Honogeneous Universe & Thermal History $R-W$ metric $(H-t): ds^{2} = -dt^{2} + a^{2}(t) dz^{2}$ Conformal time: $d\eta \equiv dt/a$ $= a^2(y) (-dy^2 + dx^2)$ Perfect fluid: P = vp wp $w=0$ \iff matter (dwt) $w = 43 \Leftrightarrow$ radiation $w = -1 \Leftrightarrow \text{Varum} \text{e}$ $Christoffel$ symbol for flat R-W metri2: $\left(\frac{a}{t}\right)$ hore) $I^{\alpha}_{\mu\nu} = \frac{g^{\alpha\nu}}{2} \left(\partial_{\mu} g_{\beta\nu} + \partial_{\nu} g_{\beta\mu} - \partial_{\beta} g_{\mu\nu} \right)$ $\begin{array}{l} \mathcal{L}_{\mu\nu} = \frac{1}{2} \left(\frac{\partial}{\mu} g_{\mu\nu} + \frac{\partial}{\nu} g_{\beta\mu} - \frac{\partial}{\rho} g_{\mu\nu} \right) \\ \implies \mathcal{L}_{\text{tot}}^{\text{o}} = 0 \quad \text{and} \quad \mathcal{L}_{\text{o}}^{\text{o}} = 0 = \mathcal{L}_{\text{co}}^{\text{o}} \end{array}$ $I_{ij}^{\circ} = \delta_{ij}$ ia
 $I_{oi}^{i} = 0$ $\Gamma_{oi}^{i} = \left(\frac{i}{2}\right) \int_{0}^{i}$ $\mathbf{P}_{ik}^i = \mathbf{0}$ $Recall$ covariant stress-energy conservation: $\nabla_{\mathbf{A}} T^{\mathbf{A} \mathbf{v}} = 0$ $T''_{V} = 9v_{A}T''^{+} = (f+1)u''u_{V} + 16v''$

 $9 = rest - f$ and $1 - \frac{f^2 f^2}{f^2}$
 $1 - \frac{f^2 f^2}{f^2}$ Evaluate $v=0$ comparent of $\nabla_x T'^* v = 0$ for flat $R-W$: $\Rightarrow \partial_{\mu}T^{\mu}{}_{o}+\Gamma^{\mu}{}_{\alpha\mu}T^{\alpha}{}_{o}-\Gamma^{\alpha}{}_{\alpha\mu}T^{\mu}{}_{\alpha}=0$ = $-\frac{\lambda f}{\lambda t} - 3\frac{\dot{a}}{\dot{a}}s - \Gamma_{00}^{0}T_{0}^{0} - \Gamma_{00}^{1}T_{0j}^{i} = 0$
= $\frac{\dot{a}g}{\dot{a}t} + 3\frac{\dot{a}}{\dot{a}}(g+1) = 0$ Continuity Eq. $\frac{dS}{dt}+3H(g+2)=0$ $\Rightarrow M_{\text{r}}Her: \quad \int_{r} d a^{-3} f(x) dx = 4$ V_{adym} : J_{Λ} or a° We also have Enstein's eq.: $G_{\mu\nu} = 8\pi G T_{\mu\nu}$ Ricci tensor: $R_{00} = -3(\frac{a}{a})$ $R_{ij} = \delta_{ij} (2i^2 + i a)$ $\beta_{oi} = 0$

=> Rricci scalar: $R = R^n_A = 3(\frac{\alpha}{\alpha}) + \frac{1}{\alpha^2} \delta^{ij} (2\lambda^2 + \alpha \alpha) \delta_{ij}$
=> $R = 6(\frac{\alpha}{\alpha} + (\frac{\alpha}{\alpha})^2)$
=> Emstein tensor: 00 component
 $C_{00} = R_{00} - \frac{\beta}{2} S_{00} = -\frac{3\alpha}{\alpha} + \frac{3\alpha}{\alpha} + 3(\frac{\alpha}{\alpha})^2 = 3(\frac{\alpha}{\alpha})^2$
=> Eincheln e $\Rightarrow R = 6(\frac{\dot{a}}{a} + (\frac{\dot{a}}{a})^2)$

- => Einstein Fersor: ⁰⁰ component $G_{00} = R_{00} - \frac{R}{2}g_{00} =$
- => Einstein eg .: Goo =86Too
- $= 3(\frac{a}{a})^2 = 8\pi b g$ Define the Hubble parameter: $H(t) \equiv \frac{a}{a}$
- $\Rightarrow R = 6(\frac{\pi}{2} + (\frac{\pi}{2})^2)$

Ender tensor: 00 amponent
 $\infty = R_{\infty} \frac{R}{2}S_{\infty} = -\frac{3\pi}{2} + \frac{3\pi}{2} + 3(\frac{\pi}{2})$
 $\infty + \frac{3\pi}{2} + \frac{3\pi}{2} + \frac{3\pi}{2} + \frac{3\pi}{2}$
 $\infty + \frac{3\pi}{2} + \frac{3\pi}{2} + \frac{3\pi}{2} + \frac{3\pi}{2}$
 $\infty + \frac{3\pi}{2$ Equation (1922)

Also have is components of Einstein:

 $G_{ij} = 8\pi G T_{ij}$

 $= 7 - \delta i (2 \pi \Delta + \dot{\alpha}^2) = 8 \pi G T_{ij}$ $= 8\pi G \sin T_{ij}^k$ $= 8\pi G \alpha^2 \sum_{k} P \int_{s}^{k}$ $= 8\pi$ *ba*² ℓ S .

 $=$ $\frac{a}{a} + \frac{1}{2}(\frac{a}{a})^2 = -\frac{1}{100}$

Nov use $f|s+5$ Fricham e_2 : $\left(\frac{a}{a}\right)^2 = \frac{8\pi G}{3}p$ Second Friday $=\frac{\lambda}{a}=\frac{-\sqrt{b}}{3}(8+3)^{2}$ Eq. (something collect Raychardhr Eg.) Alt. derivation: differentiate first Friedra Eg. v.r.t. the ad combine out continuts eq. Def: critical density $g_c = \frac{3H^2}{8\pi G}$ $(g_{c,o} = \frac{3H^2}{8\pi G})$
 $\frac{1}{2}$ $g_{c} = g_{c} \rightarrow$ flat universe $(k=0)$, as we will generally Then $\Omega_n \equiv \frac{g_n}{g_c}$ (usually understand to be defined at $z=0$, today) $(\sqrt[n]{\Lambda_{r,s}} \equiv \frac{\rho_{r,s}}{\rho_{c,o}} = \Lambda_r)$ Similarly for Ω_{r_1} Ω_{Λ_1} etc. The first Friedman of can then be vitten $H^{2}(\alpha) = H_{0}^{2} (1 + \alpha^{4} + 1 - \alpha^{3} + 1 - \alpha^{2} + 1 - \alpha^{2} + 1 - \alpha^{3} + \alpha^{4} + \alpha^{3} + \alpha^{4} + \alpha^{4} + \alpha^{3} + \alpha^{4} + \alpha^{4} + \alpha^{3} + \alpha^{4} + \alpha^{5} + \alpha^{6} + \alpha^{7} + \alpha^{8} + \alpha^{9} + \alpha^{10} + \alpha^{11} + \alpha^{11} + \alpha^{12} + \alpha^{13} + \alpha^{14} + \alpha^{15} + \alpha^{16} + \alpha^{17} + \alpha^{18} + \alpha^{19}$ Obs. Indicate: $\Omega_m \approx 0.3$, $\Omega_A \approx 0.7$, $\Omega_r \approx 6 \times 10^{-5}$ $-3 \int_{0}^{1} f \leq f \text{ at } t_{2} \leq 3400$ \int_{Λ} = \int_{Λ} at z_{Λ} = 0.3

Evolution of Photon Bath

Recall geodesic eq.: $\frac{d^{2}x^{d}}{d\lambda^{2}} + \Gamma^{d}$ or $\frac{dx^{a}}{d\lambda} = 0$ Consider massless particle (photon) in flat, expanding R-W metric.

How does this particle's energy change as the universe expands ? $p^{\alpha} = (E, \vec{p})$ 4-monestrum Consider messless particle (photon) in flat, examples R-W

How does this particle's energy change as

the universe expands?
 $\rho^{\alpha} = (E, \vec{p})$ γ -monethum

Use this to implicitly define parameter A:
 $\rho^{\alpha} = \frac{\partial x^{\alpha}}{\partial$

Use this to implicitly define parameter 1 : (k, p)
3 to ingl
 $p2 = \frac{dx}{dy}$

Eliminate λ via nothy: $\frac{d}{dt} = \frac{dx^{\circ}}{u} \frac{d}{dx} = \epsilon \frac{d}{dt}$
Evaluate 0 -curperant of seadesiz eg.:

 $E\frac{dE}{dt} = -\Gamma^0$ is γ^5

 $(I \text{ mod } L^{\circ} = 0 \text{ and } \Gamma^{\circ}{}_{oi} = 0 = \Gamma^{\circ}_{io}$

 N ow we Γ "; = δ ; aa

 $= E \frac{\partial E}{\partial t} = - \sum_{ij} \dot{\alpha} \alpha \dot{\beta}^i \dot{\gamma}^j$

Massless particle : $g_{\mu\nu}$ ρ^{μ} $\rho^{\nu} = O$ $(ds^2 = 0)$ \Rightarrow - E^{2} + J : $a^2 \rho^2 \dot{\rho} = 0$

=> Phy in above :

dE $\frac{1}{dE} + \frac{1}{a}E = 0$

 $\frac{dE}{dt} + \frac{a}{a}E = 0$
 $\Rightarrow \frac{\dot{E}}{E} = -\frac{\dot{a}}{a} \Rightarrow hE = -\ln a + \omega dt.$ $\Rightarrow \frac{E}{E} = \frac{-\dot{a}}{a} \Rightarrow$
 $\Rightarrow E(a) \propto \frac{1}{a}$

=> Massless particles lose energy as the univer expands $\overline{1}$

Why ? Handwaring ! ↳ wavelength

 $Physid$ wavelength: $A\propto a$ -1 : $A\propto a$ \rightarrow list 3
 \sim \sim stretched" as \Rightarrow EX a⁻¹

light B the universe

Implication : consider photon emitted at frequency $\overline{V_{en}}$ (E= hr)

=> observed at lower frequency vols
Vols = an Cosmologied (Zen)
Ven = ados Redshift (Zen) $F_{em} = \frac{\lambda_{obs} - \lambda_{em}}{\lambda_{em}} = \frac{\lambda_{ob}}{\lambda_{w}} - 1 = \frac{v_{on}}{v_{io}} - 1$
 $\Rightarrow 1 + z_{on} = \frac{v_{on}}{v_{ds}}$ 50 if a.k = 1 (thater observed today) $= 2 \left[\frac{1}{1+2e}\right]$ => Link between redshift of photon
obs. tology and scale factor at the of its emission Every time we neasure a nodelisty, we
reasure the curature of spacetime! Implication for photon bath: if we have a Planck (blackbodg) photon distribution at some (enty) the at temperature $T = T_1$, i.e.,: $f(e) = \frac{1}{e^{e/(kT)} - 1} = \frac{1}{e^{w/(kT)} - 1}$ (u=0 for photons)

then at a later time we will still have a b lackbody distribution, but at $T_z = \frac{T_1}{a}$, because the enepy of each of the photons decreases by exactly the same factor : \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow $I(v) =$ ecance
a
 $\frac{2hy^3}{c^2} \frac{1}{e^{wy/kT}-1}$ (Note: processes that * $\mathsf{T}_\mathbf{2}$ \blacktriangleright inj ect energy or v entropy into the bath can change the shape of the
photon distribution - these are "CMB spectral distortions" -see final lecture.) $=$ see final leapne.)
 \Rightarrow T a $\frac{1}{\alpha}$ d (1+2) Here T is the temperature of the photons, conventionally taker to define the "thermal bath" in the vaiverse. $COBE-FIRAS$ (1990): T_{cm} (2=0) = 2.726 ± 0.001 K => foundational measurement of physical cosmology! => tells us how and cosmic expansion has occurred since recombination => determines Ω_{δ} directly via s_{δ} = $\sigma T''$ $FFRS$ data also show that $F(v)$ indeed is perfectly consistent with a blackbody (most perfect blackbody known in nature). Upper limits on spectral distortions I

Recombination
Etras (250) = 2.3
Recall ionitation Recombination $kT_{crB}(z=0) \simeq 2.3 \times 10^{-4}$ eV and $T_{crB} \propto (4+z)$ Recall ionization every of hydrogen atom: $B_H = 13.6$ eV \Rightarrow at high z, kTcng > BH! => photos in the thema bath were sufficiently photographic to keep H atoms ionited At 10 per $ZT \approx 1$ eV: plasna consisting of γ e, H auclei, "He At to be $ZTZ \perp eN$: plasna consisting of $y_i e_j$ H and eightles.

was let $\{ad$ the decoupled by Compton scattering. and is and the decayled by Compton scattering.
 \int and e^- tightly coupled by Compton scattering.
 e^- and H (ie, p⁺) tightly coupled by Coulomb scattering. e^- and H (ie, e^+) tistify coupled by Coulomb scatter).
Very little newtral H around - plasma T >> 13.6 eV. Very little newtral H around - plusme $T \gg 13.6$
As T decreased, eventually $e^- + \rho^+ \rightarrow H + \rho^+$ $i.e.$ and et tightly coupled by Compton scattering.

For a H (ie, pt) tightly coupled by Compton scattering.

E and H (ie, pt) tightly coupled by Combine scattering.

As T decreased, evertually $e^- + p^+ \rightarrow H + p$, i.e., e^-

and pt . => ne decreased sharply
=>> of decoupled from the bayonic matter (photo decouply) => near free path of photons became larger than the horizon => photons "free-stream" : mineze become transparent = the bottom is the comprise of the company of the complete the complete the complete the conduct scattering.

what is the decorated by Compton Scattering.

what is the meeting coupled by Compton Scattering.

Stille neest cosmic mirovare background today.

Three-stage process : 1) Reconsination (sharp decreese in ne) 2) Photon-matter decoupling 3) Freeze-out of resident free electron fraction $\frac{4}{3}$
 $\frac{2}{7}$ $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$

 (1) Recombination: $p^+ + e^- \leftrightarrow H + \gamma$ E_n chemized equili: $\mu_{\mathfrak{h}} = \mu_{\mathfrak{f}} + \mu_{\mathfrak{e}}$ (recall $\mu_{\mathfrak{F}} = 0$)
(at $T > 1$ eV) (of $T>1$ eV)
We vent to describe evolution of number densities of these species , key tool: Boltzman Equation We vant to follow evolution of d.f. for species i $f_{z}(x^n, \rho^n)$ in presence of interactions: $Lf_c = C_i [5f_i3]$ $\begin{array}{lll} \n\text{vol:} & \text{Solution} & \text{Equation:} \\
\text{Vert } & \text{Euler} & \text{Solution} & \text{if } d.f. \\
\text{int. } & \text{int} & \text{prime} & \text{int} & \text{int} \\
\hat{L}f_c & = \hat{C}_c \left[\hat{S}f_0 \hat{S} \right] & \text{if } d.f. \\
\text{int. } & \text{int.} \\
\text{int. } & \text{int.} \\
\end$ of all Lionville operator Collision perfor other species; Lo_{n.} rel. [init: total time derivative $t_{MR} = \frac{d}{dt} = \frac{3}{3t} + \frac{d\vec{x}}{dt} \frac{\partial}{\partial \vec{x}} + \frac{d\vec{p}}{dt} \frac{\partial}{\partial \vec{p}}$ P + 2 = $\frac{1}{4} + \frac{1}{4}$ (recall $\frac{1}{3}$ = 0

= evaluation of munter desires

= evaluation of d.f. for species

= spectrum

= for the species of

= for a society of divideo is

= de = de = de divideo is

= de = de = de Partile species of mass a subject to fore F: $\ddot{\sim}$ $L_{NR} = \frac{3}{2t} + \vec{v} \cdot \vec{r} +$ $\frac{a}{dt}$ Relativisti2 generalization: total desivative w.r.t. affine parameter along worldline (recall similar derivatives appearing in geodesic eg.) : $\frac{1}{L_{GR}} = \frac{d}{d}$ generalization: total
meter aloss worldline
geodusi2 eg.):
= $\frac{dx^4}{d\lambda} \frac{\partial}{\partial x^4} + \frac{dy^4}{d\lambda} \frac{\partial}{\partial y^4}$ change in dif due to changes in mon. as particle transes vaddline

Normalize λ via $P^{\lambda} = \frac{1}{d\lambda}$ (effectively $\lambda = p_{\rho\mu\nu}$) Normalize λ via $P^* = \frac{4x^4}{d\lambda}$ (if
=> Geodesiz = 2.: $\frac{4P^*}{d\lambda} = -\int_{\alpha}^{2\pi} \frac{e^{\alpha}}{\alpha} P^*P^*$ $= 2 \int_{\text{GR}}^{\text{max}} \rho \frac{d}{dx} \rho \int_{\text{R}}^{\text{max}} \rho^4 \rho \rho \frac{d}{dx} \int_{\text{R}}^{\text{max}} \rho^4 \rho \rho^3 \rho^2 \rho^4 \rho^4 \rho^5 \rho^7$ Compute in FRW metric: Honogeneits + isotropy => $f_i(\vec{z},\vec{p},t) \rightarrow f_i(E,t)$ (or file,t) Using Exp for FRW , we find $2 + 4$
 $2 + 4$ = $E\frac{\partial f_i}{\partial t} - \frac{\lambda}{\alpha}P^2\frac{\partial f_i}{\partial t} = C_i$ = $\overline{2}$ = $\left\{ \int_{\alpha} f(x)dx dy \right\} = \int_{\alpha} f(x)dx$
 $\Rightarrow \int_{\alpha}^{\alpha} \int_{\alpha}^{\beta} f(x)dx = \int_{\alpha}^{\alpha} f(x)dx$
 $\Rightarrow \int_{\alpha}^{\beta} f(x)dx = \int_{\alpha}^{\beta} f(x)dx$
 $e^{2}+n^{2}$
 $e^{2}e^{2}=-\frac{1}{2}$
 $\hat{c}_{1}=\frac{c_{1}}{E}$ = E($\frac{d_1}{dt} = \frac{1}{2} e^{2t} (\frac{1}{2} + e^{2t})$

E $\frac{d_1}{dt} = \frac{1}{2} e^{2t} \frac{d_1}{dt} = \frac{1}{2} [(\frac{1}{2} + e^{2t})]$

E $\frac{d_1}{dt} = \frac{1}{2} e^{2t} \frac{d_1}{dt} = \frac{1}{2} [\frac{1}{2} (\frac{1}{2} + e^{2t})]$

E $\frac{d_1}{dt} = \frac{1}{2} e^{2t} \frac{d_1}{dt} = \frac{1}{2} [\frac{1}{2} (\frac{1}{$ (Dodelson 3. 38) $E\left(\frac{\partial f_{i}}{\partial t} - \frac{\dot{a}}{a} p \frac{\partial f_{i}}{\partial p}\right)$
If we drop assumption of homogeneity, $E = \frac{1}{3t} - \frac{1}{x}t^2 \frac{dr}{r^2} \frac{dr}{r^2}$ $\frac{dr}{r} - \frac{dr}{r} \frac{dr}{r} \frac{dr}{r}$
= $E(\frac{3t}{3t} - \frac{1}{x}t^2 \frac{dr}{r})$ $\Leftrightarrow \frac{3t}{3t} - H_0 \frac{3t}{r}$
= $E(\frac{3t}{3t} - \frac{1}{x}t^2 \frac{dr}{r})$ $\Leftrightarrow \frac{3t}{3t} - H_0 \frac{3t}{r}$
 $H_0 \frac{r}{r}$
 $H_0 \frac{dr}{r}$ Using $\hat{L}f_c = E \frac{\partial f_c}{\partial t} - \frac{\dot{a}}{\alpha} p^2 \frac{\partial f_c}{\partial E}$, we can show that $\int_{-6R}^{6} = p^4 \frac{3}{2x^2} - \int_{-4R}^{4} p^6 p^6 \frac{3}{2p^4} \left(\frac{6x}{2p} - \frac{3}{2p^4}\right)$
 $y = \frac{1}{2}$
 $y = \frac{1}{2}$
 $\int_{-4R}^{4} f(x) dx = \frac{1}{2}$
 $\int_{-4R}^{4} f$ $E\left(\frac{312}{36} - \frac{1}{26}p^2\frac{p^2+1}{36}\right) \Leftrightarrow \frac{311}{36} - Hp\frac{q^2}{3p} = C$

Any exemption of hangeneits,

pecannes $\frac{3f_2}{36} - Hp\frac{3f_1}{3p} + \frac{p}{E}\frac{p^2}{\alpha}\frac{3f_1}{3\alpha} = \hat{C}\left[f_1\right]$
 $\hat{L}f_2 = E\frac{3f_2}{3E} - \frac{\lambda}{\alpha}p^2\frac{3f$ $\frac{d^2P_c}{(2\pi)^3} \frac{\hat{L}f_c}{E_c} = \frac{dn_c}{dt} + 3(\frac{\hat{a}}{\hat{a}})n_c = \frac{1}{a^3} \frac{d}{dt} (n_c \hat{a})$
(integrate) by parts ad we $n_c = \frac{9}{(2\pi)^3} (\hat{a}^2 \rho H_f)$ Thus, the integrated (over mom.) Biltzman ez. is

 $\frac{1}{a^3} \oint_C \left(n_i a^3 \right) = \int \frac{d^3 i}{(2 \pi)^3} \frac{\hat{C}_i \left[\hat{z} f_j \hat{z} \right]}{\hat{C}_i} = \int \frac{d^3 p_i}{(2 \pi)^3} \hat{C}_i \left[\hat{z} f_i \hat{z} \right]$ ρ_{eff} $\int_{R_i} = \left(\frac{d^3 r_i}{(2\pi)^3} \frac{1}{2E_i} \right) = \frac{1}{a^3} \frac{1}{dt} (n_0 a^3) = 2 \int_{R_i} \hat{C}_i [\hat{x}_i]$ If no collisions $\Leftrightarrow \hat{C}_i = 0$ $\Rightarrow \frac{1}{dF}(n_{i}a^{3}) \Rightarrow n_{i}a^{2}a^{3}$ => Particle maker carseration Collision Operator: consider process 1+2 <= 3+4 $\frac{d}{dt}(n_{\perp}) \propto \Delta(p_{\Omega}h_{\Omega}h_{\Omega} - amihileh_{\Omega})$ $\frac{1}{a^2}\frac{\lambda}{d\ell}(a^3n_1)=\iiint (2\pi)^{4} \int^{4} (2\pi)^{4} (\rho^4+\rho^2-\rho^3-\rho^4) |\mu|^2 (f_3f_9-f_4f_2)$ Sur over all ron. carsonation omplitude
(notrient) Fr rate of production of tyty rate of conitionship of fifty prices stesty [nylecting Bore recall: one bust of phose
slove has volume= (2013) $(2.3.7)$ from QFT) erhorcenont and Pauli blocking] Why the factor of $\frac{1}{2E}$? This arises becomes relativistically The phose-spone integrals should be over 4-non., subject to the mass-shell constraint: E2=p2 +m2 $\int d^2r \int dE \delta(E^2-r^2-r^2) = \int d^3r \int_0^{\infty} dE \frac{\delta(E-Vr^2+r^2)}{2E} = \int d^3r \left(\frac{1}{2E}\right)$ $\left(\text{Real that } S[s(x)] = \sum_{i} \frac{S(x-x_i)}{|s'(x_i)|}$ where x_i are roots of g_i , i.e., How to simplify further? In correlate we sensely have: - System not in chemized equil., but still approx. In kness equil. (i.e., scattering is rapid ownsh that the d.f. of all species still take on B-E or F-D forms).

Thus, all we need to determine is ult). Since we are out of charited equil. I Met Me # Mst My. Furted have to solve diff. eg. for each milt). But this
will reduce to a single oDE - much easier than full Boltzman eg. - In all our applications, T22 E-M. So the d.f. reduces to $M-B$ form : $f(E) \approx e^{-(E-\mu)/T} = e^{\mu/T}e^{-E/T}$ Plus in above: $f_3f_4-f_4f_2=e^{-(\epsilon_{4}+\epsilon_{1})/T}$ ($\epsilon^{(\mu_3+\mu_1)/T}$ e^{($\mu_1+\mu_1$})/ τ)

 \bigcirc using $E_1+E_2=E_3+E_7$ (energy cans.). Let's describe molt vons moter dessits nilt: $n_i = e^{\mu_i/T} n_i^{(0)}$ where $n_i^{(0)} \equiv e\gamma$ is the motor $n_{i}^{(o)} = \frac{g_{i}}{(2\pi)^{3}} \int d^{3}p e^{-E_{i}(p)/T} \longrightarrow \mu_{i} = Th(\frac{n_{i}}{n_{i}^{(o)}}) \iff \frac{n_{i}}{n_{i}(o)} = e^{-n_{i}/T}$ Plus in to @ above to obtain: To obtain final simplification of Boltzman eq. , define the themally averaged cross-section: $\langle \sigma V \rangle = \frac{1}{h_{\perp}^{(0)} h_{\ell}^{(0)}} \int_{R_{\perp}^{(0)}(R_{\perp}^{(0)})} (2\pi)^{V} S^{(4)}(r^{2}+r^{2}-r^{3}-r^{4}) e^{-(E_{\perp}+E_{\perp})/T} |M|^{2}$

The integrated Boltonun eq. then becomes:

 $\frac{1}{a^3} \frac{\lambda}{d!} \left(a_{n_1} \right) = \left\langle \sigma v \right\rangle n_1^{(0)} n_2 \left(\frac{n_3 n_1}{n_3^{(0)} n_1^{(0)}} - \frac{n_1 n_2}{n_1^{(0)} n_2^{(0)}} \right)$ => simple ODE for mother density! Note: when reachba rates are large (1-22H), we expect to Le in chemind equil. \Leftrightarrow $h:da^{-3} \Leftrightarrow \frac{h_3h_4}{h_3h_4} = \frac{n_4h_2}{n_4h_2}$ Saha's Ez.

(Concretely: LHS of Bottenan equil. $\frac{h_3^{(0)}n_4^{(0)}}{h_3^{(0)}n_4^{(0)}} = \frac{n_4h_2}{n_1^{(0)}n_2^{(0)}}$ ("unless that is $\sim n_1H$ since $dt^{-1} \$ and RHS is \sim Δn_2 < σ v) = n_1 Γ . So if n_2 < σ v)= Γ >> H the RHS >>LHS, and only very for eq. to hold is if the terms in parentheses on the RHS cancel.) Now apply Saha to $e^+e^+e^-$ H + γ : \mathcal{I}_n choured equil.: $\mu_H = \mu_P + \mu_E$ (recall $\mu_B = 0$)

(at T > 1 cV)

Apply Saha eq.: $\frac{n_e n_P}{n_H} = \frac{n_e^{(0)} n_e^{(0)}}{n_e^{(0)}}$

For non-rel: particles, recall $n_E = 3c \left(\frac{n_E T}{2\pi}\right)^{3/2} e^{- (n_E - n_E)/T}$ [arte here that $T\ll m_e, m_f, m_H$) $(\wedge \text{det} \wedge \wedge \text{det})$ Thus, $\frac{n_{e}n_{e}}{n_{H}} = \frac{9e3e}{3H} (\frac{n_{e}T}{2\pi})^{3/2} e^{-(n_{f}+n_{e}-n_{H})/T}$ Note that $B_R \equiv r_1 + r_2 - n_H = b d A b_3$ were of atom hydrogen $= 43.6$ eV. Recall $g_p = 2 = g_e$ (spin-212 fermions) and $g_H = 4$ (e^- and e^+ spin anti-aligned: singlet state >1+3

 M_0 net electric charge in minage \Rightarrow $n_e = n \rho$ Further simplification : ignore all nuclei other them pt (over 90% of mulei, by mader, are protons). Then applying conservation of bangon under y ields $u_p \simeq n_p + n_H = n_e + n_H$. ↑ ↑ pt neutral atomic H \Rightarrow rene $=$ conversation of
= $n_p + n_H = n_e + n_H$
 \uparrow \uparrow \uparrow \uparrow acted state H
= $\left(\frac{n_e T}{2\pi}\right)^{3/2} - \frac{B_H}{T}$ Def. : free $n_b = \frac{n_p + n_H}{p_t} = \frac{n_e + n_H}{2\pi}$.
 $\frac{n_p}{w} = \left(\frac{n_e T}{2\pi}\right)^{3/2} e^{-B_H/T}$
 $\frac{m_e}{w} = \frac{n_e}{n_b} = \frac{n_e}{n_b}$
 $\frac{m_e}{w} = \frac{n_e}{n_b} = \frac{n_e}{n_b}$
 $\frac{m_e}{w} = \frac{n_e}{n_b} = \frac{n_e}{n_b}$ No net electric change in minore as $n_e = np$

Further simplification: System all music other than it

(over 70% of number, by analy, one protons).

Then applys conservation of beginn ander

yields $n_1 \approx n_p + n_n = n_e + n_n$.
 $j \approx$ Note that $n_b = n_f + n_n = n_n$
 $n_f = n_i$
 $n_f = n_f - n_n$ "Saha's Eg. " $k_e = n_r + 1$
 $\frac{X_e}{Z} = n_r$. Recombination is "complete" when 90% of a are in neutral H atoms , i. e on is "complete"
e., $X_e = 0.1$. Con solve numerically to determine T correspondly to a given $X_{\!\mathrm{e}}.$ Define "recombination time" as that when Xe ⁼ ⁰.5. =>Numerized solution of Sabe eg. => $T_{rec} = 0.3 eV$ $Recall |T(z) = T_0 (1+z) = [2.726 \text{ k}] (1+z) \implies z_{rec} \approx 1300$ π^2 (π_e) e π is Saha's E

ete " when 90% of e are in now

2.1.

the determine T corresponding to a 3

the " as Hot when $X_e = 0.5$.

of Saha ez. = Tree \approx 0.3 eV

e) = (2.726 k)(1+2) = $\pi_{\text{rec}} \approx 0.3$ eV
 \pm

 $Recall$ $4+2e_{2} = 0.7^{2} = 3400$ => Recordination occurs in

Important: since $\eta = 6 \times 10^{-40}$ is extremely small, recombination does not start until $T<< B_H=13.6$ eV. Even when T is a bit below BH, the Win tail of the photon d.f .
ք. contains sufficiently many high-energy photons to keep If ionized . Same phenomenon as in delay in production of ^D (D "botttered) in Big Bang Nucleosynthesis . a bit below BM, the Wighthis sufficiently many
inited. Same phenomenon
D (D'intitench) in Big &
Recombination era, cont.
(2) Photon-motter decouple

Recombination era, cort. (2) Photon-matter decoupling: γ coupled tightly to plasma via Compton scattering:
 $e^- + e^- \longleftrightarrow e^- + e^-$ The photon interaction rate for this process is: $E_f \approx n_e \sigma_T =$ n_bX_c of where $\sigma_{\!f} = 2 \times 10^{-3}$ MeV⁻² $(c_7 \equiv$ Thomson c ssertion = $\frac{8\pi}{3} \frac{d^2}{mc^2}$, c_7 five-struction = V_{13} $S_{\text{F}} = 2 \times 10^{-3}$
 S_{F} of 2 m five-then netre &

Note that J-anclei interstion $\frac{1}{\pi}$ $\frac{1}{n_{\text{ave}}}$ $\frac{1}{n_{\text{e}}}$, here they are negligible. Tate ~ $2/n_{\text{ave}}$ << $2/n_{\text{e}}^2$, here they are P_7 as n_e decreases. $P_p \wedge n_e \Rightarrow P_p \wedge n_s \wedge n_e$ decreed when $P_p \lesssim H$. Recall that we are now in matter-dominated era $\frac{1}{2}$ call that we are now in matter-doubated es
so $H(z) = H_0 \sqrt{\Omega_m (4+z)^3} \Rightarrow H(T) = H_0 \sqrt{\Omega_m} (\frac{T}{T_0})^{3/2}$ $so H(z) = H_0 \sqrt{2\pi (1+z)^3} \Rightarrow H(T) = H_0 \sqrt{2\pi} (\frac{1}{T_0})^{3/2}$

We have : have:
 $\Gamma_f(T) = n_b c_T X_e(T) = \frac{2}{\pi^2} S(3) \eta c_T X_e(T) T$ 3 Setting $E_{\vec{b}} = H \Leftrightarrow \frac{2}{\pi^2} S(3) \eta \sigma_{\vec{b}} X_{e}(\tau_{b}) T_{b}^3 = H_{0} \sqrt{4 \pi} \left(\frac{T_{b}}{\tau_{b}} \right)^{3/2}$ \Rightarrow $X_0(\tau_0)\tau^{3/2} - \frac{T^2}{2R^2}$ Holmes le have:
 $\Gamma_f^2(T) = N_b \tau_f X_e(T) = \frac{2}{\pi^2} S(3)$

Sething $\Gamma_f^2 = H \Leftrightarrow \frac{2}{\pi^2} S(3) \eta \sigma_f X_e(T)$
 $\Rightarrow X_e(T_0) T_0^{3/2} = \frac{T^2}{2 S(3)} \frac{H_0 \sqrt{4R}}{\eta \sigma_f T_0^{3/2}}$ $207T_0$ ^{3/2} Using Saha eg. to compute Xe(tp) and solving numerically, we obtal $T_0 = 0.27$ eV = 300 K More precise treatment girls To $X_e(T_b)T_b^3 = H_oV$
T_a 3/2
 $Y_e(T_b)$ and sold
 $T_b = 0.25 eV$ $= 0.25$ eV = 2970 K m_5 Sabe eg. to
numerially, we
 $T_9 = 0.27$ eV
are preise treat
 \Rightarrow $\frac{1090}{t_9} = \frac{1090}{t_9}$ $\Rightarrow z_0 = 1090$ $\Gamma_0 = H \Leftrightarrow \frac{2}{\pi} S(3)$
 $\frac{1}{2} (T_0) T_0^{3/2} = \frac{T^2}{2 S(3)}$

sobre ez. to emput

encelly, we obtain
 $= 0.27 \text{ eV} = 30$

prese treatment six
 $\frac{1}{2} P = 1070$
 $\frac{1$ $t_{p} = 109$
 $t_{p} = 370$ ⁰⁰⁰ years Note that $X_{e}(\tau_{rec}) = 0.5 \longrightarrow X_{e}(\tau_{0}) = 10^{-3}$ even though $T_{rec} \approx T_{D}$! (3) Electron freeze-out: Apply httpsted Boltzman ez. to reaction $e^- + e^+ \leftarrow 0 + \frac{1}{1 + e^-}$
 $\frac{1}{2} \frac{1}{2} \left(\frac{3}{4} n_1 \right) = \left\langle \frac{\sigma v}{r} \right\rangle n_1^{(0)} \left(\frac{n_1}{n_1^{(0)}} n_1^{(0)} - \frac{n_1 n_2}{n_1^{(0)}} n_1^{(0)} \right) = \frac{1 - e^-}{2 - e^+}$

Recall $n_1 = n_1^{(0)}$ since $\mu_2 = 0$. $\frac{1}{a^3} \frac{\lambda}{d} \left(a^n_{12} \right) = \left\langle \sigma \gamma \right\rangle n_1^{(0)} n_2 \left(\frac{n_3 n_1}{n_3^{(0)} n_4^{(0)}} - \frac{n_1 n_2}{n_1^{(0)} n_2^{(0)}} \right)$ $\frac{1}{2} = e^{-1}$ Using Sabar eq. to empty the Xe(Ts) and solving

numerically, we obtain
 $T_0 = 0.27$ eV = 300 K

More proced tractocol yields $T_0 = 0.25$ eV = 2
 \Rightarrow \ge_0 = 1090
 \le_0 = 370,000 years

Note that Xe(Tre) = 0.5 \Rightarrow Xe $2 = p$ $3 = H$ $4 = 1$ Recall $n_{\mathcal{F}}=n_{\mathcal{F}}^{(0)}$ since $\mu_{\mathcal{F}}=0$. Further simplification : MH) during recombination (can improve using Saha Recall $n_e = n_e$ (charge newtrality; reglect He approx. here) for n_H)

 $\Rightarrow \frac{1}{a^3} \frac{1}{16} \left(a^3 n_e \right) \approx \langle \sigma v \rangle \left(\ln_e^{(0)} \right)^2 - n_e^2$ Calculating Kov7 is not simple; reasonable approx. is $\langle \sigma v \rangle \approx \sigma_{\overline{T}} \sqrt{\frac{B_{\textrm{H}}}{T}}$ As well, def. new the variable: $x \equiv \frac{1}{T}$
Use well steps to rewrite $\frac{1}{\lambda t} \rightarrow \frac{1}{\lambda t}$ Kse what stap to come at a Also use $H(T) \propto T^{3/2}$ (matter-don.) $\Rightarrow \frac{\partial X_{e}}{\partial x} = \frac{\lambda}{x^{2}} \left(\left(X_{e}^{(1)} \right)^{2} - X_{e}^{2} \right)$ where $\lambda = \left[\frac{n_{1} \leq r \sqrt{7}}{xH} \right]_{x=1}$ Putting in purpose, $A = 3900 \cdot (\frac{\pi}{0.03})$ => This is a "Riceati equation" => Result for electron freeze-out abundance: $X_{e}^{00} \approx \frac{X_{e}}{\lambda} \approx 0.9 \times 10^{-3} \left(\frac{X_{f}}{X_{rec}}\right) \left(\frac{0.03}{\Omega_{th}}\right) \qquad (x_{rec} = \frac{1.07}{T_{rec}} \approx 3.3)$

Numerical rosalt: (next page)

Timeline: Temp. Redshift Time $[M-R$ Equality] 0.75 el 3400 60 byp
Recombination 0.2000 1300-100 2co-380 Recombination 0.3-0.15 ev 1300-1010 260-380 kyr
X-Matter Decoupling 0.25 ev 1090 330 kgr γ -Matter Decoupling 0.25 ω 330 kgr Lost Scattering 0.25 eV 1090 380 kyr

Important point : recombination/decoupling are determined by the Local plasma temperature T at each point in spacetime. The T at which these processes occur is set by the physics described above, which is miresal . So why do we observe fluctuations in the LMB temporature across the Sky ?. \Rightarrow different points reach this T at (slightly) different times - have different mounts of expansion between us and each $\rho^{\prime\prime\prime}$ Timeline: The Republication of the Content of the Complete of the Content of the Conten on last a) different points reach this T at (slightly) different times
5) house different avoints of experience between us and soad
Precise Treatment: Beyond Equilibrium scatterly surface The Sabe eq. assumes thered equilibrium holds throughout recombination/decoupling , but this is not throughout recombination) decomplay, but this is not rate drops below Hubble, we must use the full Boltzman eg , to describe the evolution :

In addition, recombination dynamics are subtle: direct recombination to H ground state (1s) is very recisionation to H grand state (1s) is very $\overline{}$ which then isnizes nearby H atom, here no net recombinatiba: Process Motern proceeds mainly via 2 channels: u Motead proceeds mainly via 2 c
Recombination from continuer -> 25 -> 1s ↓ "two-photos decay" 27 emission, the each & not energetic enough to - - $\frac{1}{2}$ is the motor of not energy after $\frac{1}{2}$ ↓ "resonance La ^g enitted , but if it estape $\frac{1}{\sqrt{2}}$ is not absorbed too prickly by another H, it can redshift out of Lyd the entirely => Overall impact : recombination is delayed relative t_0 Saha expectation (Zrec ≈ 1270 rather the 1380) Visibility function: "the photo de
-
"respect"
-
"respect"
supply
-
Decall of the dyth
Recall of the dyth
 $\tau(x) = \int_{0}^{x} dt \, dy$
Recall of the dyth Recall optical depth to $\mathcal{E}(t) =$ J at neltl σ_{τ} $\mathfrak{t}'_{(i)}$ = $\int_{0}^{z} dz \sigma_{\tau} \frac{1}{H(z)\cdot(1+z)}$

Prob. that a photon did not scatter off on ebetween tody and redshift z is $P(z) = e^{-\tau(z)}$ Prob. Hut photon last scattered in redshift interval (E, ztdz) is $g(z)dz = f(z) - f(z+dz)$ \uparrow \qquad \uparrow \uparrow "visibility function" 100- $=$ $g(z) = \frac{d}{dz} (e^{-\tau (z)})$ 0. 1- 01- j = $\frac{d\tau}{dx}$ (e ccd)
= $\frac{d\tau}{dx}$ e $\tau(z)$ c(a)
 $\frac{d\tau}{dx}$ e $\frac{d\tau}{dz}$ c $\frac{d\tau}{dx}$ e $\frac{d\tau}{dx}$ c \frac & - > shop peak at 0. \overline{u} $22 logo$ lin conformed peak is at $z \times 1090$ ernd
is at time e
at
 $\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{20}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{1}$ $100 - 100 - 104$ $\overline{\mathbf{t}}$ $(u:du \Delta z = 80)$ we see the intersection of this snapshot in time with our post light come , thus defining a ID "surface of last scattering" (nearly spherical , up to the aisotropies to be discussed revly
wed
below).