Non-toric brane webs, Calabi-Yau 3-folds, and 5d SCFTs

Pierrick Bousseau

University of Georgia

String Math 2024 ICTP, Trieste 11 June 2024

- Physics interpretation/application of a series of recent mathematical works around mirror symmetry for log Calabi-Yau surfaces:
 - Gross-Hacking-Keel, Engel-Friedman, Hacking-Keel-Yu
 - Alexeev-Argüz-B: The KSBA moduli space of log Calabi-Yau surfaces, arXiv:2402.15117
- Joint work with Hülya Argüz, in preparation.

5d SCFTs

- Among the many remarkable predictions of string/M-theory:
 - The existence of interacting 5-dimensional quantum field theories
 - ► 5-dimensional N = 1 superconformal field theories [Seiberg 1996, Morrison-Seiberg 1996, Douglas-Katz-Vafa 1996, ...]
- Two main constructions:
 - 1) Singular geometry: M-theory on a canonical 3-fold singularity $\overline{\mathcal{X}}$:

$$\mathbb{R}^{1,4} imes \overline{\mathcal{X}}$$
 .

2) Intersecting branes in IIB string theory on $\mathbb{R}^{1,9}$:

$$\mathbb{R}^{1,4}\times\mathbb{R}^5$$

Several possible ingredients: 5-branes, 7-branes, orientifolds, S-folds.

Questions

- Basic question: relation between these two main constructions?
 - The M-theory construction seems more general.
- More precise questions:
 - ► For every system of intersecting branes in IIB string theory engineering a 5d SCFT, can one realize the same 5d SCFT as M-theory on a canonical 3-fold singularity X?
 - ► Can one give an algebro-geometric description of the class of canonical 3-fold singularities X with a dual IIB string theory description?
- Known results:
 - ► If only 5-branes, duality with M-theory on toric Calabi–Yau 3-fold X [Aharony–Hanany–Kol, Leung–Vafa, 1997]
 - Particular configurations of 5-branes and 7-branes are dual to M-theory on cones over del Pezzo surfaces.
 - Most recent progress: [Bourget, Collinuci, Schafer-Nameki, 2023], [Arias-Tamargo, Franco, Rodríguez-Gómez, 2024].

• From intersecting branes to Calabi–Yau 3-folds (Argüz–B):

Every **consistent** web of 5-branes with 7-branes is dual to M-theory on a canonical 3-fold singularity $\overline{\mathcal{X}}$.

• Key point: clarify what **consistent** means.

Overview of results

- From Calabi–Yau 3-folds to intersecting branes (Argüz–B).
- For simplicity, assume that the crepant resolutions of $\overline{\mathcal{X}}$ contain $g \geq 1$ compact divisors.

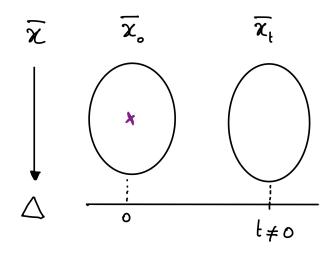
M-theory on a canonical 3-fold singularity $\overline{\mathcal{X}}$ admits a IIB brane dual description in terms of a web of 5-branes with 7-branes \iff there exists a surjective holomorphic map $\pi : \overline{\mathcal{X}} \to \Delta$, where

$$\Delta = \{ z \in \mathbb{C} \mid |z| < \epsilon \}$$

is a small disk around $0 \in \mathbb{C}$, such that, for every $t \neq 0$, the general fiber $\overline{\mathcal{X}}_t := \pi^{-1}(t)$ is a smooth surface, and the central fiber $\overline{\mathcal{X}}_0 := \pi^{-1}(0)$ is either:

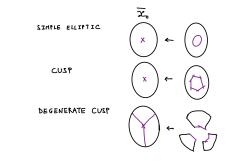
- a simple elliptic singularity
- a cusp singularity
 - a degenerate cusp singularity

Results



Overview of results

 Simple elliptic, cusp, and degenerate cusp singularities are examples of semi–log–canonical (slc) singularities [Kollár, Shepherd-Barron, 1988].



- Difficult: given the central fiber $\overline{\mathcal{X}}_0$, classify all the possible smoothings $\pi : \overline{\mathcal{X}} \to \Delta$.
- If one allows orientifolds and S-folds, expect a similar result involving Q-Gorenstein slc singularities (all finite quotients of the above).

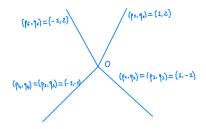
- Webs of 5-branes and toric mirror symmetry.
- Webs of 5-branes with 7-branes and polarized log Calabi-Yau surfaces.
- The dual Calabi-Yau 3-fold from mirror symmetry.
- Worldsheet instantons corrections as 4d $\mathcal{N}=2$ BPS states.

Webs of 5-branes and toric mirror symmetry

- Review of a classical story [Aharony-Hanany-Kol, Leung-Vafa, 1997]
- Webs of 5-branes:
 - ▶ In IIB string theory, (p,q) 5-branes for every coprime $(p,q) \in \mathbb{Z}^2$.
 - Pick (p_i, q_i) such that $\sum_i (p_i, q_i) = 0$.
 - IIB string theory on

$$\mathbb{R}^{1,4} imes\mathbb{R}^2 imes\mathbb{R}^3$$

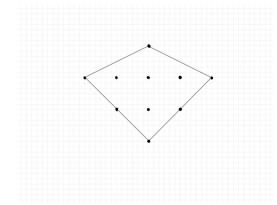
• 5-branes on $\mathbb{R}^{1,4} \times \overline{W}$, where $\overline{W} \subset \mathbb{R}^2$ is the web:



• 5d SCFT on the common intersection $\mathbb{R}^{1,4}\times\{0\}$ of the branes.

Webs of 5-branes and toric mirror symmetry

• Dual polytope P to \overline{W} :

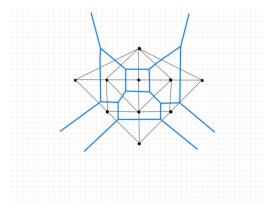


• Dual toric Calabi–Yau 3-fold $\overline{\mathcal{X}}$ with fan the cone over P.

- Toric morphism $\pi : \overline{\mathcal{X}} \to \mathbb{C}$
- General fiber $\pi^{-1}(t) = (\mathbb{C}^*)^2$ for $t \neq 0$.
- $\overline{\mathcal{X}}_0$: degenerate cusp singularity.

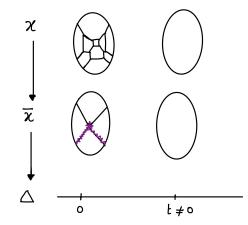
Coulomb branch of the 5d SCFT

- General (3-valent) perturbations of the web of 5-branes.
 - Regular maximal triangulations of *P*.
 - Crepant resolutions $\mathcal{X} \to \overline{\mathcal{X}}$.



- Toric morphism $\mathcal{X} \to \mathbb{C}$:
 - ► central fiber X₀ with irreducible components in one-to-one correspondence with the faces of the perturbed web

Coulomb branch of the 5d SCFT: crepant resolutions



Physics derivation of the duality in the toric case

 By a series of string dualities, the 5d SCFT constructed from the brane web W, is dual, after compactification to S¹, to IIB string theory on the non-compact Calabi–Yau 3-fold

$$Z: uv = f(x, y)$$

with mirror IIA string theory on \mathcal{X} :

- f(x, y) Laurent polynomial with Newton polygon P.
- Curve C° = {f = 0} ⊂ (C*)² is the Seiberg–Witten curve of the resulting 4d N = 2 theory.
- Tropically reduces to the deformed brane web.

Natural compactication $C \in |L|$ in the polarized toric variety (Y, D, L) with momentum polytope P.

7-branes and log Calabi-Yau surfaces

IIB string theory on

$$\mathbb{R}^{1,4} imes \mathbb{R}^2 imes \mathbb{R}^3$$

with (p, q) 7-branes on

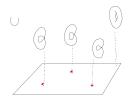
$$\mathbb{R}^{1,4} imes \{point\} imes \mathbb{R}^3$$

• Question: classification of configurations of 7-branes up to Hanany–Witten moves?

Claim (Argüz-B): Configurations of 7-branes up to Hanany–Witten moves are in one-to-one correspondence with interiors U of log Calabi–Yau surface.

7-branes and log Calabi-Yau surfaces

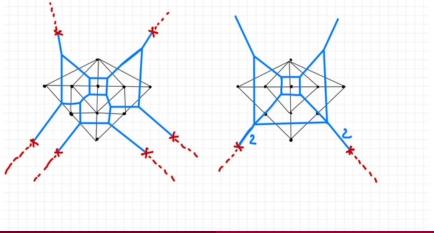
- $U = Y \setminus D$, Y: smooth projective surface, D: singular normal crossing anticanonical divisor.
 - ► U has a Lagrangian torus fibration over R², with nodal singular fibers over the positions of 7-branes.



- ► U is a cluster variety: (C*)² charts related by mutations corresponding to Hanany–Witten moves.
- Link between HW moves and combinatorial mutations: [Arias-Tamargo, Franco, Rodríguez-Gómez, 2024]
- Configuration of 7-branes = F-theory on U.

Webs of 5-branes with 7-branes

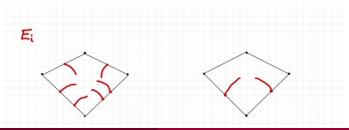
- (p,q) 5-branes can end on a (p,q) 7-brane.
 - Single (p, q) 7-brane ending on a (p, q) 7-branes [DeWolfe, Hanany, Iqbal, Katz, 1999]
 - Several (p, q) 7-branes ending on the same (p, q) 7-brane [Benini, Benvenuti, Tachikawa, 2009].



Consistent webs of 5-branes with 7-branes

- Problem: not all choices are consistent/supersymmetric (s-rule, r-rule,...)
- Our algebro-geometric proposal (Argüz-B):
 - ► (Y, D, L): polarized toric surface, defined by polytope P corresponding to the original web of 5-branes.
 - ► (Y, D): log Calabi-Yau surface obtained by a non-toric blow-up on D for each 7-brane.
 - The interior $U = Y \setminus D$ characterizes the configuration of 7-branes.
 - Exceptional curve E_i : if a_i 5-branes end on the corresponding 7-brane,

$$L := \overline{L} - \sum_{i} a_i E_i$$



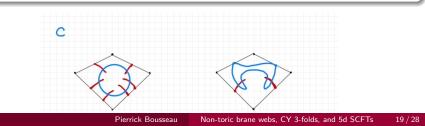
Consistent webs of 5-branes with 7-branes

Claim (Argüz-B): The web of 5-branes with 7-branes is consistent $\iff L$ is nef $(L \cdot S \ge 0$ for every effective curve S in Y) and

- either $L^2 > 0$,
- or $L^2 = 0$ and L = kE, $k \ge 1$, E smooth elliptic curve such that $E \cdot D = 0$.

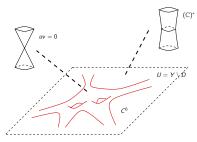
Lemma (Argüz-B)

If the web of 5-branes with 7-branes is consistent, then there exists a smooth curve $C \in |L|$ in the associated polarized log Calabi–Yau surface.



Physics interpretation of C

- The 4d N = 2 theory obtained by compactifying the 5d SCFT on S¹ is dual to IIB string theory on the Calabi–Yau 3-fold Z : uv = f,
 - f = 0 is the section of $L|_U$ defining the curve $C^\circ = C \cap U$ in U.
 - $C^{\circ} \subset U$ is the Seiberg–Witten curve of this 4d $\mathcal{N} = 2$ theory.



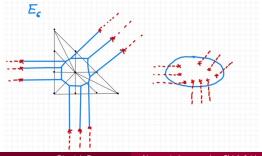
- As in the toric situation, the dual M-theory description of the 5d SCFT will be given by the mirror $\overline{\mathcal{X}}$ of Z.
 - Problem: how to describe the mirror in this non-toric situation?

Pushing 7-branes

Lemma (Alexeev-Argüz-B)

If the web of 5-branes with 7-branes is consistent, then there is no obstruction to "push in" the 7-branes along their monodromy invariant directions until they are no longer attached to any 5-branes.

- Reformulation of a result in birational geometry (existence of a minimal model after a sequence of flops).
- Known example of local del Pezzo surfaces [DeWolfe, Hanany, Iqbal, Katz, 1999]



Pushing 7-branes

• More examples:



Construction of the mirror to Z

- The initial web W of 5-branes defines a (possible singular) toric Calabi–Yau 3-fold $\mathcal{X}_W \to \mathbb{C}$.
 - ▶ Irreducible components of the central fiber $\mathcal{X}_{W,0}$ in 1:1 correspondence with the faces of the web.

Theorem (Alexeev-Argüz-B)

Pushing in the 7-branes induces a non-toric deformation \mathcal{X}_0 of $\mathcal{X}_{W,0}$, with irreducible components in 1:1 correspondence with the faces of the deformed web.

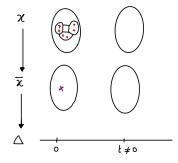
Theorem (Alexeev-Argüz-B, Engel–Friedman in the "cusp case")

There exists a smoothing $\mathcal{X} \to \Delta$ of \mathcal{X}_0 (the "mirror" to Z), and a contraction $\mathcal{X} \to \overline{\mathcal{X}}$, where $\overline{\mathcal{X}}$ is an affine canonical 3-fold singularity.

• The central fiber $\overline{\mathcal{X}}_0$ is:

- a simple elliptic singularity if $L^2 = 0$.
- ▶ a degenerate cusp singularity if $L^2 > 0$ and $\deg L|_D > 0$
- a cusp singularity if $L^2 > 0$ and $\deg L|_D = 0$.

Construction of the mirror to Z



Conversely, we have the following:

Theorem (Alexeev-Argüz-B)

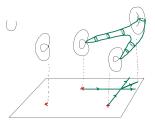
Associated to any $\mathcal{X} \to \overline{\mathcal{X}} \to \Delta$, there exists a log Calabi–Yau surface (Y, D) with a nef line bundle L, and so a web of 5-branes with 7-branes.

Explicit equations for the mirror?

Theorem (Alexeev-Argüz-B)

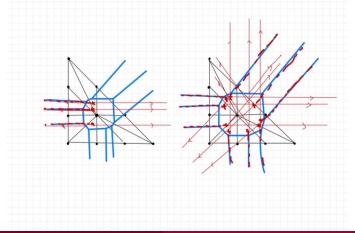
The equations of the mirror $\mathcal{X} \to \Delta$ can be obtained algorithmically from a scattering diagram with initial rays coming out of the 7-branes.

- Scattering diagram in mirror symmetry: Kontsevich–Soibelman, Gross–Siebert, Gross–Hacking–Keel, ...
- Physics interpretation: tropicalizations of worldsheet instantons, holomorphic discs in *U* coming out of the singular fibers.
- Algebro-geometrically: punctured Gromov–Witten invariants [Abramovich–Chen–Gross–Siebert]. See Mark Gross' talk tomorrow.



Explicit equations for the mirror?

- If all 5-branes ending on 7-branes are parallel,
 - Walls are parallel, no scattering.
 - Recovers the explicit results of [Bourget, Collinuci, Schafer-Nameki, 2023].
- In general, scattering can be arbitrarily complicated.



- Consider the 4d $\mathcal{N}=$ 2 theory on the worldvolume of a D3-brane probing the 7-branes.
 - Rank 1 theory (possibly not UV complete) with Coulomb branch the base B of the torus fibration on U.
 - Equivalently: worldvolume of an M5-brane wrapping around a torus fiber of $U \rightarrow B$.
- The previous worldsheet instantons can be viewed as BPS states of this 4d $\mathcal{N}=2$ theory:
 - String junctions between the D3-brane and the 7-branes.
 - M2-brane in U with boundary on a torus fiber of $U \rightarrow B$.
- Scattering diagram = Kontsevich–Soibelman wall-crossing formula for BPS states of this 4d $\mathcal{N} = 2$ theory.

Thank you for your attention !