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δm(x,η) = δ(1)(x,η) + δ(2)(x,η) + · · · + δ(n)(x,η),

θm(x,η) = θ (1)(x,η) + θ (2)(x,η) + · · · + θ (n)(x,η). (12.102)

The equations for δ
(n)
m and θ

(n)
m are obtained by taking moments of the Vlasov equation,

and by truncating the hierarchy at the second moment. The result is a set of equations
describing an effective, pressureless fluid:

δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2% = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂j u

i
m),

∇2% = 3
2
&m(η)(aH)2δm. (12.103)

By substituting lower-order solutions into the nonlinear source terms on the right-hand
side, we can calculate the matter evolution order by order. We used this to compute the
nonlinear correction to the matter power spectrum in Eq. (12.48),

P(k,η) = PL(k,η) + P NLO(k,η). (12.104)

The major downside of the perturbative approach is that its range of validity is restricted
to large scales, i.e. scales where the second term in Eq. (12.104) is smaller than the first
(wavenumbers k ! 0.2hMpc−1 at z = 0, but extending to increasingly larger wavenumbers
at higher redshifts). The major advantage of perturbation theory is that we can robustly
calculate the clustering of matter and galaxies with minimal assumptions about small-
scale baryonic effects, which are then captured by bias coefficients. As we discussed, this
robustness is especially important for galaxies, for which we need to rely on a bias relation
in order to be able to infer cosmology. In Sect. 12.6 we used this to justify the assumptions
made about galaxy clustering in the previous chapter, and to extend them to higher orders
in perturbation theory.

Exercises
12.1 Show that the stress tensor σ

ij
m [Eq. (12.17)] vanishes for a “cold” distribution func-

tion of the form Eq. (12.9).
12.2 Use Eq. (12.23) to derive an equation for the vorticity ω = ∇ × um of the matter

velocity. Show that no vorticity is generated if it is absent in the initial conditions.
How does an initial vorticity evolve in time at linear order?

12.3 Fill in the missing steps of the transformation of the Euler–Poisson system into
Fourier space, Eq. (12.31).

12.4 Use the equation for the linear growth factor Eq. (8.75) to prove Eq. (12.32). Note
that this relation holds for any smooth dark energy model. Next, use this to trans-
form Eq. (12.31) into Eqs. (12.33)–(12.34).

Equation numbers refer to Modern Cosmology, second edition.

However, the relevant ones are given either here, or in the lecture slides.

12.0:  take the moments of the Boltzmann equation to derive the fluid equations. Use:
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derivatives with respect to t and x outside the momentum integral, to obtain

∂

∂t
ρm(x, t) + 1

a

∂

∂xj

[
ρm(x, t)u

j
m(x, t)

]
−

∫
d3p

(2π)3 m

[
Hpj + m

a

∂$

∂xj

]
∂

∂pj
fm(x,p, t) = 0,

(12.13)

where we have used that
〈
pj

〉
fm

= ρmu
j
m. The last term can be integrated by parts to move

the derivative with respect to pj from fm to the term in square brackets (the boundary
term vanishes, since any well-behaved distribution function does not have particles at in-
finite momentum). Evaluating this derivative, we obtain, first, −∂/∂pj (Hpj ) = −3H , while
∂/∂pj (∂$/∂xj ) = 0, since the potential $ is only a function of t and x. Thus, Eq. (12.13)
becomes

∂

∂t
ρm(x, t) + 1

a

∂

∂xj

[
ρm(x, t)u

j
m(x, t)

]
+ 3Hρm(x, t) = 0. (12.14)

Modulo an overall factor m, this is the continuity equation whose linear version is
Eq. (5.41), but now valid at fully nonlinear order (and on sub-horizon scales).

As in the linear case, Eq. (12.14) is not sufficient, since we need an equation for the
velocity ui

m as well. Let us thus take the first moment of the Vlasov equation (12.8), by
multiplying with pi and integrating over p:
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(12.15)

The last term can again be dealt with by integration by parts, and we obtain
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]
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∂xi
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This is our desired equation for ui
m, but we now encounter another quantity, the second

moment of the distribution
〈
pipj

〉
fm

. Let us write this as follows, introducing the stress ten-

sor σ
ij
m(x, t):

1
m

〈
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〉

fm
= ρmui

mu
j
m + σ

ij
m . (12.17)

As with ui
m and pi , we do not need to distinguish between upper and lower latin indices on

σ
ij
m. At this point, this is nothing but a definition for σ

ij
m, but we will learn the significance

of this decomposition in a moment. Inserting this into Eq. (12.16), we obtain
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Eq (12.17)
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12.5 Use the solution in Eq. (12.40) to show that the NLO contribution in Eq. (12.42) is
given by Eq. (12.48). Derive and use the relations

F2(k,−k) = 0,

Fn(k1, · · · ,kn) = Fn(−k1, · · · ,−kn). (12.105)

Evaluate the terms numerically. For P (13), the expression of the kernel given in
Makino et al. (1992) is useful. For P (22), care needs to be taken when k −p becomes
close to zero. Bertschinger and Jain (1994) provide a neat decomposition of the in-
tegral which is numerically robust.

12.6 Derive the leading contribution to the matter bispectrum, Eq. (12.51). How does
this look in the diagram form of Fig. 12.3?

12.7 In Sect. 12.2, we developed perturbation theory based on the density field. An alter-
native, Lagrangian approach is based on the equations of motion for N-body “par-
ticles,” Eq. (12.57). In this exercise, you will derive the lowest-order result, known
as Zel’dovich approximation. The solution to Eq. (12.57) is a particle trajectory x(η).
We write this as

x(η) = q + s(q,η), (12.106)

where q is the initial position at η = 0, when all perturbations were negligible. Hence
s(q,0) = 0. Rewrite Eq. (12.57) as an equation for s. Now expand to linear order in s.
Solve the equation by using the solution of the Poisson equation for " at linear or-
der. Your result should relate s(1)(k,η) to δ(1)(k,η). This result can be used to obtain
the initial small displacements of particles to start an N-body simulation. We also
need their initial momenta pi

c. Derive these in terms of the displacement as well.
12.8 Derive an expression for the enclosed mass M(< r) for the NFW profile Eq. (12.62).

Replace rs with the concentration c$. Use this to derive R$ for a given mass M$ and
concentration, and solve for ρs . You now have a reasonably accurate expression for
the density profile of a halo of mass M$ and concentration c$. Plot the profile for a
halo of mass M200 = 1012M⊙ ($ = 200), and for concentrations c200 ∈ {4,8,16}. That
is, make the plot for Sect. 12.4.1 that we were too lazy to create!

12.9 Derive the spherical collapse threshold δcr and the virial overdensity $vir by solving
Eq. (12.67) without considering &. Follow these steps:
(a) Show that Eq. (12.67) can be rewritten as

r̈

r
= −4πG

3
ρ̄i[1 + δi]

( ri

r

)3
(12.107)

where ri , ρ̄i are, respectively, the radius of the spherical region and the back-
ground matter density at the initial time, and δi is the initial overdensity.

(b) Show that, when the initial expansion rate is given by ṙi = Hiri(1 − δi/3), the
maximum radius rta (the turn-around radius) that the spherical region reaches
is given by

Chapter 12 • Growth of structure: beyond linear theory 345

Mathematically, the non-relativistic geodesics are the characteristics of the collisionless
Boltzmann equation. When integrating these equations numerically, it is convenient to
use the “superconformal” momentum pc ≡ ap. With this, the geodesic equation becomes

dxi

dt
= pi

c

ma2 ,

dpi
c

dt
= −m

∂"

∂xi
. (12.57)

The advantage of pc is that it is conserved in the absence of perturbations, i.e. when the
gradient of " vanishes. Note that the coordinates x are comoving and thus include the
Hubble expansion. Practitioners usually refer to the elements of the discretized phase-
space sheet as “particles” for simplicity, and we will do so in the following as well. However,
it is important to keep in mind that these do not stand for actual dark matter particles.
Rather, they represent small elements of the dark matter distribution in phase space, which
forms a thin sheet due to the cold nature of dark matter. For this reason, the mass m of the
particles (which we assume here is the same for all particles) is only a numerical param-
eter: it is determined by the total amount of matter in the simulation volume divided by
the number of particles, so a higher-resolution simulation has more particles with corre-
spondingly smaller m.

The basic sequence of an N-body simulation then proceeds as follows. Here, we de-
scribe the so-called leapfrog scheme where density and velocity are given at staggered
times. So, we start with particle positions and velocities

x(i)(t) and p(i)
c (t − #t/2), (12.58)

where #t is the timestep and the superscript denotes the index of the particle. Typical
simulations can have a billion particles or more, a number that is steadily growing with
Moore’s Law. We then

1. Compute the gravitational potential generated by the collection of particles, and take
its gradient to obtain ∇"(x, t) (see text below).

2. Change each particle’s momentum (“kick”) by

p(i)
c (t + #t/2) = p(i)

c (t − #t/2) − m∇"(x(i), t)#t. (12.59)

3. Move each particle position (“drift”) by

x(i)(t + #t) = x(i)(t) + p(i)
c (t + #t/2)

ma2(t + #t/2)
#t. (12.60)

4. Repeat.

Notice that particle positions and momenta are offset by half a time step. This scheme
ensures that the energy of each particle is conserved to high accuracy (the numerical error

<latexit sha1_base64="Kc7BRiq7RiphbX0aJeloNJ79I24="></latexit>

pic = api

Equation numbers refer to Modern Cosmology, second edition.

However, the relevant ones are given either here, or in the lecture slides.
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(c) Using the fact that the matter correlation function goes to zero at large r, ex-
pand your result in the small quantity ξ(r). Show that the first two terms can be
written as Eq. (12.83), and derive the expression for b1 and b2, as well as their
limiting form for very rare halos, νcr ≫ 1.

12.11 Continue the expansion in Eq. (12.80) to second order in δℓ. The second-order bias
is defined by

δh,ℓ = b1δℓ + 1
2
b2δ

2
ℓ + · · · . (12.114)

What is the expression for b2 in terms of σ (M,z) and f (ν)? Derive b2(ν) for the Press–
Schechter mass function Eq. (12.73).

12.12 Derive the second-order perturbation theory kernel for the galaxy density δ
(2)
g .

(a) Define the scaled tidal field through

Kij (x,η) = 1
4πGa2(η)

[
∂i∂j − 1

3
δij∇2

]
)(x,η). (12.115)

Use this definition to relate Kij is to the matter density in real and Fourier space.
(b) Begin with the real-space expression of the second-order galaxy density,

δ
(2)
g (x,η) = b1δ

(2) + 1
2
b2(δ

(1))2 + bK2K
(1)
ij K(1)ij , (12.116)

where on the right-hand side all fields are evaluated at (x,η), and the bias pa-
rameters b1, b2, bK2 are defined at η. Why does the tidal field only appear at
second order and in this particular combination? Now pull out the time depen-
dence contained in the growth factors, and Fourier transform Eq. (12.116) to
arrive at Eq. (12.87).

12.13 Compute the matter power spectrum in the halo model based on Eq. (12.97).
(a) Take the Fourier transform of Eq. (12.97), and express the power spectrum of

δHM
m (k) in terms of the power spectrum of the halo overdensity δh(k,M), the

halo mass function, and the Fourier-transform of the halo profile y(k,M).
(b) Assume a linear bias relation and constant noise for halos:

〈
δh(k,M)δh(k′,M ′)

〉
= (2π)3δ

(3)
D (k + k′)

[
b1(M)b1(M

′)PL(k) + PN(M,M ′)
]

(12.117)

where PN(M,M ′) = 1
dn/d lnM

δ
(1)
D (lnM − lnM ′).

Here we have assumed that the noise for different halo masses is independent.
Use this to simplify the expression for the halo-model matter power spectrum.

(c) Derive the Fourier-transform of the profile y(k,M) by assuming an NFW profile
Eq. (12.62) with concentration c(M) that is truncated at R200.

(d) Evaluate P HM(k) numerically, and plot the result together with the linear power
spectrum.

Scratched.
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to Eq. (12.29):

δg(x,η) = δ
(1)
g (x,η) + δ

(2)
g (x,η) + · · · + δ

(n)
g (x,η), (12.85)

where, as we now know, δ
(1)
g = b1δ

(1). A crucial difference from the case of the matter den-

sity field is that we have to identify which bias terms need to be included in δ
(n)
g , i.e. at a

given order in perturbation theory, in order to describe a general galaxy density field. As
described in detail in Sect. 2 of Desjacques et al. (2018), there is a rigorous theory behind
this, which we will not go into here. At second order, in δ

(2)
g , there are two bias terms: the

b2 term we encountered above, and another term involving the tidal field squared, pro-
portional to bK2(∂i∂j$)(∂ i∂j$) (see Exercise 12.12). The tidal field did not appear in the
thresholding toy model, since we assumed that the halo density only depends on the local
value of the matter density. In reality, halo and galaxy formation are influenced by large-
scale tidal fields, so we have to include them in the bias relation.

Just as we did for the matter density field based on Eq. (12.29), we can use Eq. (12.85) to
expand the galaxy density field in Fourier space by defining kernels Fg,n in analogy to the
Fn for matter, Eq. (12.40):

δ
(n)
g (k,η) = Dn

+(η)

[
n∏

i=1

∫
d3ki

(2π)3

]

(2π)3δ
(3)
D

(

k −
n∑

i=1

ki

)

× Fg,n(k1, · · · ,kn;η)δ0(k1) · · · δ0(kn). (12.86)

For example, you can show in Exercise 12.12 that the second-order kernel is given by

Fg,2(k1,k2;η) = b1(η)F2(k1,k2) + 1
2
b2(η) + bK2(η)

[
(k1 · k2)

2

k2
1k2

2

− 1
3

]

. (12.87)

Since the bias parameter b1 multiplies the matter density field, which itself has nonlinear
contributions, we obtain a term b1F2 in Fg,2. Further, b2 appears as expected, in addition
to the tidal bias parameter bK2 . For halos of a given mass, b1 and b2 can be obtained from
the peak-background split described above. For observed galaxies, these coefficients need
to be determined from the data, by measuring their statistics such as the galaxy power
spectrum.

Based on Eqs. (12.85)–(12.86), all calculational techniques, including diagrams, that we
developed for matter in Sect. 12.2 carry over to galaxies. The bispectrum of galaxies, for
example, can be derived in analogy to Eq. (12.51):

〈
δg(k1,η)δg(k2,η)δg(k3,η)

〉
= (2π)3δ

(3)
D (k1 + k2 + k3) (12.88)

×
[
2Fg,2(k1,k2;η)PL(k1,η)PL(k2,η) + BN(k1,η) + 2 perm.

]
,

where

BN(k,η) = 1
3
BN0(η) + b1(η)PN,δ(η)PL(k,η) (12.89)

Equation numbers refer to Modern Cosmology, second edition.

However, the relevant ones are given either here, or in the lecture slides.


