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This talk is based on arXiv:1906.03368, which was joint work with Ruobing Zhang
(Princeton).

A related baby case was studied in arXiv:1807.09367, which was joint work with
H. Hein (Munster), R. Zhang (Princeton), J. Viaclovsky (UC Irvine).



This talk is concerned with Calabi-Yau



This talk is concerned with Calabi-Yau metrics.



Small complex structure degenerations:

Consider a family of hypersurfaces in CPn+1(n ≥ 2) given by

Xt = {t · Q(z) + f1(z) · f2(z) = 0},

where Q, f1, f2 are generic homogeneous polynomials with

d1 = deg(f1) > 0, d2 = deg(f2) > 0

and
degQ = d1 + d2 = n + 2.



Picture for the algebraic degeneration

Y1 = {f1 = 0},Y2 = {f2 = 0}

Xt = {t · Q(z) + f1(z) · f2(z) = 0}

D = {f1 = f2 = 0}
••• •
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H × {t}
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Yau’s proof of the Calabi conjecture yields a unique Calabi-Yau metric ωt on Xt (for
0 < |t | ≪ 1), normalized with diameter 1, in the cohomology class proportional to
the Fubini-Study metric.



Theorem (S.-Zhang 2019): Picture for the Calabi-Yau metrics (Xt ,ωt) as t → 0:
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A Calabi-Yau metric is by definition a Riemannian metric with holonomy group
contained in SU(n). In particular, they are Ricci-flat.

This is the same as giving a pair (Ω,ω) on a complex manifold X , where Ω is a
holomorphic n-form and ω is a Kähler form, with

ωn = CΩ ∧ Ω̄. (∗)

Locally (∗) takes the form det( ∂2φ
∂zi∂z̄j

) = eψ. “Non-linear Laplace equation”



A Calabi-Yau metric is by definition a Riemannian metric with holonomy group
contained in SU(n). In particular, they are Ricci-flat.

This is the same as giving a pair (Ω,ω) on a complex manifold X , where Ω is a
holomorphic n-form and ω is a Kähler form, with

ωn = CΩ ∧ Ω̄. (∗)

Locally (∗) takes the form det( ∂2φ
∂zi∂z̄j

) = eψ. “Non-linear Laplace equation”

Ω encodes the complex/algebraic data and often can be written down explicitly in
terms of the defining equations.

When X is compact Yau’s theorem gives a unique ω solving (∗) which is
co-homologuous to a given Kähler form.



Standard example: {F = 0} ⊂ CPn+1 for F generic homogeneous degree n + 2

❀ Calabi-Yau metric ωF in the cohomology class of the Fubini-Study metric

When F degenerates ωF can become singular.



Standard example: {F = 0} ⊂ CPn+1 for F generic homogeneous degree n + 2

❀ Calabi-Yau metric ωF in the cohomology class of the Fubini-Study metric

When F degenerates ωF can become singular.

Example of degenerations: Ft = t · Q + f1 · · · fk = 0 for Q, f1, · · · , fk general.

k = n + 2 ❀ large complex structure degeneration

n ≥ 2, k = 2 ❀ small complex structure degeneration



Main question:

relate the singularity formation of ωF to the algebraic degeneration of F .
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Gromov-Hausdorff convergence:

a sequence of compact metric spaces (Mj , dj)
GH−−→ (M∞, d∞) if

there are 󰂃j → 0 and maps φj : Mj → M∞, ψj : M∞ → Mj which are

(1). 󰂃j -onto: M∞ = B󰂃j (φj(Mj)) and similarly for ψj .

(2). 󰂃j -isometric: |d(φj(x),φj(y))− d(x , y)| ≤ 󰂃j and similarly for ψj .
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Example



Non-Example:

no GH limit



In our case the metrics (Xt ,ωt) are Ricci-flat. This gives pre-compactness in the
GH topology.

Bishop-Gromov inequality: Vol(B(p,R))/ωnR2n is decreasing in R.

This allows a uniform approximation of (Xt ,ωt) by finite metric spaces in all scales.



Calabi-Yau metrics admit natural rescalings. The GH limits are sensitive to the
scale.

In general for complete metric spaces we say (Mj , dj , pj)
GH−−→ (M∞, d∞, p∞) if for

all R > 0, B(pj ,R)
GH−−→ B(p∞,R).
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The holomorphic form Ωt yields a probability measure µt on Xt , with density given
by CtΩt ∧ Ω̄t .

Under the GH convergence µt also converges to renormalized limit measures µ∞
on the limit.

The limit metric measure space is an RCD space with Ric ≥ 0 (Cheeger-Colding
theory)



Example (2)

The GH limit g = dr2.

The renormalized limit measure dµ∞ = dr .



Example (2)

The GH limit g = dr2.

The renormalized limit measure dµ∞ = rdr .



Back to our degeneration family of Calabi-Yau metrics.

We can talk about GH limits of (Xt ,ωt). In our setting it is known that the volume is
collapsing as t → 0 (V.Toasatti).

We can also talk about the rescaled GH limits of (Xt ,λtωt , pt) for pt ∈ Xt , λt → ∞.
We see more refined structure in smaller scales.



Toy example: the case n = 1. This is different from the case n > 1!!!

The intersection D is not connected.

Algebraic picture of X0:



ωt is the flat metric on an elliptic curve.

As t → 0, the only possible GH limit is a circle S1 of unit diameter. This is
topologically the same as the dual intersection complex of the degeneration.

The collapsing is along a smooth S1 fibration.



The renormalized limit measure is the standard volume measure.

The rescaled GH limits are flat cylinders S1 × R. This can be identified with the
components of the smooth locus of X0.

(Xt ,ωt) can be recovered from gluing of flat cylinders.



n ≥ 2 case is different
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Theorem (precise statement):

(1) GH limit of (Xt ,ωt) is the flat interval [0, 1]. Topologically it agrees with the dual
intersection complex of X0

(2) For |t | ≪ 1 the geometry of ωt is approximated by 3 building blocks, including 2
complete Calabi-Yau metrics constructed by Tian-Yau 1990 and 1 neck region N .

(3) Multi-scale collapsing: away from {0, u∗, 1}, the collapsing is along a smooth
fiber bundle, where each fiber is an S1 bundle over D. The circles collapse in a
faster rate than that of the base D.

(4) The singular fiber at u∗ is an S1 fibration pinched along H. Suitable rescaled
Gromov-Hausdorff limits are given by Cn−2× Taub-NUT.



The renormalized limit measure is given by

dµ∞ = C(
u
d1

)
n−1
n+1

when u ∈ [0, d1
d1+d2

];

dµ∞ = C(
1 − u

d2
)

n−1
n+1

when u ∈ [ d1
d1+d2

, 1].
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Tian-Yau metrics:

Y n: Fano manifold, D: smooth anti-canonical divisor with normal bundle L.
❀ D is Calabi-Yau with (ΩD,ωD).

A neighborhood of D is approximated by a neighborhood of the zero section 0 in L.
The latter is equipped with a hermitian metric h with curvature ωD.



On L \ {0} there is a natural holomorphic n-form Ω = p∗ΩD ∧ dζ
ζ , where p : L → D

and ζ is the linear coordinate on the fibers. It is invariant under the S1 action.

Calabi ansatz gives an S1 invariant Calabi-Yau metric

ω =
√
−1∂∂̄(− log |s|2h)

n+1
n

on the subset |s|h < 1.

Using the Calabi model at infinity and extending Yau’s proof to the non-compact
setting, Tian-Yau constructed a complete Calabi-Yau metric on Y \ D, asymptotic
to ω.

It is not clear that the Tian-Yau metric is canonical or unique on Y \ D.





Construction of the neck region.

Recall D = {f1(z) = f2(z) = 0} ⊂ X0.

Near D, for |t | ≪ 1, the degenerating family Xt is approximated by the subvariety
Nt in the total space of the bundle L1 ⊕ L2 over D cut-out by the equation

s1 ⊗ s2 + t · q(x) = 0,

where Lj is the normal bundle of D in Yj , x ∈ D, (s1, s2) ∈ (L1 ⊕ L2)|x and q = Q|D.



The projection map πt : Nt → D is a C∗ fibration, singular over H = {Q = 0} ⊂ D.

There is a natural C∗ invariant holomorphic n-form on Nt .

It is natural to ask for S1 invariant Calabi-Yau metric on Nt (necessarily
incomplete).



Baby case n = 2, then Calabi-Yau metrics are hyperkähler (SU(2) = Sp(1)).

S1 invariant Calabi-Yau metrics ❀ Gibbons-Hawking ansatz, the equation
becomes the (exactly!) the linear Laplace equation.



Baby case n = 2, then Calabi-Yau metrics are hyperkähler (SU(2) = Sp(1)).

S1 invariant Calabi-Yau metrics ❀ Gibbons-Hawking ansatz, the equation
becomes the (exactly!) the linear Laplace equation.

Away from the fixed points, the metric is given by

g = V (dx2 + dy2 + dz2) + V−1θ2

for V > 0 harmonic function on Ω ⊂ R3 = Cw=x+iy ⊕ Rz and θ is the U(1)
connection with curvature ∗dV .

Projection to the w-plane realizes the space as a holomorphic fibration.



The local structure near a fixed point corresponds to V having singularities of the
form V = 1

2r + C∞.

Ω = R3, V = 1
2r ❀ flat metric on C2 with projection map (z1, z2) 󰀁→ z1z2

V = 1
2r + 1 ❀ non-flat Taub-NUT metric on C2



The local structure near a fixed point corresponds to V having singularities of the
form V = 1

2r + C∞.

Ω = R3, V = 1
2r ❀ flat metric on C2 with projection map (z1, z2) 󰀁→ z1z2

V = 1
2r + 1 ❀ non-flat Taub-NUT metric on C2

Linear superposition ❀ Calabi-Eguchi-Hanson metric

• •

• •

x1 x2



Ω = T 2 × [1,∞), V = z ❀ Calabi model space when n = 2

We need to interpolate two linear functions.





On Ω = T 2 × (−∞,∞), take V to be the electric potential of k points

∆V = 2π
k󰁛

l=1

δpl

Let v =
󰁕

T 2×{z}, then ∂2
z v = 2π

󰁓k
l=1 δzl =⇒ V ∼ −kπ|z| for |z| ≫ 1.



On Ω = T 2 × (−∞,∞), take V to be the electric potential of k points

∆V = 2π
k󰁛

l=1

δpl

Let v =
󰁕

T 2×{z}, then ∂2
z v = 2π

󰁓k
l=1 δzl =⇒ V ∼ −kπ|z| for |z| ≫ 1.

For T ≫ 1, m ∈ Z, V + mπz + T defines a Calabi-Yau metric with two boundaries,
on the conic bundle over T 2 with k singular fibers.

This is the cousin of the Ooguri-Vafa metric when Ω = S1 × R2, which is important
in the work of Gross-Wilson 2000 on the collapsing of Calabi-Yau metrics on
elliptic fibered K3 surfaces.
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When n > 2, there are generalizations of Gibbons-Hawking ansatz by Matessi and
Zharkov, but the equations are still non-linear.

The idea is to consider the adiabatic limit when fibers are small and use the linear
equation as an approximation.



Green currents:

H ⊂ D smooth divisor, look for a 3-current ψ on D × (−∞,∞) such that

∆ψ = 2π · δP ,

where P = H × {0}.



To perform a gluing construction, needs to extract a new component in terms of
algebraic geometry

••
• •
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The result gives a possible inductive description of the geometry of Calabi-Yau
metrics for special class of degenerations.



Conjecture:

(1) (generalizing Gross-Wilson/Kontsevich-Soibelman)

Gromov-Hausdorff limits (differential geometry)
←→

essential skeleton (non-Archimedean geometry)

There are recent progress by Yang Li and others which gives information about the
geometry in the generic region, for certain classes of degenerations (including
examples of large complex structure degenerations).



Conjecture:

(2) Rescaled Gromov-Hausdorff limits (differential geometry)
←→

Algebro-geometric limits (algebraic geometry)

There are progress by Yuji Odaka in the algebro-geometric aspect.



Some related further results:

Hein-S.-Viaclovsky-Zhang 2021: Complete Calabi-Yau metrics asymptotic to the
Calabi model are all given by the generalized Tian-Yau-Hein construction.

When n = 2, these are ALH∗ hyperkähler gravitational instantons (complete
hyperkähler with

󰁕
|Rm|2 < ∞).

S.-Zhang 2021: all hyperkähler gravitational instantons are known to be
asymptotic to a model end of type ALE ,ALF ,ALG,ALH,ALG∗,ALH∗.

Each AL∗ class is also classified (Kronheimer, Minerbe, Chen-Chen,
Chen-Viaclovsky-Zhang, Collins-Jacob-Lin, Hein-S.-V. Zhang).


