Schematic to inderstand effect on CMB temp. power spectrum: consider function $f(x) \propto cos(x)$ and its square $f^2(x) \propto cos^2(x)$, as
well as shifted function $(f(x)-\Delta)$ and its square $(f(x)-\Delta)^2$ well as shifted function $(f(k)-\Delta)$ and its square $(f(k)-\Delta)^2$ $f - \Delta$ ↑ $\frac{\text{shift}}{8}$ chenatic to indextand et
consider finction $f(x) \propto \cos(x)$
well as shifted forching
f
for the scaler (at decay)
int consider evolution
bsence of baryons (2 and its square f '(x) x cas' (x), x

and its square f '(x) x cas' (x), x

(x) - Δ) and its square (f(x) - Δ)²

f - Δ and its square (f(x) - Δ)²

f - Δ

(x) - Δ

(x) - Δ

(x) = Δ and Δ and $b - \Delta$ S_{mod} scales (at decoy(ing): $k > k_{eg}$ First consider evolution of rad. pets, in the First consider evolution of rad. pots. in the
absence of bayons (in the rad. -don. era). $\rho_{oisson}: \quad \nabla^2 \Phi = \frac{3}{2} H^2 \Delta_r \qquad (\Delta_r \equiv \omega m \omega n g_{\omega} d\omega r F)$ \Rightarrow $\Delta_r(\eta, \vec{k}) = -\frac{2}{3}(k\eta)^2 \Phi(\eta, \vec{k})$ using $\mathcal{H} = \frac{1}{\eta}$ dry $U_0 = \sum_{r=1}^{n} (r_1, k) = -\frac{1}{3} (k_1) 0 (r_1, k)$ with $W =$
Use our sol. for D during rad. don. to obtain. s e ov Δ r(n, $|s-1|$ for Φ during rad don. to obtain:
 $\vec{k}) = -4R_c^k \frac{sin(kn\sqrt{s}) - (kn\sqrt{s})cos(kn\sqrt{s})}{(kn\sqrt{s})}$ (kn/\sqrt{s}) cos (kn/\sqrt{s}) valid $\sqrt{(k_1/\sqrt{3})}$ scales

 $Super-horiton$ limit: $km < 1$ s -horizon limit: k_{1} >>1 $-\frac{v}{2}R_{i}^{k}(k_{1})^{2}$ super-horizon \Rightarrow $\Delta_r(n,\vec{k}) \approx$ $\begin{cases} \frac{1}{\sqrt{2}} & \text{if } k \leq 1 \end{cases}$ sub-haiton $=$ A_r d η^2 da² on super-horizo scales (De oscillates with constant amplitude on sub-hoiten corresponds ↓ Or = -EMs on super-horizon scaly ↳Newtonian grange Now consider the matter-dom. era:
Pertoted cant. eq.: $S_r' = -\frac{p}{3}\vec{v}\cdot\vec{v}_r + 4\vec{B}$ Perturbed cont. $N_{\bullet\bullet\bullet}$ consider the matter -
Perturbed cont. eq. : $\delta_{\bullet} = -\frac{1}{3}$
Perturbed Enter eq. : $\overrightarrow{v}_{\bullet} = -\frac{1}{3}$ Perturbed Enler ez. : $\vec{v}_r = -\frac{1}{7}\vec{P}\hat{s}_r - \vec{P}\vec{P}$ $=$ S_1 " - $\frac{1}{3}$ S^2 S_r = $\frac{1}{3}$ S^2 \cancel{E} + $4\cancel{I}$ " $MD: grows$ mode sol. for $F =$ is $F =$ const. on all scales MD: growing made sol. for 9 is $9 =$ const. on all seal
=> $5'' - \frac{1}{3} 9^2 f_r = \frac{4}{3} 7^2 f =$ const. => $5'' + \frac{1}{3} k (5 + 49) = 0$ \Rightarrow S_{r} " - $\frac{1}{3}$ S^{2} S_{r} =
 \Rightarrow EOM of a S.H. P E OM of a $S.H.o.$ with a constant driving force Thus, sub-horizon perts. In rad. density ascillate with a => EOM of a S.H.O. with a constant driving force
Thus, sub-hoizon puts. In rad. density ascillate with a
invitant anplitude around an offset equilibrium point, constant amplitude around an affect equilibrium point,
given by -4 $\underline{\Phi}_o(\vec{k})$, where $\underline{\Phi}_o(\vec{k}) \equiv$ amplitude of potential in MD. given by $-\Psi \Phi_o(\vec{k})$, where $\Phi_o(\vec{k}) \equiv$ anglitude of potential in 10.
Note that $\Phi_o(\vec{k})$ is \vec{k} -dep, due to ILs and the non-trivial scale dependence of growth during RD era ("transfer function"). \Rightarrow sol.: $S_r(n, \vec{k}) = C(\vec{k}) cos(\frac{kn}{\sqrt{3}}) + D(\vec{k}) sin(\frac{kn}{\sqrt{3}}) - 4\vec{e}_o(\vec{k})$

On deep sub-horizon scales, Dr ⁼ dr $(A_r = \frac{1}{8} (S_f + v_r \overline{S_r}'))$ and modes all entered during rad. dow., and by
decoupling Φ had fully decayed away, so sol. is $S_r(r, \vec{k}) \simeq 4R_{\tilde{c}}(\vec{k}) \cos(\frac{k_1}{\sqrt{3}})$ Sol. on intermediate scales is obtained by addy the carst. potential affect above (or we also fund warlier). $S-W$: $S \equiv \frac{dr}{y} + \Phi$ $F=0$ on very small scales at decoupling $S \simeq \frac{5\pi}{9}$ ("radiation dividig" booting applitude $\frac{1}{6}$ perts . don't so $S \approx \frac{3}{7}$ (religion driving pooring r in have to fight gahst grow· potential \Rightarrow $S_r(r,\vec{k}) \approx R_c(\vec{k}) \cos(kr_s(r))$ a the bouce back a thos bounce back $\frac{50}{50}$
 $\frac{5 \text{ of the } i}{500}$ Synthesis : $S(\vec{k}, \gamma^*)$) = $\begin{cases} \frac{1}{5}R_i(\vec{k})((1+3R)\omega_s(kr_s^*)-3R) \\ R_i(\vec{k})\omega_s(kr_s^*) \end{cases}$, k ^{$\ll k$}eq , krke $\equiv T_s(k,t)R_c(\vec{k})$ $S(\vec{k}, \gamma^*) = \begin{cases} 5k_0(k)(1+3k)\omega_1(k\gamma_1)-3k) & k \le k_0, \\ R_c(\vec{k})\omega_2(k\gamma^*) & k > k_0, \end{cases}$
= $T_s(k_1\gamma^*) R_c(\vec{k})$
= $\begin{cases} \frac{1}{5}((1+3k)\omega_3(k\gamma^*)-3k) & k \le k_0, \\ \omega_3(k\gamma^*) & k > k_0, \end{cases}$ $\begin{cases}\n\frac{1}{5}((1+3R)\cos(kr_5^+) - \cos(kr_5))\n\end{cases}$ 1 kee kee $cos(kr_s^+)$, k $n = k_e$

Danping : Diffusion

Danping : Diffusion
Important feature not captured in our sinple analysis: "diffusion damping" ("Silk damping")
=> arises because & diffuse out of high-density regions into low-density regions, which was
which reduce
scales (4) reduces of density contrast) \Rightarrow suppresses δ on very small scales (high k) \Rightarrow treatment requires going beyond tight-coupling approx. Sarises because of diffuse and of high-density relations (which related by (dustry)
into low-density regions, which relates by (dustry)
and present requires going beyond tright-coupling approx.
Appox.: I mean free path R \Rightarrow number of scatterize = dm/lp = N \Rightarrow number at scorrengs = mean free path $l_p = \frac{1}{\alpha n_e r_p} = |r|^{r-1}$

sutterigs = dr / $l_p = N$

sutterigs = dr / $l_p = \sqrt{\frac{M}{l_p}} l_p \approx \sqrt{d_1 |\tau'|^{-1}}$

= Lo

scale : h^{-2} and $r = \sqrt{n_e}$, $1 \sqrt{1 - \frac{1}{n_e}}$ => damping scole : $k_0^{-2} \approx L_0^2 = \int_0^{n_x} dq \, |z'|^{-1}$ $Result: k_0^{+1} = 7$ Me = 0 = k_0^{+} R_0^* sente · $R_0^* \approx L_0 \approx \int_0^{\pi} dq |q'|$
 \therefore $R_0^{*-1} = 7$ Mpc \Rightarrow $R_0 \approx \frac{k_0^{*-1}x_*}{\sqrt{2}}$ *- * $= 7$ Mpc $\Rightarrow \ell_{p} \approx \frac{k_{0}^{2} + \gamma_{p}}{\sqrt{2}} \approx$ \approx 1400 VE => really a contation of thermal conduction and photon viscosity => really
Planging :
Decompl Danping: Landau Decoupling is not actually instantaneous For high-k modes, the dwartion of recombination is comparable to the fluctuation wavelength Goussion approx, to width of visibility function $s(q)$:
 $\sigma_3 \simeq 16$ Mpc Have to average S-W (and other) source terms over $th3$ finite with \Rightarrow leads to darping of high-le modes

 \Rightarrow $k_t^{-1} \approx \frac{c_5^+ \sigma_3}{\sqrt{c}} = \frac{\sigma_3}{\sqrt{6(1+\rho_*)}} \approx 5$ Mpc Combine Silk + Londan: \Rightarrow $k_{\text{slow}}^{* - 1} = \sqrt{k_{\text{0}}^{* - 2} + k_{\text{C}}^{* - 2}} = 9$ Mpc -1 \Rightarrow $k_{c}^{2} \approx$
 \Rightarrow k_{cm}^{*}
 \Rightarrow k_{cm}^{*} $v_{\text{day}} = \frac{k_{\text{day}}^2 \chi_{\mu}}{\sqrt{2}} = 1100$ Include in transfer function: \int_{S} (k,η) * $\Rightarrow k_{t}^{-1} \approx \frac{455}{12} = \frac{5}{\sqrt{6(118.5)}} \approx 5$ Mpc

Carline Silk + London:
 $\Rightarrow k_{t-1}^{*1} = \sqrt{k_{t-1}^{*1} + k_{t-2}^{*2}} \approx 9$ Mpc
 $\Rightarrow k_{t-1}^{*1} = \sqrt{k_{t-1}^{*1} + k_{t-2}^{*2}} \approx 9$ Mpc
 $\Rightarrow \int_{\frac{1}{2}\sqrt{k_{t-1}}} \frac{k_{t-1}^{*1}x_{t}}{\sqrt{k_{t-1}}} \approx 1100$ i VI = 100

in fransfer function:
 $= e^{\frac{hc^2}{kT}} \sum_{cs(kr_s^+)} \frac{1}{s} ((1+3R)cos(kr_s^+)-3R)$, k $x = k_{eg}$
 $\sum_{cs(kr_s^+)}$, k $x = k_{eg}$ \Rightarrow (appointed) $S-W$ transfer function $I_s(R_1r) = e$
 \Rightarrow (appointed)

Revonization :

Consider γ Consider 8 coming from some direction with temperature $T = \bar{T}(1+\frac{\Delta T}{T}).$ $T = T(1 + \frac{1}{T}).$
They scatter off free e^- during reionization: only e^+e^-
get through to us. set through to us.
A fraction (1-e^{-c)} get scattered into this line of sight from all other directions (photon runber sight from all other directions (photo runker have temperature F on average. \Rightarrow results \top we see = $\overline{T}(1+\frac{\Delta T}{T})e^{-T} + \overline{T}(1-e^{-T})$

= $\overline{T}(1 + \frac{\Delta T}{T}e^{-T}) = T_{obs}$ => Me observe anisotrogy $\frac{\Delta T}{T}e^{-T}$
=> C_z^{TT} is suggessed by $e^{-2\tau}$ for all modes with the horizon during reinvisorfien (e 250)