Cosmic Weak Lensing

Photons emitted by distant
galaxies is deflected by tidal
field along line of sight.

DEFLECTION OF LIGHT RAYS CROSSING THE UNIVERSE, EMITTED BY DISTANT GALAXIES

The shape distorition of galaxies
is called (gravitational) shear:
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Statistical properties of the shear
reflect statistical properties of
the density field.
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Born approx: evaluate along unperturbed path




Image Distortions

Image distortions occur when the deflection angle
varies with position/across the image.
Consider Jacobian of transformation from source to

image plane
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Image Distortions

Light deflection does not involve any emission or
absorption processes, hence

1(0) = I"|3(0)]

For a small source, centered on B; =0,-a,
1(6) = I°[Bo + A(6o) - (6 — 69)]

Hence the image of a small circular source with radius
ris an ellipse with semi-axes r A, ,, with A , the
eigenvalues of A, and orientation determined by
the shear components y,,




Shear is a Spin 2 Field



The Relation Between Shear and

Convergence
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Write y; and y, in terms of the lensing potential.
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The Relation Between Shear and
Convergence
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— 497+ dyg = (kY + 2k7kS + k)

Solving for y:
1 2 2
Y= _§(k1 +k3)Y =k

The power spectrum of k¥ and y will be identical!



Calculating Convergence

For single source plane at z,
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Average over tomographic source redshift distribution
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Calculate power spectrum with Limber approximation
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Tomographic Lensing
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Tomographic Lensing Power Spectra
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Integrate over lots of redshift slices of P(k) to get the projected 2D lensing power spectrum.



Magnification
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« Sources are magnified by gravitational lensing.



Magnification
« Sources are magnified by gravitational lensing.

Note lensing also works in reverse: we will be
magnified from the point of view of a source.

« Our telescope is effectively larger by a factor pu.

* The source will appear brighter by a factor of p.
However, surface brightness is preserved.




Lensing Distortions Summary

Lensing distorts a source in three ways:

* It uniformly expands the image of source
(convergence).

* It shears the image, expanding one axis while
contracting the other.

* It magnifies the image, making it appear larger and
brighter.

* It pushes everything outwards.

Note: lensing always preserved surface brightness.






Measuring Lensing

We could try to measure lensing using the various
observational signatures.
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What do we know about the unlensed galaxy properties?



Measuring Lensing

We could try to measure lensing using the various
observational signatures:

« Magnification makes sources larger and brighter.
« Magnification changes the density of sources.
« Shear changes the ellipticity of sources.

Of these, the only one we “know” a priori is ellipticity:
on average, galaxies have random ellipticities*!

Coherent distortions must be due to lensing*.
*Exception: intrinsic alignments



Tangential and Cross Shear

x-axis is defined by line connecting the two galaxies.

~vr = Shear along x — axis

v« = Shear perpendicular to x — axis

Shear correlation function:

£4(0) = (yryr) £ (Yx7y)

(y7%) =0 Parity

The shear correlation function is a well-defined observable!



Shear Correlation Functions
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Shear 2pt Statistics
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® Shear correlation functions: ¢:(0) = fo = 30/4(60) [Cre(£)  Crp(0)]
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Choosing a 2pt Statistic
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From Summary Statistics to Parameters
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What is Probability?

Classical: Probability as frequency.

Probability of an event := the number of times the event
occurs over the total number of trials, in the limit of an
infinite series of equiprobable repetitions.

model is fixed, data are repeatable

Bayesian: Probability as degree of belief.

Probability is a measure of the degree of belief about a
proposition.

data are fixed, model is repeatable

Trotta: Bayes in the sky, 0803.4089



Bayesian and Frequentist statistics

Frequentist: model is fixed, data are repeatable
Bayesian: data are fixed, model is repeatable

Say HO = (72 + 2) km/s/Mpc. Then:

Frequentist: Performing the same procedure with independent data will cover
the real value of HO within the limits 68% of the time.
(Limited practicability in cosmology...)

Bayesian: the posterior distribution for HO has 68% if its integral between
70 and 74 km/s/Mpc. The posterior can be used as a prior for future analyses of
independent data.



Bayesian Parameter Inference

Bayes Law:

Posteror\
P(pldM) = P(d|pM)P(p|M)

Prior
Likelihood '/'\

U

Observed data Parameters

What you know after the experiment (posterior)
= what you knew before (prior)+ what you learn (likelihood)



Priors

* Priors quantify what you knew about the parameters
before the experiment

Theoretical limits, preferences, things that must be
true (e.g., from previous experiments)

* In regions where the likelihood is zero your prior doesn’t
matter for parameter estimation, but can for more
advanced model selection

® |t is common practice in cosmology to use uniform priors
for most parameters

easy to write down, hard to justify

—Sensitivity analysis: change priors, check how your
conclusions change!



Transformed Priors

In particular note that a uniform prior in one parametrisation
may not be uniform in another - probability mass is conserved,
not density:

/ P(z)dz = / P(u)du

So when we transform to new variables:

du
P(u) = P(a) | |
or in higher dimensions:
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Transtformed
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Likelihoods

Most existing cosmological analyses assume Gaussian
likelihood
1

ln £(D|p) o —5 [(D — M(p))” C~* (D — M(p))]

Assumes data points are Gaussian-distributed around the truth —
reasonableness depends on type of measurement and sources of
noise.

Alternatives:

* non-Gaussian likelihood (explored in e.g. Lin et al. 2019, Hall &
Taylor 2022) — low on the priority list for 2pt statistics.

e Likelihood-free Inference (LFI), Simulation-base Inference (SBI)



Sampling the Likelihood

For most data sets, likelihoods cannot be written in a simple closec
form equation.

We cannot just evaluate/plot posteriors directly, but instead musts
indirect methods.

Most obvious solution is to evaluate at every point in the space, or
a grid. Impossible for high-dimensional parameter spaces!

— sampling methods like Monte-Carlo Markov Chains.
each element of Markov Chain depends only on the previous one
basic algorithm: Metropolis—Hastings
improved in widely used packages Emcee, Zeus

limitations: lack of definitive the chain has converged



The Metropolis-Hastings algorithm

» at step t, at some parameters p+
» propose move to pi'=pt+4pt (randomly draw Ap:)

» evaluate r = L(pt’)/L(pt)
» MH step:
» 1f r > 1 accept move
» if r < 1 generate a random number « € [0, 1]
» 1f a < r, accept move Ny 1D illustration of MH step

» 1f @ > r, reject move
» t=t+1

ris chosen to fulfill detailed
balance — algorithm
asymptotically recovers the
true posterior




The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm

Underlying

» Efficiency of MH depends Distribution

dramatically on how good the

proposal is
e A bad proposal will not converge

in any practical length of time
e The ideal proposal matches the

shape of the underlying Bad

distribution proposat

Good
proposal

 We don’t know this, but can
look for best approximation



The Metropolis-Hastings algorithm

e One way to get a good proposal is by tuning

e Run a short initial chain to estimate
covariance

e Use this covariance to initialise the next
iteration

* You have to throw away the first chain, and only
use samples from when your tuning was finished

e Detailed balance broken
* There are specific algorithms that do let

you do a variant of this, but not standard
MH



Intricacies of High-Dimensional Sampling

Nested sampling: starts with a large number of points, and
repeatedly eliminates and find new replacement points

® c.g. Multinest, PolyChord

e calculate Bayesian evidence simultaneously

Choosing the right sampler to accurate sample your
parameter space is an art - and hard validation work.



Intricacies of High-Dimensional Sampling
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Interpreting chains

* Check to see if we actually found a good fit

e Quote the cosmological constraints, check to see if
we've broken ACDM yet

e Compare with other similar measurements

e Compare with other independent measurements



Interpreting chains

Can only plot 1D/2D results - report marginalized

constraints.

DES Y3 3x2pt (DES et al.

DES Y3 cosmic shear (Amon et al. 2021; Secco, Samuroff et al.
KiDS-1000 3x2pt (Heymans et al.

KiDS-1000 cosmic shear (Asgari et al.

HSC Y1 cosmic shear (Hamana et al.

HSC Y1 cosmic shear, harmonic space (Hikage et al.
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Marginalized Parameters
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Beware of Projection/Prior Volume Eftects!

Parameters of interest may be correlated with poorly constrained
“nuisance parameters”.

Marginalization may introduce projection effects, skew marginalized
posteriors away from best fit.
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Beware

of Projection/Prior Volume
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Profile Likelihoods

Frequentists’ way to treat nuisance parameters v L(0) = max L(8,v)
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L(og) resp. P(o3)

Profile Likelihoods
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Comparison of MCMC, profile
likelihoods for EFTofLSS BOSS
analyses

Improved constraining power
will reduce difference between
frequentist and Bayesian
statistics.



Model Comparison/Selection

e Given two models, how can we decide which fits the data
better, overall?

e Simplest approach: compare best fit points
e Does not include uncertainty or Occam’s Razor

e Recall that all our probabilities have been conditional on
the model, as in Bayes:

P(d[M)




Model Comparison/Selection

e Evidence is the bit we ignored before when doing
parameter estimation

e Given by an integral over prior space
P = [ P(APM)PIM)p

e Hard to evaluate - posterior usually small compared to
prior



Model Comparison/Selection

e Can use Bayes Theorem again, on model level:

P(d|M)P(M)
P(d)

P(M|d) =

e Only really meaningful when comparing models:
Bayesian
Evidence Ratio
P(M P(d|\My) P(M
R= ( 1|d) _ (d| 1) ( 1) ‘\

Bayesian Evidence Values




Bayesian Model Selection

Nominally, My is favored with R:1 odds over H, .
Jeffreys scale R > 3.2 substantial evidence, R > 10 strong evidence
But: need to recalibrate for prior volume (— numerous analyses of
simulated noisy realizations)

For combining data sets:
M, = ‘data sets described by same model parameters’
M, = ‘data sets described by different model parameters

R — P(Dla D2 ‘M) combine if R>[threshold for inconsistency]*
P(Dl) ’M)P(DZ ‘M) *agree on this before the analysis to avoid

confirmation biases




Comparing Experiments

We like to quantify to what extend our results are consistent with other
experiments.

Complicated since we are comparing two chains in very high dimension, and the
effect of priors are non-trivial.

In the past few years, many have devised certain statistics (“tension metrics”) to
quantify how likely the two experiments are realizations drawn from the same
underlying universe.
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