
-isotropyBasics : Random Fields on the Sphere
heric

Basis for randen fields on the sphere : Sp al
hamnits

= f(u)= Few Yen (n)=&Fentem (n)
l=0m=-l em

Recall You from Q
.M.: eigestates (in position space) of

E= -D2 and Ez= -idy
D
2
Ye = -l(e+1) Yen leXz0

Goten = imYem Im*&

Orthonomality : (din Ten(a) (n)= Seeldne
Phase convention: Ye* = (1)·Ye-n
=> If field is rel (fTER) => fe=(1)fe-m
Statistical isotropy : implication for 2-pt. correlator
of fer ?

=> Turns out that <ferfe) = Jees Jun' Ce
=> Ce= angular power spectrum" of flat-
Implication for 2-pt· correlator in position space?

[f(n)f(n)=&[<ferfen)Yen(n)Ye, (ii)
Im line e

=>Ledredur'



=SCEYen(n)Ye(n)
~ lose

Pe((0)= (f(n)f(n))] ↳ Legenda
polynomial

=Ce Pe(csd) addition theore

-
for sphere
harmonis

= 2-pt . correlator in real space
only depends on angle betwee in ada , as

required by statistical botropy.

=> total varice in field = Clo=) =Fe
Using orthogonality of Pelose), can show that

Ce= 2n/ Anso ((0) Pe(cose)
-I

N.B. if we consider &x1Ez
and - . e = Jede

=>s Jane
=> Def . Dee = contribution per decade in l

to total varimu of the field.



Power spectrum, intuition (slides)
Why the power spectin ? CMB is extremely well-

approximated as a cussion random field (CRE)

f(E) = randon field with zero mea <f()=0

Probability of some field configuration is a

functional of feel : P[f(e]-

GRFEPr[FEED is a Gussion functional of f(x)
Consider discretizing field f(E) in N pixels (voxels)
=> represent as N-dim . Vector I= [f(El,fie), ... , flr]T
=> PDF for I is a multi-variate Gaussion which is

fully specified by the I-pt. correlation functio :

<fifi) = 3(1:-Fi)) = Sij
↑
fi=fi) -f

C
-

=> Pr[F]C et(ij)
Since f(T) is linear in FLE) , Pr[f(E] is also a

multi-variate coussion : Pr[ful]<FRIP(m)/VP(r)

Since different Fourier modes are uncorrelated, they
are statistically independent for GRFs .



Relevance to cosmology/CMB :
- Inflation predicts initial perturbations are very

close toLaussian (as required by actual data)
- Linear evolution preserves Gassianity
- Non-linear evolution generates non-Gaussianity (NG)
-Searching for primordid NG is a very active researcharea

Goals for next -2 lectures : develop understanding
of the physics underlying theLB angular

power spectrum

The Inhomogeneous Universe
--

Conforma Newtonian garge metric : = Em,*) =Neut, potenti

ds2= at(m))-(+25)dry2 + (f - 2π)dE)
Consider photon propagation along geodesic as

above : diffe 1 via pr=
photon

Important difference w. r. t . homog . case : the Tenegy
E measured by an observer in their local inertial from

nor differs from po ! In general , pr components are

def , in wood frame while physically, we care

about pe measured in local inertial frame of

observer (us !) : PM = (E, pi) and ph = (po, pi).

These are related via :



dsk = ds2 (invariat interval)
=

Mus : prpr' = garphps Fake obs , to be
at rest and

Minkstei onlentation of
Good , systems

=> -Eltdispipi = 900p#9 : pips
to cligh

=> E= #gop := v +2) po = a(+)p
=>pe) = po = E(f -E)

and

p := (1+1)wit nector in propagation direction
Note : we could also intuitively "gress" the po result
by noting that I looks like a local perturbation
of the scale factor :(m,) = <(m) (1+E(z,*)

Now use these results in the geodesic eg. to

determine evolution of E :

Note (like before) that popopa
Leodesic eg .: + Emp = 0

=> +M
- Ep + 2p: + App = 0



Exercise : compute Air for thismetric , to obtain the
al

following : Here 1 =I

=> + (+p + (20 +-
Using p = E-E) and p :=E + I)"here and

keeping terms to first order (EX: do this) , we

obtain Ad = -H+-
~
-
redshifting due gravitational
to sperturbed) expansion redshifting

==G
(To obtain this

,
also used =Un+i)

=2+ (:)p)
The grav , redshifting term can be rewritten as

=
Generalization of Ea->= to perturbed minere

Integrate : (from me toMo

=> InkE) - In (E) = De-50 + 2/ ME) Recall =
Me



Note thatGo= local granitational potential, which can

only affect the monopole (1=0 model and is here

mobservable and can be set to zero WLOG.

Note : perturbation quantities here can be evaluated
at the unperturbed last-scattering, time (MD) , since
corrections would be second order.

=> In(E0) = In (axE) + E + 2/md(2m)
M

For photons, note that ECT and that the distribution

frantie (Bose-Eist) is only a function of E, thus:

aEx aT < a (F+ AT) caT(+)
=> In (aE) = In (aF(t+ P)) + cust .

= In (aT) + In (f+ 1) + mest.
#agler expand

= In (aF) + +cast.

=
Alternate derivation that clarifies connection to
local perturbation in scale factor :

aoEoStart fro
te

- Fo + Be+2 dDr= 2



Taylor expand RMS (first order in perturbations) :

=>E = 1-E+e
+2d (r)heFe

Note thatGo= local granitational potential, which can

only affect the monopole (1=0 model and is here

mobservable and can be set to zero WLOG.

=> Eo = dete (f+He + 2) du (G))
Note : perturbation quantities on

RHS can be evaluated
at the unperturbed last-scattering, time (MD) , since
corrections would be second order. Not true for an

=> E = reE(f+e +2d (IE))
For photons, note that ECT , so we have

= To Fact (f+ + 2 d (E)

=>Tota (a + Daly(++G +2 (E)
=Fr(+G + 2 d (E)
+T to first order

Recall that F2He so To=Fe



=>at
.
=rate(t +2) + Fa~

=To

-
+2 dr ()

P

What is Sae ? Must be determined by the local

temp , being ~0.3 et (T) .

=> (fr+ fr)(me+Ay) = f(m) = oT, E
=> ilma) + Su(me) + Je y

= Jr(m)

=> Girl= -Frhm e Dr =-
- Fir
-
-

=> Am =
di al = a==-

where E &S usual
,

This :
↓
Catdae

= net
cem

=+
+ Dae

=>
= 1+=

=>



==+ 2 d (E)+
E shows immediately that ** (by

comparison to our result above)
In fact, in full generality there are two
contributions to AT
:

perturbations1) Radiation desity perturbations :>
local sade

factor

dT

JCT" = NorC4F35T CYF che

=> STc r
=>EF 4Pr

But physically I think more useful to think in

teams of local perturbation to scale factor,

since the local photon tespective at decoply
dr ST

is O . 25 ef always : = F

=> points wh higher ir (positive or) reach 0.25ef

later , here CMB last - scatters later thus with

larger a) , thus redshifting less to today,

and thus yielding positive observed temp.
fluctuation (and nice rexa for negative d)

=> surface of last scatterly is "wrinkled"

(in tells of a) [in Newtonian garge! this is

a sarge-dep statement



2) Doppler contribution : perturbations inT sourced

by bulk velocities of - of last scattering

=> e moving toward us : positive
e-"away from us : negative F
Let n mit rector pointing from as to point
on last-scatterly surface

(note thatI is moving in n direction)
3

=>
= ve : (-) T

Note that Ye = Yo since plasma is tightlyupled
=> = - n - Tb

(This can also be derived from first principles via

Boltzman approach .)

the#
P

Interpretation :
4 : gravitational redshift of caB z

as they

climb out of potentials at last scattering
CE(0 E matter ovedensity E -OT/F

> > "underdesity +↓T/F)



2)*: intrinsic temp , parts . (e side factor pets

= the combinationSt is called the

Zachs-Wolfe term [his combination is garge-
independent]
-

3)2d (5) : "integrated Sachs-Wolf" term
=> if Cy 0,

e.g ., due to dark energy or

radiation domination , then this fair is non-
Zes

- rad . guesses this at z2100 => early Isi

-DE greates this at ZE1 => late ISW

Potentials decaying due to DE => ' > 0 = + &T/F&

in collapsed
regions

4) -M . b) Doppler term (I'<O in mids E - 5F/F)

a velocity toward us = + &+/F
12 may for us => - It/F

Notes :
- The S-W and Doppler terms are GD fields
evaluated at last scattering (at time M and

position /Mo-, where Mo-M=** =14 GpC

is the distance to last scattering (in flat minase)
- Which contributions domnate ?

Let's focus on lase scales (1100) :
· ISW generally small sincewivese has been

matter-dominated for most of CMB- relevant history



· Doppler small since is roubles on superhonitor
scales

=> S-W will dominate

What term wils in S-W ?

Superhorizon limit : -2 = de =he dr=

=> ( + ) = (5+ =

=> grar , redshift term =R red
dining

wins over tem ! )
=> ovedensity at last scattering (i*0 , J* 0,

# (0)
yields - Cold spot) in CMB

,

and rice versa for underdensity
=> these are the hot and cold spots you see
by eye in full-skey CMB maps (Plack, WRAP)
-> image of graw , field at last scattering !

InitialConditions

Inflationary theories predict statistics of the

coloring curvature perturbation R.

R is constant on superhorizon scales , thus

allowing us to correct inflationary physics (when

Forier modes go outside the horizon) to

late-time observables later modes re-enter) .


