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Related works — many in cond-mat:

Gapped phases:
[Thorngren, Wang][Inamura][Huang, Lin, Seifnashri][Cordova, Zhang][S. Huang, Meng Cheng]

Gapless phases:
[Chatterjee, = Aksoy, Wen][Wen, Potter]

With fermions:

[S. Huang][Bhardwaj, Inamura, Tiwari]

Non-Invertible SPT phases from lattice models:
[Fechisin, Tantivasadakarn, Albert][Seifnashri, Shao][Jia]

Non-Invertible symmetries and phase transitions in lattice models (RepS3):
[Eck, Fendley][Bhardwaj, Bottini, SSN, Tiwari][Chatterjee, Aksoy, Wen]



Symmetric Phases

Landau paradigm:
A continuous (2nd order) phase transition is a symmetry breaking transition.

G is a symmetry group, which is spontaneously broken to a subgroup H,
resulting in |G/ H| vacua, which are acted upon by the broken symmetry

(+SPT phases).

Example: G = Zo.
There are two gapped Zs-symmetric phases:

e Trivial phase (H = Z3): Z symmetric single vacuum.

e Spontaneously Symmetry Broken (S5B) Phase (H = 1): charged operator
O_ gets a vacuum expectation value, two vacua, and the broken Z,
exchanges them.

Between these there is a 2nd order phase transition: in (1+1)d, the critical Ising
CFT

Zo SSB Phase | <— |Ising CFT| — |Trivial Phase




Lattice Model Realization: Ising model

Transverse field Ising model: H = (C?)% with nearest neighbor Hamiltonian
H = —ZZij+1 —gZXj .
J J

There is a Z spin flip symmetry n = [, X;.
e g =0: two ground states, | 1¥) and | [1): “ordered phase”
* g > 1: ground state preserves the Z,: "disordered phase”
e g = 1: critical Ising CFT at c = 1/2.

ordered disordered

VQQ

| ¢ Ising CFT

—

g=0

S

Kramers-Wannier duality:

X, — Z;jZj1and Z;Z;11 — X441, corresponds to g — g~ 1.

At g = 1: symmetry of the critical Ising CFT, which realizes the non-invertible
defect:

N?=14n



Non-Invertible Symmetries

Identifying global symmetries with topological defects [Gaiotto, Kapustin, Seiberg,
Willett, 2014] has led in the last 10 years to a vast generalization of the notion of
symmetry. The most recent one is to so-called Non-invertible or Categorical

Symmetries:

An example are fusion category symmetries S in 2d: fora,b € S

CL@b:NlCl@"'@Nka, CZ'GS,N@'GN

# Long—history in 2d QFTs: [Fuchs, Runkel, Schweigert][Bhardwaj, Tachikawa][- - - ]
# Many constructions in d > 2 QFTs [Starting in 21], which form higher fusion
category symmetries



Fusion Category Symmetries

In 2d theories:
e Objects: topological lines D;g ),
* Morphisms: topological point operators Dy € Hom(Dgg ),Dgh)).

e Fusion:
D\ @ D" = PN DI
k

D™
Do

Dgg) Dgh)



* Associativity:
D 594) D %94)

— [94

gdi1,92,93

Dggl) D§92) D§93> Dggl) D§92) D§93)

and subsequent compatibility conditions (pentagon identity)



Two simple examples of Non-Invertible Symmetries in 2d:

Ising fusion category:
Generators are 1, 77, N, where n ® n = 1 is a Zy group, and
N®n=n® N = N, but N is non-invertible

NQN=1&n.

N is the Kramers-Wannier self-duality of the critical Ising model.

Representations of a finite non-abelian group G:
e.g. permutation group on 3 elements S3:

Rep(S3) = representations of S3 with the tensor product form a fusion category .

The generators are the irreducible representations:
the trivial (1), sign (U) and 2d representation E, respectively, with tensor
product (fusion):

UU=1, EQU=UQE=FE, EQE=1aUdE.



Non-Invertible (Higher-Fusion Category) Symmetries in d = 4

* 4d Kramers-Wannier duality defects:
[Kaidi, Ohmori, Zheng][Choi, Cordova, Hsin, Lam, Shao]

QFT = QFT/D = non-invertible O-form symmetry

* Condensation defects from higher-gauging : [Roumpedakis, Seifnashri, Shao]

CdN Z €if2b

YeH (Mg, ZN)

e Gauging outer automorphisms [Bhardwaj, Bottini, SSN, Tiwari]:
E.g. 1-form symmetry Z;S) X ng of Spin(4n) exchanged by outer
automorphism

Di2nv — Dgs) D DéC) DéC)

D :gout) /




Higher Fusion Category Symmetries

In higher dimensions, higher-form symmetries (and generalizations thereof)
need to be included. E.g. (d — p — 1)-dimensional defect links in d dimensions
with a p-dimensional charged operator. ”"p-form symmetry”.

In d-spacetime dims non-invertible symmetries form a (d — 1)-fusion category:

* Topological defects of dimension (d — 1), up to 0: (d — 1) objects, (d — 2)
morphisms, (d — 3) 2-morphisms, etc.

* Fusion of defects in each dimension
e Compatibility /associativity conditions

d=3:

Classification of fusion 2-categories (up to Morita equivalence) [Decoppet].



Generalized Charges for Non-Invertible Symmetries

Generalized g-charge
= g-dim defect in a "Representations of a Non-Invertible Symmetry”.

In 2d: tube algebra and lasso-action [Frohlich, Fuchs, Runkel, Schweigert][Lin, Okada,

Seifnashri, Tachikawa][Bhardwaj, SSN][Bartsch, Bullimore, Ferrari, Pearson]

Example: Ising fusion symmetry of the critical Ising model

772:1, Nn=nN =N, N2:1@n.

We can act on the spin operator o (1/16 primary):

N

—

eQ
o=

N N N

This is a hallmark of non-invertible symmetries: they map genuine operators
to non-genuine ones (i.e. attached to topological defects).



Categorical Landau Paradigm

Conjecture/Hope: Generalized (Categorical) Landau Paradigm:

Explain (beyond Landau) phase transitions using a suitably generalized

notion of symmetry.

Let S be a non-invertible symmetry. We develop a framework that determines:

o All S-symmetric gapped phases including the order parameters, i.e.

generalized charges acquiring vevs

* Gapless phase transitions between S-symmetric gapped phases:

S Gapped Phase

%

CFT

o

S Gapped Phase’

Generalizes the Landau paradigm to S a categorical symmetry

= Categorical Landau Paradigm [Bhardwaj, Bottini, Pajer, SSN]

These can be classified using the so-called Symmetry TFT.




SymTFT (”SandWiCh = QuiChe2 /I*)

[Gaiotto, Kulp][Apruzzi, Bonetti, Garcia-Extebarria, Hosseini, SSN] [*Freed, Moore, Teleman]

Given a physical QFT T with (finite) symmetry S in d dimensions. The
SymTFT is a d + 1 dimensional TQFT 3(S) by gauging S in (d + 1) dims:

/

Examples:

* Zn p-form symmetries (with anomalies): Dijkgraaf-Witten theory (with
tWiSt) Nf bp_|_1 N\ Cd—p-

* Fusion category symmetries: Turaev-Viro TQFT.

The topological defects Q,, of the SymTFT form the Drinfeld center Z(S5).



SymTFT ("Sandwich”)

/

o BI™ = Symmetry boundary (gapped boundary condition):

condense a maximal number of mutually local topological defects. The
remaining defects generate S.
These are classified by Lagrangian algebras of Z(S5).

. thys = Physical boundary:
condense a subset of mutually local defects (braiding trivially with each
other, but not necessarily maximal)

The interval compactification gives T with symmetry S.



SymTFT: Recovering S

B3™: gapped (topological) boundary conditions of the SymTFT:

= Determined by a maximal set of mutually local topological defects, which
form a Lagrangian algebra

Q, with Neumann b.c.s give rise to symmetry generators S.



Linking of Topological Defects is Action of Symmetry

# [Bhardwaj, SSN "23]:
The generalized charges are the topological defects Q of the SymTFT,
which condense on both boundaries.

# Q' that have Neumann b.c. on the B boundary are the generators of the
symmetry S.

# Linking of Q and Q' determines the charge under the symmetry:.



SymTFT: Non-genuine Operators

O is attached to a topological line, i.e. a non-genuine operator.



SymTFT for finite groups G

Drinfeld Center Z(Vecg ):
For (non-abelian) G'°) the symmetry category is Vecg, and elements of the
center are

Q[Q],R7

* conjugacy classes [g]
* representations of the stabilizer group H, of g € [g].

Lagrangian algebras:
Gapped boundary conditions are given in terms of Lagrangian algebras:

L= @naQ%
such that
dim(£) =) n,dim(Q}) =dim(S),  where dim(5)> =) dim(Q,)?

C
NNy < E N pne
cel
ab.. b
Zbez S4n
16,40
Zbez S+n

= cyclotomic integer for alla € Z



Example: S; in 2d

S3 = Z3 x Zo = {id, a,a?,b,ab,a*b}
Irreps: + (trivial), — (sign), E (2d representations).

Conjugacy classes:

[id], Hjq =955
la], H,={id,a,a*} = Z3
b], Hp,={id,b} =7Z-.

H, = Z3 irreps: labeled by 1,w = ¢2™/3 (2,

Hy = 7 irreps: labelled by +.
The lines in Z(Vecg,)
QiR R=1,1_,F
g[a]’R) ; R=1w,w?
g[b],R) : R—+.
The topological b.c.s (Lagrangian algebras) are

Ls, = (id],1) @ ([id},1-) ®2([id], £)  Lgep(s,)y = ([id],1) & ([id],1-) & 2([a],1)
Lgy = (id},1) & ([id], £) & ([0], 1) Lrep(ss) = ([id], 1) ® (la], 1) @ ([b], 1)



Multiplet structure:
* Sa: Qg[id]’R) are untwisted; Qg[a]) and Qg[b]) are twisted sector reps

e Rep(Ss): Qg[id]’R) are twisted (attached to R lines).

Q") contains two operators:

e and 1_ .
O, O_

This can be derived from the action of the symmetry on defects in the SymTFT:

B N R




SymTFT

Topological defects are the generalized charges
Gauging S corresponds in the SymTFT to changing the symmetry b.c..
If S and &’ that are related by gauging, they have the same SymTFT.

SymTFT exists for any higher-fusion category: the topological defects are
the so-called Drinfeld Center. For 2-fusion categories see [Kong et
al][Bhardwaj, SSN]

3(2Vecy) GB 2Rep™?

Recently: SymTFT or SymT for continuous abelian and non-abelian
Symmetries [Antinucci, Benini][Apruzzi, Bedogna, Dondi][Bonetti, del Zotto,
Minasian][Brennan, Sun]. This can be important for higher-group symmetries
which mix continuous and finite symmetries.



Gapped S-Symmetric Phases



Classification of gapped S-symmetric phases

Gapped phases are obtained by choosing BP'Y to be also a topological
(gapped) boundary condition.

m hys
BY Biop TQFTS

In the SymTFT:
gapped b.c.s <> Lagrangian algebras £ of the Drinfeld Center Z(S).

Fix symmetry boundary to be Ls:
A gapped S-symmetric phase is given by a Lagrangian algebra £:

e SPT (symmetry protected topological phase): LN Ls =1
Cannot deform to the trivial theory without breaking symmetry

* SSB (spontaneous symmetry breaking): LN Ls D 1

# of vacua = # of topological defects that condense on both boundaries, which
are also the order parameters.



Gapped Phases with Group-Symmetry in 2d

Landau type classification: & = Vecg then
* H < G the unbroken symmetry
e we H?(H,U(1)) cocycle/SPT phase.
Example: G = Z4

The SymTFT is a 3d topological order (Z4 Dijkgraaf-Witten-theory) [b; U dcy,

with anyons e = ¢*/ ?1 and m = e*/ 1
Topological defects (anyons): (e',m?), e*=1 m*=1.

e and m braid non-trivially. The Lagrangian, i.e. maximal, trivially braiding
subsets of anyons are:

1. Lpp=1®ede’ de’
2. Lnewu=1Bmaem?em?
3. LNeu(zy) = 1®e?dm? ®e’*m?

The symmetry boundary is B?S@ = Lpir.



Gapped Phases with Z, Symmetry via the SymTFT

Ephys = Ls = Lpir

Lphys = LNeu

Lphys — ENGU(ZQ)

Ls Lphys

ES ﬁphys

Ls Ephys

Z4 SSB:
4 identical vacua,
permuted by Z,4

Z, Trivial Phase:
single vacuum with Z,4
acting trivially

ZQ SSB:
2 identical vacua,
permuted by Z,



Gapped Phases with Non-Invertible Symmetry: Ising Category

The SymTFT is Ising KIsing and there is a unique subset of mutually local
anyons (gapped b.c./Lagrangian algebra):

Elsing ﬁlsing

»CIsing =191_& (07 H)

Resulting in 3=2+1 vacua, with the symmetry acting as

3

Unique Ising symmetric gapped phase: SSB phase with 3 vacua.



Gapped Phases with Non-Invertible Symmetry: Rep(.Ss)

Repeating a similar SymTFT analysis now for the non-invertible symmetry

Rep(Ss3) (1, 1_, E irreps) we find four gapped phases:

E

Rep(S3) trivial phase Z.5 SSB Rep(Ss3)/Zo SSB Rep(S3) SSB
1_ 1_ 1_
Vo ORep(Sg) U1 V2 vo V1 V2 vo V1 V2




Gapless S-Symmetric Phases and Phase Transitions



Phase Transitions

Consider two gapped S-symmetric phases, how do we determine the
S-symmetric phase transitions?

S gapped| <+— |Sgaplesss| — |S gapped’

e Gapped phase: determined by Lagrangians £;

* Gapless phase transition between £; and L, is characterized by
Ao =L1N Ly

i.e., a non-maximal set of mutually local topological defects.

* One can also tune and consider N;£; for any subset of Lagrangian
algebras.



Gapless Phases and Phase Transitions

Now that we have all gapped phases, we expect to also be able to study
transitions between gapped phases.

Requires promoting the SymTFT sandwich to a SymTFT club-sandwich.

The first step is to consider interfaces between topological orders: 3(S) and 3"
“club quiche”

B T w. ) S

This constructs S-symmetric boundary conditions of the topological oder 3'.



Condensable Algebras

Such interfaces between topological orders are determined by condensable
algebras A in Z(S):

e Example: A is Lagrangian: Z’ is trivial

e Aisnot maximal, then Z(S)/.A is a non-trivial topological order Z(S’) for

a reduced symmetry S’.

e Equivalently, condensable algebras can be determined as Lagrangian

algebras of the folded topological order Z(S) X Z(&7).



Club Sandwich and Phase Transitions

Consider the club quiche S, &’ with condensable algebra A.

We can close it off with a physical boundary condition on the RHS, resulting
in a ”club sandwich”. The club quiche is a device to map S’-symmetric b.c. of
a topological order to S-symmetric theories:

BS™ Ta gotys ) S

Concretely this can be used to make new phase transitions out of old:

= Kennedy-Tasaki-transformations: S’-symmetric to S-symmetric theories



Start with an S’-symmetric theory and its SymTFT:

sym phys
BSY/ BS‘S/ ‘ZS

Attaching the S to S’ club quiche results in

/

sym phys
B La Bes o

Here the physical S-symmetric boundary €° is obtained by collapsing the

second interval:

sym Bg}‘gs sym Bphys




New Phase Transitions from Old

Consider an input phase transition between S’-symmetric gapped phases
T, — TS

The club sandwich produces a phase transition for the symmetry S, which is
the KT transformation of the initial input phase transition:

S S S
W C — %5



Club Quiches: Z,

The condensable, not Lagrangian, algebras for Z(Z4) are
A1=1, A=10e%2 A,>=10dm?, Az,,2 =10 e*m?.

The reduced topological orders are determined from the club quiches:

Note: Z, acts by line operators on the boundary of Z(S’). E.g. in the first
example it acts by permuting the two boundary conditions: £, @ L..



Z., Phase transitions from Z,

For the condensable algebra A.2 the club quiche is:

sym
Vecz, Aez

This implies is the S-symmetric gapless phase

2y
v N
S = 7, (%)o@ NnD) 2L
N
Ly



7., Phase transitions from 7Zs-

E.g. for &’ = Z, the Ising transition, this constructs a Z4-symmetric transition
Loy
S =  Z,(_ Ising, ®Ising, ) Zs

N
Loy

which models the transition between Z, and Zs SSB phases for Z, symmetry.

Similarly we find for the Z, trivial and Zs SSB transition of Z,:

TS = Isingi) 74



Club Quiches: Rep(.Ss)

The non-Lagrangian, condensable algebras are
Al =101, Apg=10F, A, =1&a;.

And the reduced topological orders are

sym sym
Rep(Sg) RGP(SB)

sym
Rep(S 3)




Rep(S3) Phase transitions from Z;

For Rep(S3) we have input transitions that are Zs-symmetric, which is the
3-state Potts model.

The Rep(S3)/Z2 SSB — Rep(.S3) SSB transition is obtained to be:

TS — F Clsmg @ (Ising, ). /3 3 1
S
E

where the Rep(S3) acts as
1—:1ee@nmma E:SemEDSme@nee

For the full list of such transitions see [Bhardwaj, Bottini, Pajer, SSN]



Phase diagram for Rep(.S3) in 2d

Rep(S3)={1,0, E'}. Both from continuum and from spin-chain models
[Bhardwaj, Pajer, SSN, Warman][Bhardwaj, Bottini, SSN, Tiwari][Chatterjee, Aksoy, Wen]

I1I: Rep(Ss)/Zs SSB

I: Trivial Q Q Q
Vo Vi Vo

\ ORep(Sg,) < >
Potts w
Ising Ising®lsing
Y IV: Rep(S3) SSB
1T Z., SSB ep(S3)

TN O /7
C vt v 3 C Vo V1 Vo

N, W




A Roadmap of Phases with Symmetry S

e Construct the SymTFT and Drinfeld center Z(S)

* Determine all condensable algebras and the associated reduced
topological orders Z(S’)

* In particular: £, and £, are Lagrangians, that give rise to gapped phases,
then the gapless phase between these is given by A2 = £1 N Ls.

More generally, there is a partial order on condensable algebras of Z(S): and
thus... a Hasse diagram.



14 e?

/NI

Hasse diagram for PPhases of Z,

Y

1+ e?

+

0

Canonical Z,—gapless

/

N\

ZQ-gSSB

igSPT

Zg-gSPT

14+e+e?+e3

1+ e?2 +m? + e*m?

1+m+m?+m?

Ls and Z4-SSB

e gSPT (gapless SPT): ANLs =1
e igSPT (intrinsically gapless SPT): gSPT that cannot be deformed to an SPT
e gSSB (gapless SSB): ANLs D1

AN

Z:2-SSB

N\

SPT

e igSSB (intrinsically gapless SSB): gSSB with n universes, that cannot be
deformed to an SSB with n vacua

For Z,4: igSPT was found in [Wen, Potter].

First non-invertible igSPT: Rep(Dgn) [Bhardwaj, Pajer, SSN, Warman)].




Hasse Diagram for Z(Rep(Ss))

S3 — gapless

’ Zy — gSPT ‘ ’ Z3 — gapless ‘ ’ Zo — gapless ‘

VA VAN

SPT SSB and S5 SSB SSB

’ Rep(Ss) — gapless ‘

AN

’ Z5 — gapless ‘ ’ Z3 — gSPT ‘ ’ Ly — gSPT‘

VA VRN

and Rep(S3) SSB |Rep(S5)/Z2 SSB| SPT




Hasse Diagram for Z(Rep(Ds))

| Dim | Condensable Algebra of Z(Rep(Ds)) (with label) | Reduced TO S’

Phase for S = Rep(Ds) ‘

n
1 1 (V.0) S Rep(Ds)—gapless 1
2 1®egra (V.1) Zy gSPT 1
2 1 ® €GB (VZ) Z4 gSPT 1
2 1D ern (V3) Ly gSPT 1
2 1@egr (V.4) Zo X T ¢SPT 1
2 1®eq (V.5) Ty X Ty ¢SPT 1
2 1®ep (V.6) Zo X Za ¢SPT 1
2 1®ercn (V.7) Ly X Lo ¢SSB 2
4 1®egp ®erp P era (V.8) 7y igSPT 1
4 1®er ®man (V.9) Ly g¢SSB 2
4 1@ er ® ma (V.10) Zs ¢SPT 1
4 1®er Dmp (V.11) Zo ¢SPT 1
4 1®eq dmpr (V.12) 7o ¢SSB 2
4 l®eg®mp (V.13) Ly gSPT 1
4 1®egdmp (V.14) Zo gSPT 1
4 1®ep ®mpa (V.15) Zs g3SSB 2
4 1®ep®mp (V.16) Zo ¢SPT 1
4 1®ep ®mg (V.17) Zs gSPT 1
4 1® eraB D Mga (V.18) Lo igSSB 3
4 1® erap ® maB (V.19) Zs igSSB 3
4 1®ergp ® mgp (V.20) L igSSB 3
4 1®eqgDer ®era (V.21) Zo gSPT 1
4 1% ep®eqgDean (V.22) Zo gSPT 1
4 l1®ep ®er Derp (V.23) Zs gSPT 1
4 1®eqgp ®er D eran (V.24) Ly ¢SSB 2
4 1®eqcPerp Percn (V.25) Zo e¢SSB 2
4 1®ep ®era D eran (V.26) Ly ¢SSB 2
8 1P ec®er®erg ®2mp (V.27) trivial SPT 1
8 1®ep ®erg ®eran D 2mpa (V.28) trivial SSB 4
8 1®eap ®er ®erap ®2man (V.29) trivial SSB 4
8 1P ep®er ®erp ®2mg (V.30) trivial SPT 1
8 l1®eqcDerp ®ercp D 2mpp (v.31) trivial SSB 4
8 1@ ep®eq Begp ®2mp (V.32) trivial SPT 1
8 1® eragp ® map ® mrp ® Mra (V.33) trivial Ls and SSB 5
8 1®ep BmagPmpr B mpa (V.34) trivial SSB 2
8 1®er ®mp ®mag®man (V.35) trivial SSB 2
8 1®degd®mp ®mgr®mgp (V.36) trivial SSB 2
8 1®ep®ec®ecr®erDerp Perc Peran (V.37) trivial SSB 2




1

Rep(Dsg)—gapless

V.6 V.5 V.2 V.7 V.3 V.4 V.1
gSPT gSPT gSPT gSSB gSPT gSPT gSPT
p Q ™~ N
V.16 V.17 V.20 V.19 V.15 V.18 V.13 V.12 V.22 V.25 V.14 V.10 V.9 ™ V.23 V.24 V.11 V.8 T V.26 T V.21
gSPT | |gSPT| |igSSB| |igSSB| | gSSB | |igSSB q gSPT | |gSSB| |gSPT| |gSSB| |gSPT| |gSPT| [gSSB| |gSPT | [gSSB| |gSPT| |igSPT | |gSSB| |gSPT
. K ‘
V.34 V.33 V.32 V.31 V.36 V.30 V.29 V.35 V.28 ‘ .7 V.27
SSB Ls and SSB SPT SSB SSB SPT SSB SSB SSB SSB SPT




Classification of Phases

Two key distinctions:
* Gapped versus gapless: energy gap A > 0or A =0

* SPT-ness (gapless or gapped): symmetry gap As > 0or As = 0.
The symmetry gap As > 0 means, that not all charges of S are realized in
the IR phase, i.e. some S-charges are confined. They are realized as
excited states, that enter the spectrum at As.

Note: Ag > A.

Number of universes/vacua: n, which is 1 for SPTs (gapless or gapped) and
n > 1 for SSB.

Finally: whether or not an S-symmetric phase can be deformed to another
S-symmetric phase may imply the symmetry is protected ("symmetry
protected criticality”). This is the distinction between gSPT and igSPT
(intrinsic) and gSSB and igSSB.



Classification of Phases

Phase Physical characterization Energy gap A C01.1d1t10n on A 7
Symmetry gap As in (1+1)d

Gapped system with energy gap A > 0. IR: trivial TQFT. A >0 A-r

SPT | S-charges confined in IR appear at an energy scale (symmetry gap) As > A > 0. Ag >0 ANLs—1 1
Order parameters (OPs) are all of string type (i.e. in twisted-sectors for S).
Gapless system with A = 0 and a unique ground state on circle.

oSPT Not all charges of S appear in IR. A =0 A#L 1
The confined charges appear at a symmetry gap As > 0. As >0 ANLs =1
OPs are all of string type.

ioSPT A gSPT phase that cannot be deformed to a gapped SPT phase, A =0 A#L 1
because it has confined charges not exhibited by any of the gapped SPTs. As >0 ANLs =1
Gapped system with n degeneratg vacua (labeled by i) permuted by S action. AD s 0

SSB Each vacuum i has energy gap A > 0. Going from i to j costs A7) > 0. A = A=L o1

Not all charges realized in IR = symmetry gap As > 0. Ag >0 ANLs D1
OPs are multiplets with string and non-string type.
Gapless system with n degenerate gapless universes labeled by 1. . AG) — 0

oSSB Each universe has a unique ground state on a circle. Going from i and j costs A7) > 0. A = A#L o1
Not all charges realized in IR = symmetry gap As > 0. Ag >0 ANLs D1
OPs string and non-string type

igSSB A gSSB phas'e with n universes that cannot be deformed to a gapped AA((ij)) _>OO A#L -1
SSB phase with n vacua. Ag >0 ANLs D1

A is the energy gap. As the symmetry gap: not all S-charges are realized in

the IR. The missing/confined charges are realized by excited states. The

symmetry gap Ag, is the energy of the first excited state carrying one of the
confined charges. The symmetry becomes less faithful going downwards.




A Roadmap of Phases with Symmetry S

e Construct the SymTFT and its topological defects.
* Determine all condensable algebras of topological defects.

* In particular: £, and £, are Lagrangians, that give rise to gapped phases,
then the gapless phase between these is given by A2 = £1 N Ls.

 SymTFT encodes the order parameters and symmetry implementation.

Results in new phases with non-invertible symmetries, e.g. found
non-invertible SPTs and igSPTs for Rep(Dsg,, ).

Crucially, this is applicable to any fusion category symmetry.



Conclusions and Open Questions

The field of categorical symmetries has seen enormous progress in the last
years, in string /high-energy theory, condensed matter and math, with lots of
synergies.

In view of the applications to phases of matter, there are many open

questions, e.g.:

1. Classification of symmetric phases: 3d and 4d where the full structure of
higher fusion categories will need to be tapped in [wip Oxford]

2. gSPT, igSPT, gSSB, igSSB phases in higher dimensions: QFT examples?
[Antinucci, Copetti, SSN, wip]
gSPTs in 4d [Dumitrescu, Hsin]

3. Extension of this framework of SymTFT, gapped, gapless phases to
non-semisimple categories, and continuous symmetries.
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