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Related works – many in cond-mat:

Gapped phases:
[Thorngren, Wang][Inamura][Huang, Lin, Seifnashri][Cordova, Zhang][S. Huang, Meng Cheng]

Gapless phases:
[Chatterjee, ± Aksoy, Wen][Wen, Potter]

With fermions:
[S. Huang][Bhardwaj, Inamura, Tiwari]

Non-Invertible SPT phases from lattice models:
[Fechisin, Tantivasadakarn, Albert][Seifnashri, Shao][Jia]
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[Eck, Fendley][Bhardwaj, Bottini, SSN, Tiwari][Chatterjee, Aksoy, Wen]



Symmetric Phases

Landau paradigm:
A continuous (2nd order) phase transition is a symmetry breaking transition.

G is a symmetry group, which is spontaneously broken to a subgroup H ,
resulting in |G/H| vacua, which are acted upon by the broken symmetry
(+SPT phases).

Example: G = Z2.
There are two gapped Z2-symmetric phases:

• Trivial phase (H = Z2): Z2 symmetric single vacuum.

• Spontaneously Symmetry Broken (SSB) Phase (H = 1): charged operator
O− gets a vacuum expectation value, two vacua, and the broken Z2

exchanges them.

Between these there is a 2nd order phase transition: in (1+1)d, the critical Ising
CFT

Z2 SSB Phase ←− Ising CFT −→ Trivial Phase



Lattice Model Realization: Ising model

Transverse field Ising model: H = (C2)L with nearest neighbor Hamiltonian

H = −
∑
j

ZjZj+1 − g
∑
j

Xj .

There is a Z2 spin flip symmetry η =
∏

j Xj .

• g = 0: two ground states, | ↑L⟩ and | ↓L⟩: ”ordered phase”

• g≫ 1: ground state preserves the Z2: ”disordered phase”

• g = 1: critical Ising CFT at c = 1/2.

g
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ordered
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g
C

FT
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Kramers-Wannier duality:
Xi→ ZjZj+1 and ZjZj+1→ Xj+1, corresponds to g→ g−1.
At g = 1: symmetry of the critical Ising CFT, which realizes the non-invertible
defect:

N2 = 1+ η



Non-Invertible Symmetries

Identifying global symmetries with topological defects [Gaiotto, Kapustin, Seiberg,

Willett, 2014] has led in the last 10 years to a vast generalization of the notion of
symmetry. The most recent one is to so-called Non-invertible or Categorical
Symmetries:
An example are fusion category symmetries S in 2d: for a, b ∈ S

a⊗ b = N1c1 ⊕ · · · ⊕Nkck , ci ∈ S , Ni ∈ N

# Long-history in 2d QFTs: [Fuchs, Runkel, Schweigert][Bhardwaj, Tachikawa][· · · ]

# Many constructions in d > 2 QFTs [Starting in ’21], which form higher fusion
category symmetries



Fusion Category Symmetries

In 2d theories:

• Objects: topological lines D(g)
1 ,

• Morphisms: topological point operators D0 ∈ Hom(D
(g)
1 ,D

(h)
1 ).

• Fusion:
D

(g)
1 ⊗D

(h)
1 =

⊕
k

Ng,h
k D

(k)
1 .

D0

D
(g)
1 D
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D
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• Associativity:

D
(g1)
1 D

(g2)
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(g3)
1
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and subsequent compatibility conditions (pentagon identity)



Two simple examples of Non-Invertible Symmetries in 2d:

• Ising fusion category:
Generators are 1, η, N , where η⊗ η = 1 is a Z2 group, and
N ⊗ η = η⊗N = N , but N is non-invertible

N ⊗N = 1⊕ η .

N is the Kramers-Wannier self-duality of the critical Ising model.

• Representations of a finite non-abelian group G:
e.g. permutation group on 3 elements S3:

Rep(S3) = representations of S3 with the tensor product form a fusion category .

The generators are the irreducible representations:
the trivial (1), sign (U ) and 2d representation E, respectively, with tensor
product (fusion):

U ⊗U = 1 , E ⊗U = U ⊗E = E , E ⊗E = 1⊕U ⊕E .



Non-Invertible (Higher-Fusion Category) Symmetries in d = 4

• 4d Kramers-Wannier duality defects:
[Kaidi, Ohmori, Zheng][Choi, Cordova, Hsin, Lam, Shao]

QFT ∼= QFT/D ⇒ non-invertible 0-form symmetry

• Condensation defects from higher-gauging : [Roumpedakis, Seifnashri, Shao]

Cd ∼
∑

Σ∈Hq(Md,ZN )

ei
∫
Σ
b

• Gauging outer automorphisms [Bhardwaj, Bottini, SSN, Tiwari]:
E.g. 1-form symmetry Z(S)

2 ×Z(C)
2 of Spin(4n) exchanged by outer

automorphism

Dinv
2 = D

(S)
2 ⊕D

(C)
2

D
(out)
3

D
(S)
2

D
(C)
2



Higher Fusion Category Symmetries

In higher dimensions, higher-form symmetries (and generalizations thereof)
need to be included. E.g. (d− p− 1)-dimensional defect links in d dimensions
with a p-dimensional charged operator. ”p-form symmetry”.

In d-spacetime dims non-invertible symmetries form a (d− 1)-fusion category:

• Topological defects of dimension (d− 1), up to 0: (d− 1) objects, (d− 2)

morphisms, (d− 3) 2-morphisms, etc.

• Fusion of defects in each dimension

• Compatibility/associativity conditions

d = 3:

D
(a,b)
1 D

(a,b)′

1

D
(a)
2

D
(b)
2

D0

Classification of fusion 2-categories (up to Morita equivalence) [Decoppet].



Generalized Charges for Non-Invertible Symmetries

Generalized q-charge
= q-dim defect in a ”Representations of a Non-Invertible Symmetry”.

In 2d: tube algebra and lasso-action [Fröhlich, Fuchs, Runkel, Schweigert][Lin, Okada,

Seifnashri, Tachikawa][Bhardwaj, SSN][Bartsch, Bullimore, Ferrari, Pearson]

Example: Ising fusion symmetry of the critical Ising model

η2 = 1 , Nη = ηN = N , N2 = 1⊕ η .

We can act on the spin operator σ (1/16 primary):

σ

N

σ

N

N

N

µ

N

η

This is a hallmark of non-invertible symmetries: they map genuine operators
to non-genuine ones (i.e. attached to topological defects).



Categorical Landau Paradigm

Conjecture/Hope: Generalized (Categorical) Landau Paradigm:
Explain (beyond Landau) phase transitions using a suitably generalized
notion of symmetry.

Let S be a non-invertible symmetry. We develop a framework that determines:

• All S-symmetric gapped phases including the order parameters, i.e.
generalized charges acquiring vevs

• Gapless phase transitions between S-symmetric gapped phases:

S Gapped Phase ←− CFT −→ S Gapped Phase’

Generalizes the Landau paradigm to S a categorical symmetry

⇒ Categorical Landau Paradigm [Bhardwaj, Bottini, Pajer, SSN]

These can be classified using the so-called Symmetry TFT.



SymTFT (”Sandwich = Quiche2”*)

[Gaiotto, Kulp][Apruzzi, Bonetti, Garcia-Extebarria, Hosseini, SSN] [*Freed, Moore, Teleman]

Given a physical QFT T with (finite) symmetry S in d dimensions. The
SymTFT is a d+ 1 dimensional TQFT Z(S) by gauging S in (d+ 1) dims:

Bsym
S Bphys

T
SymTFT

= T

Examples:

• ZN p-form symmetries (with anomalies): Dijkgraaf-Witten theory (with
twist) N

∫
bp+1 ∧ cd−p.

• Fusion category symmetries: Turaev-Viro TQFT.

The topological defects Qp of the SymTFT form the Drinfeld center Z(S).



SymTFT (”Sandwich”)

Bsym
S Bphys

T
SymTFT

= T

• Bsym
S = Symmetry boundary (gapped boundary condition):

condense a maximal number of mutually local topological defects. The
remaining defects generate S.
These are classified by Lagrangian algebras of Z(S).

• Bphys
T = Physical boundary:

condense a subset of mutually local defects (braiding trivially with each
other, but not necessarily maximal)

The interval compactification gives T with symmetry S.



SymTFT: Recovering S

Bsym
S Z(S)

Qp

Bsym
S Z(S)

S
(Qp)
p

Bsym
S : gapped (topological) boundary conditions of the SymTFT:

⇒ Determined by a maximal set of mutually local topological defects, which
form a Lagrangian algebra

Qp with Neumann b.c.s give rise to symmetry generators S.



Linking of Topological Defects is Action of Symmetry

Bphys
T

Bsym
S

Q′

Q

SymTFT Bphys
T

Bsym
S

S(Q′)

Q

SymTFT

→

T

D

O

# [Bhardwaj, SSN ’23]:
The generalized charges are the topological defects Q of the SymTFT,
which condense on both boundaries.

# Q′ that have Neumann b.c. on the Bsym
S boundary are the generators of the

symmetry S.

# Linking of Q and Q′ determines the charge under the symmetry.



SymTFT: Non-genuine Operators

Bsym
S Bphys

T
SymTFT

Qp

Qp

=

T

Op−1

Dp

O is attached to a topological line, i.e. a non-genuine operator.



SymTFT for finite groups G

Drinfeld Center Z(VecG):
For (non-abelian) G(0) the symmetry category is VecG, and elements of the
center are

Q[g],R ,

• conjugacy classes [g]

• representations of the stabilizer group Hg of g ∈ [g].

Lagrangian algebras:
Gapped boundary conditions are given in terms of Lagrangian algebras:

L = ⊕naQa
1

such that

dim(L) ≡
∑

na dim(Qa
1) = dim(S) , where dim(S)2 =

∑
dim(Q1)

2

nanb ≤
∑
c∈L

N c
abnc∑

b∈Z Sabnb∑
b∈Z S1bnb

= cyclotomic integer for all a ∈ Z



Example: S3 in 2d

S3 = Z3 ⋊Z2 = {id, a, a2, b, ab, a2b}
Irreps: + (trivial), − (sign), E (2d representations).
Conjugacy classes:

[id] , Hid = S3

[a] , Ha = {id, a, a2} = Z3

[b] , Hb = {id, b} = Z2 .

Ha = Z3 irreps: labeled by 1, ω = e2πi/3, ω2.
Hb = Z2 irreps: labelled by ±.

The lines in Z(VecS3)

Q([id],R)
1 : R = 1,1−,E

Q([a],R)
1 : R = 1, ω,ω2

Q([b],R)
1 : R = ± .

The topological b.c.s (Lagrangian algebras) are

LS3
= ([id],1)⊕ ([id],1−)⊕ 2([id],E)

LS′
3
= ([id],1)⊕ ([id],E)⊕ ([b],1)

LRep(S3)′ = ([id],1)⊕ ([id],1−)⊕ 2([a],1)

LRep(S3) = ([id],1)⊕ ([a],1)⊕ ([b],1)



Multiplet structure:

• S3: Q([id],R)
1 are untwisted; Q([a])

1 and Q([b])
1 are twisted sector reps

• Rep(S3): Q([id],R)
1 are twisted (attached to R lines).

Q([a],1)
1 contains two operators:

1−
O−

and
O+

This can be derived from the action of the symmetry on defects in the SymTFT:

1−

O−

E

O+

E

=

E

O+

− 1
2 +

(
ω+ 1

2

)

1−
O−

E

O−

E

=

E

O+

+ 1
2−

(
ω+ 1

2

)
1− 1−



SymTFT

• Topological defects are the generalized charges

• Gauging S corresponds in the SymTFT to changing the symmetry b.c..

• If S and S ′ that are related by gauging, they have the same SymTFT.

• SymTFT exists for any higher-fusion category: the topological defects are
the so-called Drinfeld Center. For 2-fusion categories see [Kong et

al][Bhardwaj, SSN]

Z(2VecωG) =
⊕
[g]

2Repωg (Hg)

• Recently: SymTFT or SymT for continuous abelian and non-abelian
symmetries [Antinucci, Benini][Apruzzi, Bedogna, Dondi][Bonetti, del Zotto,

Minasian][Brennan, Sun]. This can be important for higher-group symmetries
which mix continuous and finite symmetries.



Gapped S-Symmetric Phases



Classification of gapped S-symmetric phases

Gapped phases are obtained by choosing Bphys to be also a topological
(gapped) boundary condition.

SymTFT

Bsym
S Bphys

top

=

TQFTS

In the SymTFT:

gapped b.c.s↔ Lagrangian algebras L of the Drinfeld Center Z(S) .

Fix symmetry boundary to be LS :
A gapped S-symmetric phase is given by a Lagrangian algebra L:

• SPT (symmetry protected topological phase): L∩LS = 1

Cannot deform to the trivial theory without breaking symmetry

• SSB (spontaneous symmetry breaking): L∩LS ⊋ 1

# of vacua = # of topological defects that condense on both boundaries, which
are also the order parameters.



Gapped Phases with Group-Symmetry in 2d

Landau type classification: S = VecG then

• H < G the unbroken symmetry

• ω ∈ H2(H,U(1)) cocycle/SPT phase.

Example: G = Z4

The SymTFT is a 3d topological order (Z4 Dijkgraaf-Witten-theory)
∫
b1 ∪ δc1,

with anyons e = ei
∫
b1 and m = ei

∫
c1 :

Topological defects (anyons): (ei,mj), e4 = 1, m4 = 1 .

e and m braid non-trivially. The Lagrangian, i.e. maximal, trivially braiding
subsets of anyons are:

1. LDir = 1⊕ e⊕ e2 ⊕ e3

2. LNeu = 1⊕m⊕m2 ⊕m3

3. LNeu(Z2) = 1⊕ e2 ⊕m2 ⊕ e2m2

The symmetry boundary is Bsym
S=Z4

= LDir.



Gapped Phases with Z4 Symmetry via the SymTFT

Lphys = LS = LDir Lphys = LNeu Lphys = LNeu(Z2)

LS Lphys

1
e

e2

e3

LS Lphys

1

LS Lphys

1

e2

Z4 SSB:
4 identical vacua,
permuted by Z4

Z4 Trivial Phase:
single vacuum with Z4

acting trivially

Z2 SSB:
2 identical vacua,
permuted by Z2



Gapped Phases with Non-Invertible Symmetry: Ising Category

The SymTFT is Ising ⊠Ising and there is a unique subset of mutually local
anyons (gapped b.c./Lagrangian algebra):

LIsing = 1⊕ 1− ⊕ (σ,µ)

LIsing LIsing

1

1−

(σ,µ)

Resulting in 3=2+1 vacua, with the symmetry acting as

v0 v1 v2

N

ηη

Unique Ising symmetric gapped phase: SSB phase with 3 vacua.



Gapped Phases with Non-Invertible Symmetry: Rep(S3)

Repeating a similar SymTFT analysis now for the non-invertible symmetry
Rep(S3) (1, 1−, E irreps) we find four gapped phases:

Rep(S3) trivial phase Z2 SSB Rep(S3)/Z2 SSB Rep(S3) SSB

v0 Rep(S3) v1 v2

1−

v0 v1 v2

E

1−

v0 v1 v2

E

1−1−



Gapless S-Symmetric Phases and Phase Transitions



Phase Transitions

Consider two gapped S-symmetric phases, how do we determine the
S-symmetric phase transitions?

S gapped ←− S gaplesss −→ S gapped’

• Gapped phase: determined by Lagrangians Li

• Gapless phase transition between L1 and L2 is characterized by

A12 = L1 ∩L2

i.e., a non-maximal set of mutually local topological defects.

• One can also tune and consider ∩iLi for any subset of Lagrangian
algebras.



Gapless Phases and Phase Transitions

Now that we have all gapped phases, we expect to also be able to study
transitions between gapped phases.

Requires promoting the SymTFT sandwich to a SymTFT club-sandwich.

The first step is to consider interfaces between topological orders: Z(S) and Z′:
”club quiche”

Z(S) Z′

Bsym
S I

= Z′

B′ S

This constructs S-symmetric boundary conditions of the topological oder Z′.



Condensable Algebras

Such interfaces between topological orders are determined by condensable
algebras A in Z(S):

• Example: A is Lagrangian: Z ′ is trivial

• A is not maximal, then Z(S)/A is a non-trivial topological order Z(S ′) for
a reduced symmetry S ′.

• Equivalently, condensable algebras can be determined as Lagrangian
algebras of the folded topological order Z(S)⊠Z(S ′).



Club Sandwich and Phase Transitions

Consider the club quiche S, S ′ with condensable algebra A.

We can close it off with a physical boundary condition on the RHS, resulting
in a ”club sandwich”. The club quiche is a device to map S ′-symmetric b.c. of
a topological order to S-symmetric theories:

Z(S) Z(S ′)

Bsym
S IA Bphys

=

T S

Concretely this can be used to make new phase transitions out of old:

⇒ Kennedy-Tasaki-transformations: S ′-symmetric to S-symmetric theories



Start with an S ′-symmetric theory and its SymTFT:

Z(S ′)

Bsym
S′ Bphys

TS′

=

TS′

Attaching the S to S ′ club quiche results in

Z(S) Z(S ′)

Bsym
S IA Bphys

TS′

=

TS

Here the physical S-symmetric boundary TS is obtained by collapsing the
second interval:

Zd+1(S) Zd+1(S ′)

Bsym
S IA Bphys

TS′

= Zd+1(S)

Bsym
S Bphys

TS

=

TS



New Phase Transitions from Old

Consider an input phase transition between S ′-symmetric gapped phases

TS′

1 ←− CS
′

12 −→ TS′

2

The club sandwich produces a phase transition for the symmetry S, which is
the KT transformation of the initial input phase transition:

TS
1 ←− CS12 −→ TS

2



Club Quiches: Z4

The condensable, not Lagrangian, algebras for Z(Z4) are

A1 = 1 , Ae2 = 1⊕ e2 Am2 = 1⊕m2 , Ae2m2 = 1⊕ e2m2 .

The reduced topological orders are determined from the club quiches:

Z(Z4) Z(Z2)

Lsym
VecZ4 Ae2

e e′

e2

e3 e′

Z(Z2)

2Le

e′

e′

E+
O−

E−
=

Z(Z4) Z(Z2)

Lsym
Z4 Am2

e2 e′

Z(Z2)

Le

e′
E=

Z(Z4) Z(Z2
ω)

Lsym
Z4 Aem

e2 s′s̄′

Z(Zω
2 )

Lss̄

s′s̄′
E=

Note: Z4 acts by line operators on the boundary of Z(S ′). E.g. in the first
example it acts by permuting the two boundary conditions: Le ⊕Le.



Z4 Phase transitions from Z2

For the condensable algebra Ae2 the club quiche is:

Z(Z4) Z(Z2)

Lsym
VecZ4 Ae2

e e′

e2

e3 e′

Z(Z2)

2Le

e′

e′

E+
O−

E−
=

This implies is the S-symmetric gapless phase

(TS′
)0 ⊕ (TS′

)1 Z2TS = Z2

Z4

Z4



Z4 Phase transitions from Z2

E.g. for S ′ = Z2 the Ising transition, this constructs a Z4-symmetric transition

Ising0 ⊕ Ising1 Z2TS = Z2

Z4

Z4

which models the transition between Z4 and Z2 SSB phases for Z4 symmetry.

Similarly we find for the Z4 trivial and Z2 SSB transition of Z4:

TS = Ising Z4



Club Quiches: Rep(S3)

The non-Lagrangian, condensable algebras are

A1− = 1⊕ 1−, AE = 1⊕E, Aa1
= 1⊕ a1 .

And the reduced topological orders are

Z(VecS3
) Z(VecZ2

)

Lsym
Rep(S3) AE

b+ e
=

e

Z(VecZ2
)

Le

Ee
Z(VecS3

) Z(VecZ3
)

Lsym
Rep(S3) A1−

a1 e

a1 e2

= e

e2

Z(VecZ3
)

Le

Ee
Ee2

Z(RepS3) Z(VecZ2
)

Lsym
Rep(S3) Aa1

a1

a1

b+ m

e
=

Z(VecZ2
)

Le ⊕Lm

Ee

O
Em

e

m



Rep(S3) Phase transitions from Z3

For Rep(S3) we have input transitions that are Z3-symmetric, which is the
3-state Potts model.

The Rep(S3)/Z2 SSB – Rep(S3) SSB transition is obtained to be:

Isinge ⊕ (Isingm)√2
1−TS = E

E

where the Rep(S3) acts as

1− = 1ee ⊕ ηmm , E = Sem ⊕ Sme ⊕ ηee

For the full list of such transitions see [Bhardwaj, Bottini, Pajer, SSN]



Phase diagram for Rep(S3) in 2d

Rep(S3)= {1, σ,E}. Both from continuum and from spin-chain models
[Bhardwaj, Pajer, SSN, Warman][Bhardwaj, Bottini, SSN, Tiwari][Chatterjee, Aksoy, Wen]

I: Trivial

v Rep(S3)

III: Rep(S3)/Z2 SSB

v0 v1 v2

II: Z2 SSB

v+ v−

IV: Rep(S3) SSB

v2 v1 v0

Potts

Ising Ising⊕Ising



A Roadmap of Phases with Symmetry S

• Construct the SymTFT and Drinfeld center Z(S)

• Determine all condensable algebras and the associated reduced
topological orders Z(S ′)

• In particular: L1 and L2 are Lagrangians, that give rise to gapped phases,
then the gapless phase between these is given by A12 = L1 ∩L2.

More generally, there is a partial order on condensable algebras of Z(S): and
thus... a Hasse diagram.



Hasse diagram for Phases of Z4

1

1 + e2 1 + e2m2 1 +m2

1 + e+ e2 + e3 1 + e2 +m2 + e2m2 1 +m+m2 +m3

Canonical Z4−gapless

Z2-gSSB igSPT Z2-gSPT

LS and Z4-SSB Z2-SSB SPT

• gSPT (gapless SPT): A∩LS = 1

• igSPT (intrinsically gapless SPT): gSPT that cannot be deformed to an SPT

• gSSB (gapless SSB): A∩LS ⊋ 1

• igSSB (intrinsically gapless SSB): gSSB with n universes, that cannot be
deformed to an SSB with n vacua

For Z4: igSPT was found in [Wen, Potter].
First non-invertible igSPT: Rep(D8n) [Bhardwaj, Pajer, SSN, Warman].



Hasse Diagram for Z(Rep(S3))

1

1 + a 1 + 1− 1 +E

LRep(S3) :

1 + a+ b
1 + 1− + 2a

LS3
:

1+1− + 2E
1 + b+E

S3 − gapless

Z2 − gSPT Z3 − gapless Z2 − gapless

SPT SSB
LS = LS3

and S3 SSB
SSB

Rep(S3)− gapless

Z2 − gapless Z3 − gSPT Z2 − gSPT

LS = LRep(S3)

and Rep(S3) SSB
Rep(S3)/Z2 SSB SPT Z2 SSB



Hasse Diagram for Z(Rep(D8))

21

Dim Condensable Algebra of Z(Rep(D8)) (with label) Reduced TO S 0 Phase for S = Rep(D8) n

1 1 (V.0) S Rep(D8)�gapless 1

2 1� eRG (V.1) Z4 gSPT 1

2 1� eGB (V.2) Z4 gSPT 1

2 1� eRB (V.3) Z4 gSPT 1

2 1� eR (V.4) Z2 ⇥ Z2 gSPT 1

2 1� eG (V.5) Z2 ⇥ Z2 gSPT 1

2 1� eB (V.6) Z2 ⇥ Z2 gSPT 1

2 1� eRGB (V.7) Z2 ⇥ Z2 gSSB 2

4 1� eGB � eRB � eRG (V.8) Z!
2 igSPT 1

4 1� eR �mGB (V.9) Z2 gSSB 2

4 1� eR �mG (V.10) Z2 gSPT 1

4 1� eR �mB (V.11) Z2 gSPT 1

4 1� eG �mRB (V.12) Z2 gSSB 2

4 1� eG �mR (V.13) Z2 gSPT 1

4 1� eG �mB (V.14) Z2 gSPT 1

4 1� eB �mRG (V.15) Z2 gSSB 2

4 1� eB �mR (V.16) Z2 gSPT 1

4 1� eB �mG (V.17) Z2 gSPT 1

4 1� eRGB �mRG (V.18) Z2 igSSB 3

4 1� eRGB �mGB (V.19) Z2 igSSB 3

4 1� eRGB �mRB (V.20) Z2 igSSB 3

4 1� eG � eR � eRG (V.21) Z2 gSPT 1

4 1� eB � eG � eGB (V.22) Z2 gSPT 1

4 1� eB � eR � eRB (V.23) Z2 gSPT 1

4 1� eGB � eR � eRGB (V.24) Z2 gSSB 2

4 1� eG � eRB � eRGB (V.25) Z2 gSSB 2

4 1� eB � eRG � eRGB (V.26) Z2 gSSB 2

8 1� eG � eR � eRG � 2mB (V.27) trivial SPT 1

8 1� eB � eRG � eRGB � 2mRG (V.28) trivial SSB 4

8 1� eGB � eR � eRGB � 2mGB (V.29) trivial SSB 4

8 1� eB � eR � eRB � 2mG (V.30) trivial SPT 1

8 1� eG � eRB � eRGB � 2mRB (V.31) trivial SSB 4

8 1� eB � eG � eGB � 2mR (V.32) trivial SPT 1

8 1� eRGB �mGB �mRB �mRG (V.33) trivial LS and SSB 5

8 1� eB �mG �mR �mRG (V.34) trivial SSB 2

8 1� eR �mB �mG �mGB (V.35) trivial SSB 2

8 1� eG �mB �mR �mRB (V.36) trivial SSB 2

8 1� eB � eG� eGB � eR� eRB � eRG� eRGB (V.37) trivial SSB 2

TABLE III. Condensable Algebras of Z(Rep(D8)) with their quantum dimension, associated Reduced Topological Order S 0.
The fourth column describes the phases once the symmetry S = Rep(D8) is fixed. The last column contains the integer n,
defined in equation (IV.27), which is used to characterize the phases as explained in section V.
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FIG. 3. Hasse diagram for Z(Rep(D8)) Phases. In each box we link to the condensable algebras, listed in table III, which give rise to a Reduced Topological Order S 0.
The lowest level are the maximal, i.e. Lagrangian, algebras. Picking one of these as the symmetry Lagrangian algebra that fixes the symmetry S allows classification
of all phases.



Classification of Phases

Two key distinctions:

• Gapped versus gapless: energy gap ∆ > 0 or ∆ = 0

• SPT-ness (gapless or gapped): symmetry gap ∆S > 0 or ∆S = 0.
The symmetry gap ∆S > 0 means, that not all charges of S are realized in
the IR phase, i.e. some S-charges are confined. They are realized as
excited states, that enter the spectrum at ∆S .

Note: ∆S ≥∆.

Number of universes/vacua: n, which is 1 for SPTs (gapless or gapped) and
n > 1 for SSB.

Finally: whether or not an S-symmetric phase can be deformed to another
S-symmetric phase may imply the symmetry is protected (”symmetry
protected criticality”). This is the distinction between gSPT and igSPT
(intrinsic) and gSSB and igSSB.



Classification of Phases

Phase Physical characterization
Energy gap ∆

Symmetry gap ∆S

Condition on A
in (1+1)d

n

SPT
Gapped system with energy gap ∆ > 0. IR: trivial TQFT.
S-charges confined in IR appear at an energy scale (symmetry gap) ∆S ≥∆ > 0.
Order parameters (OPs) are all of string type (i.e. in twisted-sectors for S).

∆ > 0

∆S > 0

A = L
A∩LS = 1

1

gSPT

Gapless system with ∆ = 0 and a unique ground state on circle.
Not all charges of S appear in IR.
The confined charges appear at a symmetry gap ∆S > 0.
OPs are all of string type.

∆ = 0

∆S > 0

A ̸= L
A∩LS = 1

1

igSPT
A gSPT phase that cannot be deformed to a gapped SPT phase,
because it has confined charges not exhibited by any of the gapped SPTs.

∆ = 0

∆S > 0

A ̸= L
A∩LS = 1

1

SSB

Gapped system with n degenerate vacua (labeled by i) permuted by S action.
Each vacuum i has energy gap ∆(i) > 0. Going from i to j costs ∆(ij) > 0.
Not all charges realized in IR =⇒ symmetry gap ∆S > 0.
OPs are multiplets with string and non-string type.

∆(i) > 0

∆(ij) > 0

∆S > 0

A = L
A∩LS ⊋ 1

> 1

gSSB

Gapless system with n degenerate gapless universes labeled by i.
Each universe has a unique ground state on a circle. Going from i and j costs ∆(ij) > 0.
Not all charges realized in IR =⇒ symmetry gap ∆S > 0.
OPs string and non-string type

∆(i) = 0

∆(ij) > 0

∆S > 0

A ̸= L
A∩LS ⊋ 1

> 1

igSSB
A gSSB phase with n universes that cannot be deformed to a gapped
SSB phase with n vacua.

∆(i) = 0

∆(ij) > 0

∆S > 0

A ̸= L
A∩LS ⊋ 1

> 1

∆ is the energy gap. ∆S the symmetry gap: not all S-charges are realized in
the IR. The missing/confined charges are realized by excited states. The
symmetry gap ∆S , is the energy of the first excited state carrying one of the
confined charges. The symmetry becomes less faithful going downwards.



A Roadmap of Phases with Symmetry S

• Construct the SymTFT and its topological defects.

• Determine all condensable algebras of topological defects.

• In particular: L1 and L2 are Lagrangians, that give rise to gapped phases,
then the gapless phase between these is given by A12 = L1 ∩L2.

• SymTFT encodes the order parameters and symmetry implementation.

Results in new phases with non-invertible symmetries, e.g. found
non-invertible SPTs and igSPTs for Rep(D8n).

Crucially, this is applicable to any fusion category symmetry.



Conclusions and Open Questions

The field of categorical symmetries has seen enormous progress in the last
years, in string/high-energy theory, condensed matter and math, with lots of
synergies.

In view of the applications to phases of matter, there are many open
questions, e.g.:

1. Classification of symmetric phases: 3d and 4d where the full structure of
higher fusion categories will need to be tapped in [wip Oxford]

2. gSPT, igSPT, gSSB, igSSB phases in higher dimensions: QFT examples?
[Antinucci, Copetti, SSN, wip]

gSPTs in 4d [Dumitrescu, Hsin]

3. Extension of this framework of SymTFT, gapped, gapless phases to
non-semisimple categories, and continuous symmetries.



https://sites.google.com/view/symmetries2024/home

https://www.kitp.ucsb.edu/activities/gensym25


