining the followings  

• Strong-weak resurgent symmetry is the result of a fully-flagged net of relations involving perturbative/non-
perturbative contributions in both the strong and weak coupling regimes  

• New paradigm of resurgence: new series resurge as prescribed by the functional equation that governs the analytic 
continuation of the L-function whose coefficients are the Stokes constants   

• Modular resurgent structures also appears in the study of Maass cusps forms 

• The effectiveness of the median resummation allows to reconstruct the generating function of the Stokes constants from 
their asymptotic expansion 

• In the example of local , we proved it for  and conjectured it for  

• We conjecture that the median resummation of modular resurgent series given by the asymptotic of a q-series 
reconstructs the q-series itself   

log Z(1,ℏ) f0 , f∞

ℙ2 f0 f∞

Overview of results from the study of local  and on modular resurgent structuresℙ2
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Strong-weak resurgent symmetry
Perturbative/non perturbative contributions in the strong/weak regimes satisfy a rich net of relations 

9

Strong

WeakWeak

Strong

Functional equation 



New paradigm of resurgence
New functions resurge from the functional equation

10

  perturbative /   non perturbativef̃ f
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The ABJ(M) model and its gravitational dual

▶ Context: Precise example of AdS/CFT correspondence.

▶ ABJ(M): a 3-dimensional SCFT, precisely it is a
N = 6 Super Chern-Simons gauge theory with matter, which
gauge group is Uk(N + ℓ)× U−k(N).
Aharony- Bergman-Jafferis-Maldacena, 2008 & Aharony- Bergman-Jafferis, 2008

▶ Large N limit: M-theory on AdS4 × S7/Zk.

▶ In a t´Hooft limit (N >> k5 →∞ and N
k := λ , finite) is

accessible a Type IIA String Theory description and the
geometry collapses to AdS4 × CP3

▶ For ℓ ̸= 0 we need include a non-vanishing Kalb-Ramond field
arround a non-trivial cycle CP1 ⊂ CP3

1
2π

∫
CP1

B(2) =
ℓ

k
, where B(2) =

B
2

dA .

▶ This flat configuration couples with the end points of open
strings.



Wilson Lines as 1d Defect CFT

▶ A Wilson Line is an non-local operator defined along an open
curve:

WR[C] =
1

dim(R)
TrR

(
Pei

∫
C L(τ)dτ

)
▶ A straight Wilson Line on a d-dimensional CFT partially

breaks the conformal group: SO(2,1)× SO(d− 1) ⊂ SO(2, d)
▶ For SCFT, there are some operators with an unbroken

supersymmetry subgroup. Ex.: 1
6 -BPS WL in ABJ(M)

Drukker-Plefka-Young, 2009

L(x(t)) =
(

Aµẋµ(x)− 2πi
k M

I
JC̄

JCI 0
0 Âµẋµ(x)− 2πi

k M̂
J
I C

IC̄J

)
preserves a SO(2,1)× SO(2)× SU(3)× (4 supercharges)
this is SU(1,1|1)× SU(2)× SU(2) ⊂ OSP(6|4)



Correlators on a line defect

▶ This 1-dimensional defect supported on the 3-dimensional
background defines itself a CFT1. (Drukker, Kawamoto 2006)

We can calculate:

⟨O1 (t1) · · · On (tn)⟩C =

〈
tr
(
PO1 (t1) · · · On (tn) ei

∫
C dtL(t)

)〉
⟨W[C]⟩

▶ This n-point function are constrained by the conformal
structure, for example:

⟨O∆ (t1)O∆ (t2)O∆ (t3)O∆ (t4)⟩C =
1

(t12t34)
2∆G(u;λ),

where u = t12t34
t13t24



Gravitational dual to line defect

▶ Claim: This setup provides a correspondence AdS2/CFT1

▶ Using Holographic dictionary for Wilson Lines: Maldacena,1998

⟨W(C)⟩ = Zopen string

∣∣
C ≃ e−SE[Xcl,...]

∣∣∣∣∣
X(z=0): C

Recall: AdS4: ds2
AdS4

= dz2+dt2+dxidxi

z2

▶ For the straight line the dual worldsheet geometry is AdS2

▶ The edge of the open string take Dirichlet b.c on z = 0 and for
the case of 1

6 − BPS WL take Neumann b.c on a CP1 ⊂ CP3

▶ d.o.f: In the bosonic sector there are
▶ 6 massless scalars (CP3 directions)
▶ 2 massive complex scalars with m2 = 2 associated with AdS4

directions, (transverse to AdS2 fluctuations).

(Correa, V. Giraldo-Rivera, G. Silva, 2020)



Scalars fields in AdS2 and the problem of b.c

▶ AdS/CFT dictionary: ZCFTd [J] = Zstrings on AdSd+1
[ϕ]

∣∣∣
b.c: J(x)

(Witten, 1998)

▶ O with scale dimension ∆ ←→ ϕ(x) with mass m such that

∆ =
d
2
± d

2

√
1 +

4m2

d2 , in the range:− d2

4
≤ m2 < −d2

4
+ 1

▶ Near boundary: ϕ(x) = α(x)z∆− + β(x)z∆+

▶ For massless scalar in AdS2: ϕ(x) = α(x) + β(x)z
▶ Dirichlet b.c: α(x) = J(x) fixed
▶ Neumann b.c: β(x) = J(x) fixed (Witten, 2001 T. Hartman, L. Rastelli, 2006 )

▶ Mixed b.c (compatible with susy and conformal symmetry)

χα̇+ β = J(x) (Correa, V. Giraldo-Rivera, G. Silva, 2020)

Claim: We find that the Kalb-Ramond field coupled to the
edge of open string at a CP1 ⊂ CP3 induced a kind of mixed
b.c over the worldsheet fluctuations



The action for semi-classical fluctuations

▶ We will focus on the coordinates along a particular
CP1 ⊂ CP3

SCP1 =

√
λ

2π

∫
d2σ

√
det (gµν + ∂µYA∂νYA)

▶ Parameterizing the transverse fluctuations around fixed
direction of the CP1 (defined by a vector nA) as

YA = nA +
√

2π
λ1/4 yA − π√

λ
y2nA +O( 1

λ) ,with nA yA = 0
▶ The truncated action up to a boundary term its read as

SCP1=

∫
d2σ
√

g
[

1
2∂µyA∂µyA +

π√
λ

yAyB∂µyA∂µyB+

+
π

4
√
λ
(∂µyA∂µyA)2 − π

2
√
λ
∂µyA∂µyB∂νyA∂νyB +O( 1

λ)

]
.

Obs.: This quartic terms gives the interaction vertex and play
a crucial role.



Mixed boundary conditions from Kalb-Ramond coupling

▶ The imposition of Neumann boundary conditions requiring a
boundary term added to the quadratic action:

S̃(2)
CP1 = S(2)

CP1 +

∫ ∞

−∞
dt ∂zyAyA∣∣

z=0

⇒ δS̃(2)
CP1

∣∣
on-shell

=

∫ ∞

−∞
dt δ(∂zyA)yA∣∣

z=0

▶ The KR field is flat → coupling to the open string adds just a
boundary term.
We are interesting in Neumann b.c over a CP1

▶ At quadratic order the

S(2)
CP1 =

∫
d2σ

(√
g1

2∂µyA∂µyA − BϵABCnA∂zyB∂tyC) , (1)

▶ In addition de KR field leads to an extra quartic terms wich
contributing as new interaction vertex −BϵABC 1

2nAy2∂zyB∂tyC



The on-shell variation, together with the additional bdry. term
becomes

δS̃(2)
CP1 =

∫ ∞

−∞
dt δ

(
∂zyA − BϵABCnB∂tyC) yA∣∣

z=0 .

▶ At classic the problem it is reduced to

□yA = 0 ,
(
∂zyA − B ϵABCnB∂tyC

)∣∣
z=0 = JA(t) ,

▶ First step: find the Green function for this problem

GAB = −⟨yAyB⟩0,n = (δAB− nAnB)Gs(σ, σ
′) + ϵABCnCGa(σ, σ

′) ,

and take the mean value over the CP1.



4-point function and the conformal structure

▶ We compute explicitly the 4-point correlators in terms of the
Green’s function for our b.c. At non-trivial leading order
(1/λ) we find:

⟨YA (t1)YA (t2)YB (t3)YB (t4)⟩ ∝
GS(λ, u)

(t2 − t1)2∆(t4 − t3)2∆

with G
(2)
S (u) = 4

(1−B2)2

[
log2 (1− u) + π2B2Θ(u− 1)

]
.

▶ Is the conformal structure preserved in the next-to-leading
order?

We need evaluate several diagrams, including bulk vertex and loops
corrections



4-point functions and conformal structure

▶ To avoid this complication at order 1/(
√
λ)3, we can compute

∂t1∂t2∂t3∂t4

〈
YA(t1)YA(t2)YB(t3)YB(t4)

〉
.

▶ Finally, we can compute explicitly

t2
12t2

34∂t1∂t2∂t3∂t4G(3)
S = P(u) + P

(
u

u−1

)
,

where

P(u) =− 8u2

(1− B2)3

[
4 + log(u2)

]
+

8
(1− B2)2

[
2 + u + 2u2 +

(
2
u − 1 + u3

(1−u)3

)
log(u2)

]
+

8
(1− B2)

[
−d2 + 32πf1

(
1 + u2)] .

In accordance with the conformal symmetry of the line, we
observe that the anomalous terms cancel and we can
determine the precise function of the cross-ratio. Furthermore,
crossing symmetry is manifestly.



Conclusions and Outlook

For more details see: Correa, D.H., Ferro, M.G.
Giraldo-Rivera, V.I. “Mixed boundary conditions in AdS2/CFT1
from the coupling with a Kalb-Ramond field.” J. High Energ.
Phys. 2024, 141 (2024) [arXiv:2312.13258]

▶ The fluctuations on the open string dual to the 1/6 BPS
bosonic Wilson line in the ABJ(M) model satisfy a boundary
conditions mixing longitudinal and transverse derivatives,
where the mixing parameter comes from the Kalb-Ramond
field.

▶ As evidenced by the 4-point function obtained as a function of
the cross-ratio, a 1/6 BPS bosonic Wilson line with local
operator insertions in the ABJ(M) model constitutes a CFT1.



Outlook

Future directions:

▶ Try to use analytic bootstrap techniques to investigate its
correlation functions. This works for the 1/2 BPS Wilson Line
but our case is less symmetric.

▶ Inclusion of Green-Schwarz fermions in the world-sheet, to
determine their boundary conditions and to compute fermionic
1-loop Witten diagrams.

Thanks!
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Argyres-Douglas theories

N = 2 4d susy gauge theories
low-energy theory is determined by the
SW curve.

Argyres-Douglas (AD) theories are
strongly coupled isolated 4d SCFTs,
which appear as singularities of the
Coulomb branch.

mutually non-local light d.o.f. ⇒ no known lagrangian description!

Usual localization techniques are difficult to apply...

Interesting informations on AD theories can be extracted using the
theory of integrable systems.

Example: H0 theory (AD point of SU(2) Nf = 1,SU(3) Nf = 0).
1 / 12



Painlevé - gauge theory correspondence

The SW curve is associated to an integrable system:

SW curve = Spectral curve

If we introduce a self-dual (ϵ1 = −ϵ2 = ϵ) Omega background this
system acquires a time dependence ⇒ Painlevé equations (SU(2)).

for SU(2) gauge theories, this gives the so called Painlevé-gauge
theory correspondence:

▶ Painlevé time ↔ gauge coupling scale t = Λeϵs ;

▶ Painlevé Hamiltonian H(q, p, t) ↔ Coulomb parameter u;

▶ Painlevé free parameters ↔ masses of the matter fields;

▶ ϵ → 0 (autonomous) limit ↔ SW theory

The map can be generalized to higher rank theories.

2 / 12
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Nekrasov partition function on the blowup
Consider the Nekrasov partition
function on the blowup Ĉ2 of
C2 ≃ R4 with a surface observable I
on E ≃ CP1 (exceptional divisor).

ẐNek(ϵ1, ϵ2, s) = ⟨Ω|esI(E)|Ω⟩Ĉ2

Painlevé tau function τ
(H ∼ ∂

∂t log τ)
Blowup factor B =
Ẑ (ϵ1, ϵ2, s)/Z (ϵ1, ϵ2).

Expansion around a zero
(HRZ-like expansion)

Topological
Operator/State
correspondence

4 / 12



Autonomous limit
Taking the SW limit ϵ1, ϵ2 → 0 we obtain the following result

lim
ϵ1,ϵ2→0

B(ϵ1, ϵ2, s) ∝ eTs
2
σ(s; g2, g3) ,

Contact term Weierstrass sigma

The result is universal. Informations about the theory are encoded
in the elliptic invariants g2 = g2(u,Λ), g3 = g3(u,Λ) which define
the Weierstrass parametrization of the SW curve:

y2 = 4x3 − g2x − g3 ,

e.g. for AD H0: g2 = c, g3 = u.

The result is directly related to the integrable system:

SW blowup factor = autonomous tau function

σ is the tau function of the integrable system associated to SW.

5 / 12



Equivariant Fintushel-Stern blowup formula
From Donaldson-Witten theory topological correlators on a
4-manifold X correspond to Donaldson invariants.

The blowup factor BSW gives then the relation between Donaldson
polynomial of X and the ones of its blowup X̂ = X#CP2:

Fintushel-Stern blowup formula

Let ΦX (p,S) be the generating function of Donaldson polynomials

ΦX̂ (p,Σ+ sE ) = BSW (s, p)ΦX (p,Σ)

The same reasoning can be applied in the NS Omega background:

BSW (s) → BNS(s, ϵ) , Donaldson inv. → Equivariant Donaldson inv.

Equivariant Fintushel-Stern blowup formula

The blowup factor BNS(s, ϵ) in the blowup formula for equivariant
Donaldson invariants is given by the Painlevé tau function.

This a direct consequence of Nakajima-Yoshioka blowup relations
(Notice: these relations exchange self-dual with NS). 6 / 12



Blowup factor and local observables
The Weierstrass sigma σ admits the following expansion

σ(s; g2, g3) =
∞∑

n,m=0

anm
(g2
2

)n
(2g3)

m s4n+6m+1

(4n + 6m + 1)!
.

The result has a physical meaning [Moore & Witten]:

Topological Operator/state correspondence

Blowup is a local
change of topology

⇒
Can be expressed as a sum of
topological local operators =
polynomials in u (and Λ).

The same logic applies to the theory in the Omega background!

Blowup factor in the NS omega background

BNS(s, ϵ1) = lim
ϵ2→0

ẐNek(s)

ZNek
=

∞∑
n=0

cn(uNS(ϵ1),Λ, ϵ1)
sn+1

(n + 1)!
.

Valid in all the moduli space ⇒ Can be applied to AD!
7 / 12



HRZ-like expansions
This gives a natural ansatz for τ as an expansion in s.

τ(s) =
+∞∑
n=0

cn
sn+1

(n + 1)!
.

Interpretation of this expansion from the Painlevé equation side?

HRZ-like expansions

τ(0) = BNS(0) = 0 ⇒ Expansion around a zero of τ !

Mathematically, this expansion was first studied by Hone, Ragnisco
and Zullo (HRZ) which found a way to determine the coefficients
cn recursively [Hone, Ragnisco & Zullo].

Comparing with the gauge theory we obtain the following
dictionary:

▶ The position t0 of the zero of τ is the coupling t0 ∝ Λ
▶ The hamiltonian H0 is the Coulomb parameter, H0 ∝ u.

}
Initial

conditions

▶ s measures the displacement from the zero t0.
8 / 12



Example: AD theory H0 (PI equation)

2n(n2 − 1)(n − 6)

(n + 1)!
cn = −

n−1∑
l=1

P4
l+1,n−l+1clcn−l + g2

n−4∑
l=0

clcn−l−4 − 2ϵ

n−5∑
l=0

clcn−l−5 ,

Pk
nm =

k!

n!m!

k∑
l=0

(−1)l
(n
l

)( m

k − l

)
, c0 = 1, c1 = 0 (gauge), c6 = −6g3 (resonance) .

cN =
∑

4m+6n+5l=N

amnl

(g2
2

)m
(2g3)

n ϵl

Explicit values of the first coefficients (α = g2/2, β = 2g3):
c[0]= 1

c[1]= 0

c[2]= 0

c[3]= 0

c[4]= -α

c[5]= 6 ϵ

c[6]= -3 β

c[7]= 0

c[8]= -9 α
2

c[9]= 84 α ϵ

c[10]= -18 α β - 294 ϵ
2

c[11]= 216 β ϵ

c[12]= 69 α
3
- 54 β

2

c[13]= -1650 α
2
ϵ

c[14]= 513 α
2
β + 18774 α ϵ

2

c[15]= -18720 α β ϵ - 78624 ϵ
3

c[16]= 321 α
4
+ 4968 α β

2
+ 144144 β ϵ

2

c[17]= -52488 α
3
ϵ - 89424 β

2
ϵ

c[18]= 33588 α
3
β + 14904 β

3
+ 1112436 α

2
ϵ
2

c[19]= -1358640 α
2
β ϵ - 8670816 α ϵ

3

c[20]= 160839 α
5
+ 257580 α

2
β
2
+ 15053040 α β ϵ

2
+ 27734616 ϵ

4
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Integrality
The coefficients of the HRZ-like expansion satisfy a recursion
relation with rational coefficients.

However, some highly non-trivial cancellations arise and for all
Painlevé equations the coefficients amnl seem to be actually
integers!

▶ For σ this can be proved using the theory of Schur
polynomials or elliptic curves [Ayano,Ônishi].

▶ For τ checked numerically to very high order (n ∼ 100) but no
proof.

Conjecture

The coefficients are all integers and are related to counting of BPS
states.

The coefficients are universal for ϵ → 0 but differ when ϵ ̸= 0 ⇒
They measure the coupling of the soliton (blowup) with gravity.
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Modularity and non-perturbative ZTop

The HRZ-like expansion is given by g2, g3 ⇒ modular invariant.

From the IR theory this modularity arises because the blowup
factor is a holomorphic function of u.

The modularity of τ is directly related to holomorphic anomaly
equations (BCOV)

Topological string interpretation
τ is a non-perturbative

completion of
topological string

⇒
The theory is manifestly
background independent
(= holomorphic + modular).

τ = ZTop

(
a,

∂

∂x
,Λeϵs

)
e−

1
2
E2x2σ(x , g2, g3)

∣∣∣∣
x=0

,

∂E2τ = 0 ⇔ ∂E2ZTop =
1

2

∂2

∂a2
ZTop .
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Conclusions and future directions
▶ The HRZ-like expansion of τ corresponds to the topological

OPE of BNS and is valid around any point of moduli space ⇒
We can apply to AD theories! Can we use similar techniques
to compute other observables?

▶ In NS limit the blowup factor BNS corresponds exactly to the
Painlevé tau function! What is B for generic Omega
background? Tau function of Quantum Painlevé?

▶ Natural equivariant generalization of Fintushel-Stern blowup
formula. Can we derive this geometrically? Does integrality
have a topological origin?

▶ The SW blowup factor BSW (s) ∼ σ(s) can be derived from
the “u-plane integral” of Moore & Witten. Can we derive
BNS(s, ϵ) from a “Quantum u-plane integral”?

▶ Modularity of τ implies holomorphic anomaly equations! Can
we use the expansion of τ to fix the holomorphic ambiguity
for compact CY3? 12 / 12
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