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Gauged Linear Sigma Models (GLSM)

These are a class of N/ = (2,2) supersymmetric 2d gauge theories that we
will simply characterize by the 4-tuple (G, pm, R, W), where

G: Compact Lie group. G, g:= Lie(G)

L Matter pmatter G — GL(V), V g CN

e Superpotential: G-invariant holomorphic polynomial W € (Sym(VV))¢ such that
there exists weights R; € (0,2), « = 1,...,N, that makes W quasi-homogeneous:

W (A g;) = N2W ().

e (Vector) R-charges: The weights R; characterizes the action of the vector R-charge
U(1)g.

We will be concerned mainly with the coupling constants ¢ € 5% = Lie(Z(G))é
o i, =(—10,€C,1=1,...,rk(3")

Denote the space of these constants by Mg (Stringy Kahler space)



and its B-branes...

B-branes are a class of boundary conditions (plus a boundary action) preseving half of the
SUSY at the boundary requires us to specify a triplet (algebraic data) B = (T, pa, Rar).

e A Z»>-graded, free Sym(V"Y) module denoted by M = My @ M.

e A matrix factorization T ¢ Endg,,,(v(M) of W € Sym(V*), i.e., a Z»>-odd endo-
morphism such that T2 =iW - 1y

e A representation, py : G — GL(M) and a set of weights R); compatible with py and
R;'s respectively:

AT ARG HINTRY = AT ()

pr1(9) T (pm(g) - #)pm(g) = T(9).
for all A e C* and g € G,



More B-branes

There is also symplectic data.

e G-invariant middle-dimensional subvariety of gc, or equivalently its intersection L C {¢
with the Cartan algebra, which we refer to as the contour.

e Denote o € gc. An admissible contour is a G-invariant, middle dimensional L that is
a continuous deformation of the real contour Ly := {S(o) = 0} inside t¢ \ H where H
is a hyperplane arrangement. such that the imaginary part of the boundary effective
twisted superpotential

Weﬂ-',p(a) = <Z +ima - a) — <Z(Qj o) (Iog(z’Qj : 0))) —t-o+27mip-o

a>0

approaches +oo in all asymptotic directions of L.

The full B-brane is then given by (B, L;). We will denote te category spanned by B’'s by

M Fg(W)



Z2(B, Li; t) partition function of GLSM

We can compute the partition function on a disk/hemisphere D?, expressed as an integral
over Lie(Ty)c and it depends on the boundary conditions B, on ¢t and on an integration
contour L;. The exact partition function Zp-(B, L;;t) for a GLSM on D? takes a Mellin-
Barnes integral form:

Zp(B, L t) = / drk(G)UchassZgaugeZmatterfB(U)a

t

where
Zgauge = H o O'Sinh(ﬂ'CE . O')

a>0
dim(V) R.
Zmatter .= H r (ZQJ -0+ Ej)
=1
Zclass - = et

fB(U) = Try (emr*€27rp(a)> :

Contour: The contour L; must be a middle dimensional continuos deformation of Li :=
{Im(c) = 0} such that Zp:(B, L¢; t) is absolutely convergent.



Collection of Facts

Some facts about Z,>(B, L¢; t):

1. The conditions on L; can be interpreted as absolute convergence of Zp2(B, L¢; t).

2. Zp2(B, L; t) satisfies a differential equation with only regular singuarities when the GLSM is nonanoma-
lous i.e. pm : G — SL(V).

Some facts about MFo(W):

1. In general, MFg(W) 22 D(Y;, W) where

(9] We =W

Y. ,
¢ a v,

Y. will be referred as the classical Higgs branch.

2. There exist infinite embedings D(Y;, W) & W, — M Fg(W)



Example: CY hypersurface in P71

Zp2(B, L t) = / doT (io)"T (—nio + 1)e"? fz(o),
L,

We can then set the following question: for a fixed 0. (recall t = { —10), if we consider the path P from
¢(>11to (K —1, does it exist an integration contour L, such that L; is a continuous deformation of Ly

and Zp2(B, L;t) is convergent at every t € P?

g

( 3 L ! [ = 5-?1-*..%5, sk
L | { Z_:'P m.qram
(P | | .
k l l [ = Tm+2Znd
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l ' L
_— } | t : >
- ‘\ T 3T L1 O

e Yes, only if the weights g, of py); belong to an interval that depends only on k := Lg—;J. We denote

Wy 1= {B € MFyy(W): weights of py; belong to (—n/2 —k,n/2 — k)}

e T here exits functors F, and G, implementing the equivalences

Fi : DPCoh(X) =W, Gr - Wi = MFy, (fn)



Example: Pfaffian-Grassmnnian

Consider the following example with G = U(2). Denote

(pa,xa) €V 2 (CT) @ (C2)®7, a=1....7

pmatter(9) © (Pa, 23) = (det(g)pa, g%zlh) g € U(2)

.
W = Z paAa’beg:cfeaﬁ

a,b,c=1

Zpa(B,Lit) = |, do(o1 —02) sith(r(o1 — 02))T (io1) T (ior2)

x [ (—ioy —iop 4+ 1)7e1F92) fu(g 05)



Example: Pfaffian-Grassmnnian

The function Z,>(B, Ly; t) is annihilated by the differential operator

L=90" - 2(5190* 4 10200° + 81602 + 3060 + 45)
—22 (22580 + 10064©° + 1519402 + 95460 + 2166
+2° (16860% + 52560° + 470602 + 13500 + 12)
—2* (2050* + 6080° + 47802 + 1740 + 26)
+2°(© + 1)%,

It has five singular points:

2mia

z € {0,000, a1, an, a3} ag = (1+e 7

)—7



Example: Pfaffian-Grassmnnian
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Example: Pfaffian-Grassmnnian
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Monodromies, Categorically




Example: Monodromies, Categorically

Mo — — ® Ox(5)
M- —)T@X

Moo — Ty © (= ® Ox(—5))




Example: Monodromies, Categorically

ggﬁ
U

Maz — TSX

Maz — TSmeSX(l)



Two-parameter families

Next we consider GLSMs corresponding to a resolution of the determinan-

tal variety
Z(A,k) ={¢ € B | rank A(¢) < k},

where B is smooth projective and A is a section of the bundle Hom(&, F).

This resolution is given an incidence correspondence. Define Bg
G(k,E) —— Bgy —" + B
then
X :=Z(Ak)={p€ Bgp_i | A(x(p)) op = 0},

We will focus on the case B = P" and &, F being direct sum of line bundles.

Then X 4 takes a much simpler form

X4 ={(¢,z) €P*x Gr(n—k,n) | A(¢)Yz; =0} (1)



Two-parameter families

Consider the GLSM with the following matter content:

D, Pz' Xz'
U(1) 1 —10
U((2) 0 2 2
U(1)g|2(1 — e — §) 2¢ 26

fora=1,.--,8,i1=1,---,4,
n P
W = Z TF(PZ'A(CD)Z]XJ'),
1,J=1

The Higgs branch geometries are given by

Xq: {(¢,2) €P' x Gr(2,4) | A(¢); -z =0}

X {(¢,p) €P’ x Gr(2,4) | pa- A(¢)! = 0}

Ya: {(p,x) €P(S®*) - Gr(2,4) | p- A% -z =0}



Two-parameter families

A1 (L4+w*—2z(1—-6w+w?)+22=0
—(14+w)B 4+ 42(1 + 34w + w2 (1 + w)* — 222(3 — 372w + 1298w?
_372w3 + 3w4) + 423(1 + 34w + w2) _ =0



Two-parameter families

Crossing between X4 and Y4 phases:

n(n—%k) 6o o _n(n—k)
— < < —
> o 11 2
Crossing between X4 and X4 phases:
k—+1 01 k—+1
_ < > < : For all
> “op T4 > “

In our case (k,n) =(2,4) and o =1, 2.



Two-parameter families

The monodromy around these two boundaries (with basepoint at the X4

phase) can be computed explictly, for instance, around (g-boundary

TX =—-0 OXA(_47 O)

where Ox ,(0,—1) stands for Oy, twisted by det™1Sy

Monodromy around (j-boundary, Ty, is complicated, but we can find an

expression in terms of simpler spherical twists. Consider the intersection
L:=53N(A1UA>U{w=0})

where S€3 is a 3-sphere centered at the intersection A1 N Ay N {w = 0}.
Then

S3\ L

becomes a link complement.



Two-parameter families

For the case at hand, S3\ £ takes the form of a nested link:

then 71(S3\ £) is generated by aj, ap and b, with the assignments:

aq —)TSX, an —)TOX, b — —®det_1SX

therefore we can decompose

Ty = b (T, b)>Ts, T, bTg, b *



Two-parameter families

This structure for the 'Y-boundary’' can be shown (in several examples),
to generalize, at least in families where the singularities of Z(A,k) are

points. The other crossing (' X-boundary) is more complicated to analyze,
in general




Future directions: Anomalous GLSMs

the existence of a RG-flow in the t-directions and a nontrivial Coulomb

branch signals the existence of a semiorthogonal decomposition.

MF Qw -6) ¥ v Db (Mead-DW)
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Future directions: Anomalous GLSMs

The function Z2(B, L, t) satisfies a differential equation with irregular
singularities and it is possible to compute its Stokes matrices by analyzing

the overlap of the windows categories associated to Stokes sectors.

According to (part of) Dubrovin’s conjecture the Stokes matrix coincides
with the Gram matrix of the exceptional collection {E;} associated to a

window category W,, i.e.

(Si;) = x(E;, Ej)

which can be checked explicitly for several Fano varieties.



Future directions: more puzzles

Is there a way to 'systematize’ the computation of nonabelian mon-

odromies, or relate them to abelian ones?

Mirror symmetry?

Inclusion of twited masses/equivariant parameters

Generalizations of Dubrovin’s conjecture
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