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Gauged Linear Sigma Models (GLSM)

These are a class of N = (2,2) supersymmetric 2d gauge theories that we
will simply characterize by the 4-tuple (G, ρm, R,W ), where

• G: Compact Lie group. G, g := Lie(G)

• Matter: ρmatter : G→ GL(V ), V ∼= CN

• Superpotential: G-invariant holomorphic polynomial W ∈ (Sym(V ∨))G such that

there exists weights Ri ∈ (0,2), i = 1, . . . , N , that makes W quasi-homogeneous:

W (λRiφi) = λ2W (φi).

• (Vector) R-charges: The weights Ri characterizes the action of the vector R-charge

U(1)R.

We will be concerned mainly with the coupling constants t ∈ z∨C = Lie(Z(G))∨C

• tl := ζl − iθl ∈ C, l = 1, . . . , rk(z∨)

Denote the space of these constants by MK (Stringy K�ahler space)



and its B-branes...

B-branes are a class of boundary conditions (plus a boundary action) preseving half of the

SUSY at the boundary requires us to specify a triplet (algebraic data) B = (T, ρM , RM).

• A Z2-graded, free Sym(V ∨) module denoted by M = M0 ⊕M1.

• A matrix factorization T ∈ EndSym(V ∗)(M) of W ∈ Sym(V ∗), i.e., a Z2-odd endo-

morphism such that T2 = iW · 1M

• A representation, ρM : G→ GL(M) and a set of weights RM compatible with ρm and

Ri's respectively:

λRMT(λRiφi)λ
−RM = λT(φi)

ρM(g)−1T(ρm(g) · φ)ρM(g) = T(φ).

for all λ ∈ C× and g ∈ G,



More B-branes

There is also symplectic data.

• G-invariant middle-dimensional subvariety of gC, or equivalently its intersection L ⊂ tC
with the Cartan algebra, which we refer to as the contour.

• Denote σ ∈ gC. An admissible contour is a G-invariant, middle dimensional L that is

a continuous deformation of the real contour LR := {=(σ) = 0} inside tC \H where H
is a hyperplane arrangement. such that the imaginary part of the boundary e�ective

twisted superpotential

W̃e�,ρ(σ) :=

(∑
α>0

±iπ α · σ

)
−

(∑
j

(Qj · σ)

(
log(iQj · σ)

))
− t · σ + 2πi ρ · σ

approaches +∞ in all asymptotic directions of L.

The full B-brane is then given by (B, Lt). We will denote te category spanned by B's by

MFG(W )



ZD2(B, Lt; t) partition function of GLSM

We can compute the partition function on a disk/hemisphere D2, expressed as an integral

over Lie(TG)C and it depends on the boundary conditions B, on t and on an integration

contour Lt. The exact partition function ZD2(B, Lt; t) for a GLSM on D2 takes a Mellin-

Barnes integral form:

ZD2(B, Lt; t) =

∫
Lt

drk(G)σZclassZgaugeZmatterfB(σ),

where

Zgauge :=
∏
α>0

α · σ sinh(πα · σ)

Zmatter :=

dim(V )∏
j=1

Γ

(
iQj · σ +

Rj

2

)
Zclass := eit·σ

fB(σ) := TrM
(
eiπr∗e2πρ(σ)

)
,

Contour: The contour Lt must be a middle dimensional continuos deformation of LR :=

{Im(σ) = 0} such that ZD2(B, Lt; t) is absolutely convergent.



Collection of Facts

Some facts about ZD2(B, Lt; t):

1. The conditions on Lt can be interpreted as absolute convergence of ZD2(B, Lt; t).

2. ZD2(B, Lt; t) satis�es a di�erential equation with only regular singuarities when the GLSM is nonanoma-

lous i.e. ρm : G→ SL(V ).

Some facts about MFG(W ):

1. In general, MFG(W ) � D(Yζ,Wζ) where

Yζ :=
µ−1(ζ)

G
, Wζ := W

∣∣∣
Yζ

Yζ will be referred as the classical Higgs branch.

2. There exist in�nite embedings D(Yζ,Wζ) ∼=Ws ↪→MFG(W )



Example: CY hypersurface in Pn−1

ZD2(B, Lt; t) =

∫
Lt

dσΓ(iσ)nΓ(−niσ + 1)eitσfB(σ),

We can then set the following question: for a �xed θ∗ (recall t = ζ− iθ), if we consider the path P from

ζ � 1 to ζ � −1, does it exist an integration contour Lt, such that Lt is a continuous deformation of LR
and ZD2(B, Lt; t) is convergent at every t ∈ P?

• Yes, only if the weights qa of ρM belong to an interval that depends only on k := b θ∗
2π
c. We denote

Wk :=
{
B ∈MFU(1)(W ) : weights of ρM belong to (−n/2− k, n/2− k)

}
• There exits functors Fk and Gk implementing the equivalences

Fk : DbCoh(X) ∼=Wk Gk :Wk
∼= MFZn(fn)



Example: Pfa�an-Grassmnnian

Consider the following example with G = U(2). Denote

(pa, xa) ∈ V ∼= (C7)⊕ (C2)⊕7, a = 1 . . . ,7

ρmatter(g) ◦ (pa, x
α
a) = (det(g)pa, g

α
βx

β
a) g ∈ U(2)

W =
7∑

a,b,c=1

paA
a,bcxαax

β
b εαβ

ZD2(B, Lt; t) =
∫
Lt⊂C2

d2σ(σ1 − σ2) sinh(π(σ1 − σ2))Γ(iσ1)7Γ(iσ2)7

× Γ(−iσ1 − iσ2 + 1)7eit(σ1+σ2)fB(σ1, σ2)



Example: Pfa�an-Grassmnnian

The function ZD2(B, Lt; t) is annihilated by the di�erential operator

L= 9Θ4 − z
(
519Θ4 + 1020Θ3 + 816Θ2 + 306Θ + 45

)
−z2

(
2258Θ4 + 10064Θ3 + 15194Θ2 + 9546Θ + 2166

)
+z3

(
1686Θ4 + 5256Θ3 + 4706Θ2 + 1350Θ + 12

)
−z4

(
295Θ4 + 608Θ3 + 478Θ2 + 174Θ + 26

)
+z5(Θ + 1)4,

z := −e−t

It has �ve singular points:

z ∈ {0,∞, α1, α2, α3} αa := (1 + e
2πia

7 )−7



Example: Pfa�an-Grassmnnian



Example: Pfa�an-Grassmnnian



Monodromies, Categorically



Example: Monodromies, Categorically

M0 −→ −⊗OX(5)

M1 −→ TOX

M∞ −→ T−1
OX ◦ (−⊗OX(−5))



Example: Monodromies, Categorically

Mα1 −→ TOX

Mα2 −→ TSX

Mα3 −→ TSym2SX(1)



Two-parameter families

Next we consider GLSMs corresponding to a resolution of the determinan-

tal variety

Z(A, k) = {φ ∈ B | rankA(φ) ≤ k},

where B is smooth projective and A is a section of the bundle Hom(E,F).

This resolution is given an incidence correspondence. De�ne BE,k:

G(k, E) BE,k B
π

then

XA := Z̃(A, k) = {p ∈ BE,n−k | A(π(p)) ◦ p = 0},

We will focus on the case B = Pn and E,F being direct sum of line bundles.

Then XA takes a much simpler form

XA = {(φ, x) ∈ Pd ×Gr(n− k, n) | A(φ)ijxj = 0} (1)



Two-parameter families

Consider the GLSM with the following matter content:

Φa Pi Xi
U(1) 1 −1 0
U(2) 0 2 2
U(1)R 2(1− ε− δ) 2ε 2δ

for a = 1, · · · ,8, i = 1, · · · ,4.

W =
n∑

i,j=1

Tr(PiA(Φ)ijXj),

The Higgs branch geometries are given by

XA : {(φ, x) ∈ P7 ×Gr(2,4) | A(φ)i · xα = 0}

XAT : {(φ, p) ∈ P7 ×Gr(2,4) | pα ·A(φ)j = 0}

YA : {(p, x) ∈ P(S⊕4)→ Gr(2,4) | p ·Aa · x = 0}



Two-parameter families

∆1 : (1 + w)4 − 2z(1− 6w + w2) + z2 = 0

∆2 : −(1 + w)8 + 4z(1 + 34w + w2)(1 + w)4 − 2z2(3− 372w + 1298w2

−372w3 + 3w4) + 4z3(1 + 34w + w2)− z4 = 0

w := et1, z := e−t0



Two-parameter families

Crossing between XA and YA phases:

−
n(n− k)

2
<
θ0

2π
+ q0 <

n(n− k)

2
,

Crossing between XA and XAT phases:

−
k + 1

2
<
θ1

2π
+ qα <

k + 1

2
, For all α

In our case (k, n) = (2,4) and α = 1,2.



Two-parameter families

The monodromy around these two boundaries (with basepoint at the XA

phase) can be computed explictly, for instance, around ζ0-boundary

TX := −⊗OXA(−4,0)

where OXA(0,−1) stands for OXA twisted by det−1SXA

Monodromy around ζ1-boundary, TY , is complicated, but we can �nd an

expression in terms of simpler spherical twists. Consider the intersection

L := S3
ε ∩ (∆1 ∪∆2 ∪ {w = 0})

where S3
ε is a 3-sphere centered at the intersection ∆1 ∩∆2 ∩ {w = 0}.

Then

S3
ε \ L

becomes a link complement.



Two-parameter families

For the case at hand, S3
ε \ L takes the form of a nested link:

then π1(S3
ε \ L) is generated by a1, a2 and b, with the assignments:

a1 → TSX , a2 → TOX , b→ −⊗ det−1SX

therefore we can decompose

TY = b−3(TOXb)
3TSXTOXbTSXb

−1



Two-parameter families

This structure for the 'Y -boundary' can be shown (in several examples),

to generalize, at least in families where the singularities of Z(A, k) are

points. The other crossing ('X-boundary) is more complicated to analyze,

in general



Future directions: Anomalous GLSMs

the existence of a RG-�ow in the t-directions and a nontrivial Coulomb

branch signals the existence of a semiorthogonal decomposition.



Future directions: Anomalous GLSMs

The function ZD2(B, Lt; t) satis�es a di�erential equation with irregular

singularities and it is possible to compute its Stokes matrices by analyzing

the overlap of the windows categories associated to Stokes sectors.

According to (part of) Dubrovin's conjecture the Stokes matrix coincides

with the Gram matrix of the exceptional collection {Ei} associated to a

window category Wr, i.e.

(Sij) = χ(Ei, Ej)

which can be checked explicitly for several Fano varieties.



Future directions: more puzzles

• Is there a way to 'systematize' the computation of nonabelian mon-

odromies, or relate them to abelian ones?

• Mirror symmetry?

• Inclusion of twited masses/equivariant parameters

• Generalizations of Dubrovin's conjecture
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