
Schematic to understand effect on CMB temp, power spectrum:
consider function f(x) <cos() and its square f2(x) <205(), as

well as shifted function (f()-1) and its square (f(-1)2
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wallscales (at decoplin) : 17 Reg
First consider evolution of rad . pets , in the
absence of bayons (in the rad . -dom. eral.
Poisson : D2 = H2Ar /Dr Ecomoning density,

contrast(

=> Jr(m ,E) = - E(km) ((m ,5) using T= do
Use our sol. for I drils red. don , to obtah:

* r(m ,)=yem/v5)
- (km/v5) cos(4m/v5) vali

all(hm/u5) scales



Super-horitar limit" R 1
sub-horizo limit : kn>#

- *R* (k) super-horizon
=> Dr(m,E)= EyRicos() cos-horizon

=>Ardida" on super-horizo scales

Or oscillates with constant amplitude on sub-horizon6 scales

corresponds ↓ Or = -EMs on super-horizon scaly
↳Newtonian grange

Now consider the matter-dom . era :

Perturbed cont
. eq: J =-Fr + 45

Perturbed Enter es: Tr = -*For-E
=>Jr"-Dhir= 125 + 45"
MD : growing mode sol. for # is =const. on all scales

=>Jr"-D2=M= const = Or"++4)=0
=> EOM ofa S.H. O . with a constant driving force
Thus, sub-horizon parts , in rad, density oscillate with a
constant amplitude around an offset equilibrium point,
given by -40(k), where Folt)= amplitude of potential in MD.
Note that Go(E) is E-dep, due to ICs and the non-trivial

scale dependence of growth during RD era Stransfer function").
E sol.: Gr(M ,2)= ((E) cos(t)+ D(E) sin(t) -4 (h)



On deep sub-horizon scales, Dr = dr

Er= Isr+f)
and modes all entered during rad. dow , and by

decoupling I had fully decayed away, so sol is

J(m ,2) = 4R:(E)cos(
Sol· on intermediate scales is obtained by adding the

cast. potential ofset above (as we also found
earlier) .

S-W : S= E

#FO on very small scales at decoupling

See C"radiation diving" boosting aplitude
- perts . don't

so have to fight
gahst grow· potential

=> Jr(m,E) = R: (E) cos(kr> (n) ⑨ they bouce back
in their oscillations)

Synthesis :
-

Si*) = GER:
(h) ((A+>Micos(kr]) ->i) , kkea

R: (E) cos(kr*) ,
k Keg

= Ts (k,m*)R: (t)

Chm* = & ((f+3R)cos(kms
#)-(R) , make

cos(kvs*) , kkeg&

*



Daring : Diffusion
-

Important feature not captured in our simple analysis :

"diffusion damping" ("Silk damping")
=> crises because I diffuse out of high-density regions
into low-density regions , which reduces of density contrast)-

=> suppresses of on very small scales (high k)
= treatment requires going beyond tight-coupling appiot,

Approx: I mean the path ep= It' -I

-> number of scatterings = dm/lp =N

=> radom walk dist=Nep=VEla

=> damping scole :GMdy It't
R*
-

X*Result :R
*-*
= 7 Mipc => 1- - - 1400-

-

VE

= really a combination of thermal conduction and

photon viscosity

Daiping : Landau
-

Decoupling is not actually instantaneous

For high-be modes
, the duration of recombination is

compaale to the fluctuation wavelength
Gaussian approx , to

width of visibility function &(2) :

5 16 Mpc
Have to average S-W (and other) source terms over
this finite with => leads toclamping of high-l modes



=> # rT S Me

Combine Silk & Landau :

=> k + = 9 M
-1

=>l *
= 100day V

Include in transfer function :

Ts (h,m*)= R)c(k)-3R), a b-
=> (approximate) 5W transfer function1

&cionization :

Consider U coming from some direction with temperature
T = F(++ ) .

They scatter off free - during reionization : only
=

get through to us.

A fraction (f-e-c) get scattered into this line of

sight from all other directions /photonrube

is conserved by Thorson scattering) . These I will

have temperature F on average

=> resulting + we see =Fe-* + F(A-e-T)



= F(f + Ze-E) = Tobs

=> We observe misotropy ITe-E-
F

=> CeTT is suppressed by ezc for all modes within
the horizon during reionization (850)


