
Information theory

How can we quantify information? Let us take a specific example: This chapter heavily draws from
Cover Chapter 2, and Chapter 4 of

William Bialek. Biophysics: searching
for principles. Princeton University Press,
2012

Alice (A) is in a state of ignorance about a certain variable X which is
known to Bob (B). She anticipates that the answer X 2 X can be one of
n = |X | possible ones. One way to quantify the information content of
X is to count the number of binary questions (yes/no) that A needs to
pose to B in order to know the answer X. Indeed, A’s uncertainty will
be dispelled after she hears the answers because she will know what
X is. Therefore, the number NQ of binary questions needed to dispel
A’s ignorance is an operative definition of the information content of X,
and it is measured in bits213. 213 A bit is a variable that takes two values,

0 (for no) or 1 (for yes).
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Take for example the case X = {a, b, c, d}. Then A may ask a first
question

Q1: is X 2 {a, b} or not?

and depending on the answer, A may ask

Q2: if X 2 {a, b} is X = a or not? Else, if X 62 {a, b} is X = c or not?

The answers to these two questions reveal the correct outcome X. Hence
the information is NQ = 2 bits. Yet there are many other ways in which
A could ask questions, and hence NQ could vary accordingly.

For example A can modify her questions as follows:

Q01: is X = a or not?

only if X 6= a A will need to pose a further question. Then she may ask:

Q02: is X = b or not?

Only if the result is no, she will need to ask

Q03: is X = c or not?

in which case the number of binary questions can be NQ(a) = 1,
NQ(b) = 2 or NQ(c) = NQ(d) = 3, depending on the value of X.
Indeed, NQ(X) is a random variable, because it is a function of X.

Formally, the state of uncertainty of A is encoded in the probability
distribution P{X = x} = px, of X. We’re seeking for a measure
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of information content of X that can quantify the uncertainty of A
before the questions are posed and the answers are heard. Therefore, it
makes sense to define a measure of information content as the expected
number E

⇥
NQ
⇤

of binary questions that are needed to elicit the value
of X.

The expected value

E
⇥
NQ
⇤

= Â
x2c

px NQ(x)

depends on the distribution px, that we assume is known to A, and on
the way in which the answers are posed. For example, if A didn’t know
px, there is nothing that would distinguish the different outcomes,
e.g. X = a from X = b, so there is nothing that suggests that pa

should be smaller or larger than pb. Hence, she would have to assume
that px = 1/4 for all x. This distribution indeed encodes a state of
maximal ignorance, as we shall see. Then asking questions (Q1, Q2)

yields E
⇥
NQ
⇤

= 2 whereas formulating questions (Q01, Q02, Q03) leads
to a larger value of E

⇥
NQ0

⇤
= 9/4. If instead pa = 1/2, pb = 1/4 and

pc = pd = 1/8, then again E
⇥
NQ
⇤

= 2, but

E
⇥
NQ0

⇤
= pa · 1 + pb · 2 + pc · 3 + pd · 3 =

7
4

. (270)

The optimal way of answering questions is different in the two cases.
The minimal expected number of binary questions that A needs to pose
to elicit X is a measure of her irreducible ignorance about X. Hence,
we provisionally define

The information content H[X] of a random variable X is the minimal
expected number of binary questions needed to elicit the value of X,

H[X] = min
Q

E
⇥
NQ
⇤

(271)

where the expected value is taken with respect to the distribution P{X =
x} = px that defines the state of knowledge on X, and the minimum is
taken over all possible ways of posing yes/no questions.

Note that the information content

H : X ! R

is a functional that associates a real number H[X] to a function

X : W! R.

This is why we use square brackets in H[·].
The way in which Alice poses question associates to each values of

X a strings of binary variables that we can take to be 1 for yes and 0
for no. Such a transformation between values of X and strings of bits
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is called a code. Imagine that Alice asks Bob the same question many
times (e.g. what’s the weather today?) and that they communicate
through a binary channel, i.e. a device that allow Bob and Alice to send
either a 0 or a 1 to the other end at any time. Alice and Bob might be
interested in finding the code which makes them exchange the shortest
possible strings of bits. This problem is the same as the problem of
finding the best way to ask questions.

Indeed, each protocol Q for asking questions corresponds to a
scheme to encode the possible answers X. For example, the proto-
col Q above would correspond to the code

a! 00; b! 01; c! 10; d! 11 .

The bit strings associated to a given value of X is called its codeword214. 214 In coding theory jargon, X are called
words.This code will require 2 bits for each answer transmitted from B to

A. Protocol Q0 corresponds to a different association of values of X to
codewords, i.e.

a! 0; b! 10; c! 110; d! 111

Notice that each codeword has length `Q(X) = NQ(X) which is equal
to the number of binary questions needed to elicit X under protocol Q.

Therefore the problem of finding the code that is expected to use the
least number of bits (i.e. that minimises E

⇥
`Q
⇤
) is exactly the same

as the problem of finding the best way to pose questions. The fact
that these two apparently different problems – A posing questions to B
optimally and B transmitting answers to A efficiently – are the same, is
interesting.

Note also that the optimal way Q⇤ of posing questions, and hence
H[X], depends only on the probabilities px, and not on what X is215. In 215 X could be football teams in the Pre-

mier League or species of bird on some
island. As long as the probabilities px are
the same, the information content is the
same.

particular, if an answer x is more likely than x0, then it is natural that216

216 Think of the first binary question you
would ask to know which team won the
last Premier League championship.

`Q⇤(x)  `Q⇤(x0). For example, the knowledge of px in the example
above, carries some information on the answer, which can be quantified
in the difference between E

⇥
NQ
⇤

in the two cases, and is 1/4 of a bit
in that case.

The minimal number of binary questions needed to elicit X, or equiv-
alently the expected length of the optimal code for X, is given by the
Shannon entropy

H[X] = E [log2 1/pX ] = � Â
x2X

px log2 px (272)

of the random variable X, that we shall simply call entropy, henceforth.
The entropy depends on the distribution px, and we will equivalently
denote it as H[p], when referring to it as a functional of the probability
distribution px.
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It is easy to check that this is the correct answer in the examples
above, where codewords have length exactly equal to log2 1/px, but
one can argue that Eq. (272) works for all discrete random variables
X, provided that we consider messages Xn = (X1, . . . , Xn) where each
of the n characters Xi 2 c, are drawn i.i.d. from the distribution px.
Then, in the limit n! •, almost surely, we need at most H[X] bits per
character. This result, that goes under the name of Shannon theorem, is a
direct consequence of the Asymptotic Equipartition Property. The idea
of the proof is simple. Remember that the Asymptotic Equipartition
Property ensures us that, for any e > 0, a message Xn belongs to the
e-typical set Exercise: The Rényi entropy is defined

as
Ha[X] =

1
1� a

log Â
x2c

pa
x

with a > 0. Show that Ha[X] is a general-
isation of the Shannon entropy, which is
recovered in the limit a ! 1. Show that
if X and Y are independent

Ha[X, Y] = Ha[X] + Ha[Y].

Show that, if the conditional Rényi en-
tropy is defined as

Ha[X|Y] =
1

1� a
E

"
log Â

x2c
pa(x|Y)

#

then the chain rule

Ha[X, Y] = Ha[Y] + Ha[X|Y]

holds only for a! 1.

A(e)
n =

⇢
Xn :

����
1
n

log P(Xn) + H[X]

���� < e

�

almost surely, as n ! •. Imagine that Alice and Bob assign to all
messages Xn 2 A(e)

n a different integer Q(Xn) from one to |A(e)
n |, and

to messages Xn 62 A(e)
n integers Q(Xn) larger than |A(e)

n |. Then each
message will require a codeword of length `Q(X) = log2 Q(Xn), which
is given by the binary representation of Q(Xn). Then, almost surely,
Alice and Bob will need less than

1
n

max
Xn2A(e)

n

log2 Q(Xn) =
1
n

log2 |A(e)
n |

bits per character, as n! •. In this limit, the Asymptotic Equipartition
Property also implies that, almost surely,

lim
n!•

1
n

log2 |A(e)
n | = H[X].

because |A(e)
n | v enH[X]. Therefore, at most H[X] bits per character X

need to be used to transmit the message, almost surely. Exercise: Tsallis entropy is defined as

Hq[X] =
1

1� q

⇣
1�E

h
pq�1

X

i⌘
.

Show that i) Hq[X] reduces to the Shan-
non entropy for q! 1, and that ii) Hq is
not additive for q 6= 1, i.e. if X and Y are
independent random variables, then

Hq[X, Y] = Hq[X]+ Hq[Y]+ (1� q)Hq[X]Hq[Y] .

There are other ways to derive this result. For example, the same
result can be obtained observing that the optimal number of bits needed
to code X, should be a function f (pX) of pX . Then the expected number
of bits needed has to be of the form

H[X] = E [ f (pX)] = Â
x2c

px f (px) .

If X = (Y, Z) where Y 2 cY and Z 2 cZ are independent random
variables, then H[X] = H[Y] + H[Z], because knowing Y does not give
any clue on what Z could be. Hence

Â
Y2cY ,Z2cZ

py pz f (py pz) = Â
Y2cY ,Z2cZ

py pz
⇥

f (py) + f (pz)
⇤

for any py and pz. Therefore f (py pz) = f (py) + f (pz), which means
that f (p) = a log p. If in addition we want to measure information in
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bits, then f (1/2) = 1, i.e. f (p) = � log2 p. The entropy quantifies how
much B’s reply can be surprising for A. Indeed if both A and B knows
that px = 1 if x = a and px = 0 for all x 6= a, then B’s reply cannot be
surprising. Actually A doesn’t even need to ask because both of them
know that X = a. So no bit needs to be exchanged and, accordingly
H[X] = 0. As we said, H[X] quantifies the uncertainty of Alice about
Bob’s answer before she hears the answer. After she hears the answer,
she knows that one answer occurs with probability one and the others
with probability zero, i.e. H = 0. Then H measures how much Alice
has decreased her degree of uncertainty.

Conversely, the entropy is maximal when X is maximally uncertain:
px = 1/|X |. Accordingly

0  H[X]  log |c|.

The entropy can be generalised to any number of random variables
X1, . . . , Xn in a straightforward fashion, i.e.

H[X1, . . . , Xn] = �E [log2 P{X1, . . . , Xn}] .

Likewise, we can define the conditional entropy

H[X|Y] = �E [log2 P{X|Y}] = � Â
y2Y

p(y) Â
x2X

p(x|y) log2 p(x|y)

as the entropy of the conditional distribution p(x|y), averaged over y.
The law of conditional probability imply that217 217 Exercise: check this.

H(X|Y) = H(X, Y)� H(Y) . (273)

In words, the conditional entropy is the reduction of the uncertainty
about X and Y when Y is known, and it quantifies the the residual
uncertainty on X (when Y is known). In particular, for a sequence of
random variables X1, . . . , Xn, we have that

H[X1, . . . , Xn] =
n

Â
m=2

H[Xm|Xm�1, . . . , X1] + H[X1].

If the sequence is a Markov chain, then H[Xm|Xm�1, . . . , X1] = H[Xm|Xm�1],
because Xm given Xm�1 is independent of Xk, for all k < m� 1. If the
transition probability pi,j = P{Xn = j|Xn�1 = i} does not depend on n,
and if the Markov chain is irreducible, then

H[X2|X1] = �E
⇥
log pX1,X2

⇤

is called the entropy rate, because H[X1, . . . , Xn]/n ! H[X2|X1] as
n! •218. 218 The expected value on X1 is taken on

the invariant measure.
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Entropy for continuous variables

The generalisation of the concept of entropy to continuous variables is See Chapter 8 of Cover.

problematic. Indeed, imagine that Alice asks to Bob about the price X
of his car (and X is a real number). Even if she knows the a priori pdf
p(x) of X, she needs to ask an infinite number of binary questions in
order to know X exactly. This does not match with the straightforward
generalisation of Eq. (272)

h[X] = E[log2 1/p(X)] = �
Z

dxp(x) log2 p(x) (274)

which is finite, barring pathological cases219. On the other hand, 219 Exercise: Compute h[X] in Eq. (274)
for p(x) = 1/[x(log x)2] for x � e and
p(x) = 0 for x < e.

Eq. (274) seems problematic, since you may get negative numbers220!
220 Exercise: Check that h[X] = �3 for a
uniform random variable X 2 [0, 1/8].

So what is the meaning of h[X]?
Coming back to Alice and Bob, even if the car retailer were really

charging any price X 2 R, Alice may be happy to know X to a pre-
assigned precision D. So imagine that Alice “quantizes” the random
variable X into the random variable XD that takes values xi which are
defined as221 221 Because of the mean value theorem for

integrals, xi 2 [iD, (i + 1)D] is inside the
interval of integration.p(xi)D =

Z (i+1)D

iD
dxp(x) , (275)

for all integer i = 0, ±1, ±2, . . .. With this definition, the distribution
of XD is defined as P{XD = xi} = p(xi)D, which is the probability
that X 2 [iD, (i + 1)D). She can now give a precise estimate of the
information content of Bob’s answer, which is the entropy H[XD] of XD.
For D⌧ 1, this can be expressed as

H[XD] = �Â
i

p(xi)D log2 [p(xi)D] (276)

= �Â
i

Z (i+1)D

iD
dxp(x) log2 p(xi)� log2 D ' h[X]� log2 D

where the approximation gets more an more precise as D ! 0. Here
h[X] is defined in Eq. (274), and it is called differential entropy. Its
meaning is that h[X]� log2 D is the expected number of bits needed
to specify X to a precision D. The fact that h[X] may not be positive
is not a problem. For example, a uniform random variable X 2 [0, a]
has h[X] = log2 a which is negative if a < 1. If a = 1/8 and you want
to determine X up to the nth binary digit (i.e. D = 2�n), you will need
n� 3 bits, because the first three bits will be zero anyhow.

One property of the entropy that we used, is that H[X] does not
actually depends on what values X takes. It only depends on the value
of the probabilities px = P{X = x}. In particular, if we do a bijective
transformation X ! Y = f (X) – i.e. such that to every possible value of
X there corresponds one and only one value of Y – then H[X] = H[Y].

This is not true for the differential entropy, because even when f (x)

is monotonous – and hence to every X there correspond one and only
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one Y = f (X) – the pdf transforms as pY(y) = pX(x)/| f 0(x)|x= f�1(y).
Therefore

h[Y] = h[X] + E
⇥
log2 | f 0(X)|

⇤
. (277)

Hence, the differential entropy is not reparametrization invariant222. A 222 Exercise: compute the differential en-
tropy for a Gaussian with mean µ and
variance s2, for an exponential distribu-
tion p(x) = ae�ax , a, x > 0, and for a
multi-dimensional Gaussian with mean
~µ and covariance Cov[Xi , Xj] = Ai,j.

simple application of this is that, if a is a constant, then h[X + a] = h[X]

and h[aX] = h[X] + log2 |a|.

Relative entropy

Imagine now that A has a wrong estimate qx of the probability px of B’s
answers x. How much this impacts on the efficiency of the questions
she’s going to ask?

Given q, A is going to effectively encode B’s answers in such a way
that answer x will require log2 1/qx bits, so the number of questions
she will ask, on average, is

E


log2

1
q

�
= Â

x2X

px log2
1
q x

the difference between this and the most efficient representation, which
requires H[p] bits, is

DKL(p||q) = Â
x2X

px log2
px
qx

which is known as the Kullback-Leibler divergence or relative entropy. It
tells us how costly is the error in the estimate of probabilities, in bits.
In this sense, DKL is a measure of how “far” Alice is from the true
distribution. This is why DKL is often considered as a distance, though
it is not symmetric223 and it does not satisfy the triangle inequality224. 223 Exercise: A coin can either be fair with

P{head} = P{tail} = 1/2, or biased,
with P{head} = p and P{tail} = 1� p.
Show that it is worse to assume that the
coin is biased when it is not, than to as-
sume that it is fair when it is biased.
224 See Theorem 11.6.1 in Cover for an
example where DKL(p||q) satisfies the op-
posite of the triangle inequality.

Though it is not evident DKL(p||q) � 0 and it vanishes only for
q = p. The way to prove it, is to use the convexity of the logarithm
log2 x  (x� 1)/ log 2 in the definition of DKL, i.e.

DKL(p||q) = � Â
x2X

px log2
qx
px

(278)

� �
1

log 2 Â
x2X

px


qx
px
� 1
�

= 0 (279)

because of normalisation of px and qx.
The Kullback-Leibler divergence (or relative entropy) generalises to

continuous variables as

DKL(p||q) =
Z

dxp(x) log
p(x)
q(x)

(280)

Contrary to the differential entropy, the relative entropy is reparametriza-
tion invariant. If p and q represent two possible distributions for the



178 lecture notes in probability and information theory

random variable X, their divergence remains the same if one changes
parametrization225 Y = f (X). As for discrete variables, it is easy to see 225 Exercise: Why?

that DKL(p||q) � 0 with equality holding only if p = q (apart from sets
of measure zero).

Mutual information

Imagine you have two random variables X 2 X and Y 2 Y with
joint distribution p(x, y) and marginals p(x) and p(y)226. One way to 226 The abuse of the symbol p(·) follows

the notation of Cover. It should be un-
derstood that p(x) and p(y) are different
functions of their arguments.

quantify their mutual dependence is to compute how much information
is lost by assuming that they are independent. This is given by

I(X, Y) = DKL [p(x, y)||p(x)p(y)] (281)

= Â
x2X ,y2Y

p(x, y) log2
p(x, y)

p(x)p(y)
(282)

= H(X) + H(Y)� H(X, Y) (283)

and it is called the mutual information between X and Y. The last
equality, which follows from simple algebra, with the positivity of
DKL implies that H(X, Y)  H(X) + H(Y). In other words, the state of
maximal ignorance about two random variables X and Y corresponds to the
case where they are independent.

In the same way, one can define the mutual information I[X, Y]

between continuous variables as

I[X, Y] = DKL[p(x, y)||p(x)p(y)] = h[X] + h[Y]� h[X, Y] (284)

where
p(x) =

Z
dyp(x, y), p(y) =

Z
dxp(x, y),

are the marginal distributions. This implies that I[X, Y] � 0 with equal-
ity if and only if X and Y are independent. So the mutual information
provides a universal measure of statistical dependence. It is universal
also because, the mutual information is invariant under any transfor-
mation (X, Y)! (U, V) of the random variables, where U = f (X) and
V = g(Y) with f (x) and g(y) monotonous functions. These transfor-
mations changes the "shape" of the distributions of the two variables,
but leaves their statistical dependence invariant. This invariance be-
comes manifest if we apply the transformation f (x) = P{X  x} and
g(y) = P{Y  y} which transforms X and Y into two uniform random
variables U and V. The mutual information can then be expressed as

I(X, Y) =
Z 1

0
du
Z 1

0
dvc(u, v) log2 c(u, v), (285)

where227 227 Exercise: Prove Eqs. (285) and (286).
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c(u, v) =
∂2

∂u∂v
C(u, v).

and the function C(u, v) is the joint cumulative distribution of U and
V, defined as

P{X  x, Y  y} = C (P{X  x}, P{Y  y}) . (286)

The function C(u, v) is called the copula function of the two random
variables X and Y228.

228 Eqs. (285) and (286). suggest an easy
way to check whether two variables are
dependent or not, based on a sample
(X1, Y1), . . . , (Xn, Yn) of n joint observa-
tions. Let U(x) and V(y) be the fraction
of points for which Xi  x and Yj  y, re-
spectively. Plot the points (U(Xi), V(Yi))
in the (u, v) plane. If X and Y are in-
dependent, the n points should be uni-
formly distributed in the unit square
[0, 1]2. Statistical dependence is spotted
by the clustering of points in some region.
This plot reveals not only whether X and
Y are dependent or not, but also how
they depend on each other. For example
a monotonous dependence (e.g. if X in-
creases Y tends to increase or decrease)
corresponds to points clustering on one
of the diagonals of the square. This is
the kind of dependence which is usually
quantified by covariance measures. Yet
there are many other possibilities of how
X and Y can depend on each other, some
of which may not be detectable by covari-
ance.

In order to illustrate the meaning of I consider the following problem.
We are interested in estimating a random variable X of which at present
we know the distribution p(x), and the corresponding entropy H[X]

which quantifies our state of uncertainty about X. You can think of
X as a parameter of a theory of a given system229. Now we have the

229 I(X, Y) is the reduction of Alice’s un-
certainty on X if, instead of asking Bob
about X, she asks Carl about a different
variable Y.

possibility to perform an experiment, i.e. to measure a random variable
Y, of which we know, before doing the experiment, its distribution.
We also know the joint distribution p(x, y) of the two variables. How
much information can I expect the experiment will convey on X? The
reduction in the uncertainty is given by

H(X)� H(X|Y) = I(X, Y)

as can be shown by a direct calculation. So the mutual information tells
us how much we learn, on average, about X if we know Y. Note that
the mutual information is symmetric

I(X, Y) = I(Y, X) = H(Y)� H(Y|X).

In other words, the amount of information that we can gain about a
theory by performing an experiment, is exactly equal to the uncertainty
that the theory provides on the outcome of the experiment230.

230 Exercise: Problem 131 of Bialek’s book,
Biophysics. Let there be n + 1 boxes la-
beled w = 0, 1, . . . , n, with n even. One
of the boxes contains a prize, the oth-
ers are empty. The probability that the
prize is in box w is p0 for w = 0 and
(1� p0)/n for all w > 0. We have two
available strategies:
1) open the box w = 0
2) open the last n/2 boxes (w > n/2)
Which one is the most convenient?
Which one conveys more information on
where the prize actually is?
Draw a plot of the threshold p⇤0 for which
strategies 1 and 2 are equivalent, accord-
ing to the two criteria.

This is a toy model for a situation
where a phenomenon can be explained
by alternative theories, one of which is
the prevailing one, whereas the others
are very unlikely but are many. The two
options correspond to two possible exper-
iments, one that tries to refute or confirm
the prevailing theory, the other that can
exclude half of the unlikely ones. Check
that even if p0 = 0.99 it might be more
informative to exclude unlikely theories
if n > 270.

Another important point is that knowledge of Y reduces a priori the
uncertainty on X, since H(X|Y)  H(X), but a posteriori this might not
be the case! Take, for example, two random variables X, Y 2 {1, 2},
with a joint distribution:

p(x, y) =

8
><

>:

0 if x = y = 1
3/4 if x = 2 and y = 1
1/8 if x = 1 and y = 2 or if x = y = 2

(287)

Then H(X) ' 0.544 and H(X|Y) = 0.25 bits, i.e. I(X, Y) ' 0.294 bits.
However if the outcome Y = 2 occurs, the uncertainty on X actually
increases, because H(X|Y = 2) = 1 bit. It is instructive to check the
opposite. Does the uncertainty on Y decreases no matter what value
X turns out to take or not? This should give you a sense of what
are the conditions under which the uncertainty may increase after a
measurement231.

231 Exercise: Generalise this example to
the case where P{X = 2, Y = 1} = a and
P{X = 1, Y = 2} = b and P{X = 2, Y =
2} = 1� a� b. What is the values of a
and b for which no measurement of one
of the variables can increase the uncer-
tainty on the other? Are there values of
a, b such that measuring any of the two
variables will increase the uncertainty on
the other?
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The data processing inequality

Information is degraded at every passage, as we know from everyday
life. Imagine that Alice communicates a message X to Bob, and Bob
refers the message to Carl. The message Y that Bob receives may be
corrupted by noise, so Y 6= X, likewise Carl receives a message Z that
may be different from Y. Formally we represent the situation by saying
that X, Y and Z are three random variables that form a Markov chain,
denoted as232

232 We mention in passing that this notion
generalises to Markov fields, that specify
the dependence between n random vari-
ables with a graphical model of n nodes
which are connected by links (or hyper-
links) if the corresponding variables are
dependent.

X ! Y ! Z

which means that

p(x, y, z) = p(x)p(y|x)p(z|y).

As a consequence, conditional to Y, X and Z are independent, because
p(x, z|y) = p(x|y)p(z|y). Note also the the directions of the arrows
can be reversed by using Bayes rule, so X ! Y ! Z is equivalent to
Z ! Y ! X.

For a Markov chain X ! Y ! Z, the Data-processing inequality states
that

I(X, Z)  I(X, Y) . (288)

In words, the information that Y contains on X cannot be increased, There are other general inequalities that
can be derived from basic laws. For exam-
ple the mutual information between X1
and X2 cannot be larger than the average
of the two entropies. See the book

Raymond W Yeung. Information theory
and network coding. Springer Science &
Business Media, 2008

whatever transformation Y ! Z one can apply. This result is important
in statistics, because it suggests that any manipulation of the data can
only decrease the information content of the data.

The proof of the inequality (288) is simple. The mutual information
between X and W = (Y, Z) can be written in two ways

I(X, W) = E


log2

p(X, Y, Z)
p(X)p(Y, Z)

�
(289)

= E


log2

p(X, Z|Y)
p(X)p(Z|Y)

p(X|Y)
p(X|Y)

�
(290)

= I(X, Y) + I(X, Z|Y) (291)

= I(X, Z) + I(X, Y|Z) (292)

where

I(X, Y|Z) = E


log2

p(X, Y|Z)
p(X|Z)p(Y|Z)

�

is the conditional mutual information of X and Y given Z. In Eq. (291)
the term I(X, Z|Y) = 0 vanishes, because X and Z are independent,
conditional on Y. The inequality (288) follows from the fact that
I(X, Y|Z) � 0.
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The entropy of Markov Chains

Let us consider Markov chains, i.e. sequences X = (X1, . . . , XN) of
random variables generated by a transition probability matrix

P{Xt = s|Xt�1 = s0} = ps,s0

with s, s0 being elements of a finite set S . We restrict attention to
irreducible chains, for which we know that the probability to observe
state Xt = s converges to the invariant measure µs = Âs0 ps,s0µs0 . We
further assume that we know that the sequence is sampled in the
stationary state, i.e. P{X1 = s} = µs. Then, the probability of the
sequence is given by

P{X} = pXN ,XN�1 pXN�1,N�2 · · · pX2,X1 µX1 . (293)

Note that the time index goes from right (t = 1) to left (t = N) in this
equation. Taking the logarithm and dividing by N, please check233 that 233 Exercise: do it.

the law of large numbers implies

lim
N!•

�
1
N

log P{X} = H[Xt|Xt�1] ⌘ �Â
s,s0

ps,s0µs0 log ps,s0 . (294)

Note that the entropy of the sequence is smaller than N times
H[Xt] = �Âs µs log µs, because knowledge of Xt�1 provides infor-
mation on Xt, in contrast with the i.i.d. case. From the point of view of
the Asymptotic Equipartition property, sequences of N random vari-
ables explore a smaller space than that of N i.i.d. random variables
drawn from µs.

Irreversibility and the arrow of time

Imagine that we do not know whether the sequence X has been given
to us in the right order – with time going from 1 to N – or in the reverse
one – with time going from N to 1. Can we figure this out? In order to
do this, let us refine our notation and call P{X} = P!{X}, as defined
in Eq. (293), to distinguish it from from the backward probability234 234 Exercise: Show that the naïve general-

isation of Eq. (294)

log P {X} ' �H[Xt�1|Xt]

is wrong. Show also that H[Xt�1|Xt] =
H[Xt|Xt�1] in the stationary state. In
loose words, given the present, the past
is as uncertain as the future in a Markov
chain.

P {X} = pX1,X2 . . . pXN�2,N�1 pXN�1,XN µXN . (295)

The probability of the sequence X can also be expressed in terms of
the reverse Markov chain with transition matrix qs,s0 = ps0 ,sµs/µs0 , as

Q {X} = qX1,X2 . . . qXN�2,N�1 qXN�1,XN µXN = P!{X} (296)

Q!{X} = qXN ,XN�1 qXN�1,N�2 · · · qX2,X1 µX1 = P {X} (297)

where the proof of the last equalities relies on repeated use of the
identities qXt�1,Xt µXt = pXt ,Xt�1 µXt�1 . For large N, the probability of
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the sequence in the reverse process is given by

1
N

log P {X} =
1
N

N

Â
t=2

log pXt�1,Xt +
1
N

log µXt (298)

= Â
s,s0

ks,s0

N
log ps0 ,s +

1
N

log µXt (299)

where ks,s0 is the number of transitions from s0 to s in the sequence X.
As N ! •, the fraction ks,s0/N of transitions s0 ! s converges to the
probability ps,s0µs0 . Therefore

lim
N!•

1
N

log P {X} = Â
s,s0

ps,s0µs0 log ps0 ,s = Â
s,s0

ps,s0µs0 log qs,s0 (300)

where the proof of the last equality is left as an exercise. Therefore, for
large N

P {X} ' P!{X}e�NS (301)

where

S ⌘ DKL(P!||P ) = Â
s,s0

ps,s0µs0 log
ps0 ,s
ps,s0

= Â
s,s0

ps,s0µs0 log
ps,s0

qs,s0
(302)

is called the entropy production. As long as qs,s0 6= ps,s0 , the probability of
the forward process is exponentially (in N) more likely than the back-
ward one, because DKL(P!||P ) > 0. Hence given the transition matrix
ps,s0 , we can detect the arrow of time because the two transition proba-
bilities ps,s0 and qs,s0 are different and they define two distinguishable
stochastic processes. Furthermore, notice that the Kullback-Leibler di-
vergence is symmetric in this case, i.e. DKL(P ||P!) = DKL(P!||P ).
This reflects the mirror symmetry of the directions of the time arrow:
the forward arrow of time under the reverse process is as unlikely as
the backward arrow under the forward Markov chain.

If, instead, the Markov chain is reversible, i.e. qs,s0 = ps,s0 , then there
is no way in which the arrow of time can be detected.

The entropy production is a measure of how much the forward
process is more likely than the reversed one, which is expressed in
Eq. (302) as the difference between the logarithms of the forward and
the backward transition probabilities. Indeed irreversibility is related
to the existence of a probability current, whereby these two terms do not
cancel each other and then net probability flow is non-zero235. 235 Exercise: Show that a Markov chain

with two states is always reversible. Ir-
reversibility requires at least three states
and a probability current that either runs
clockwise or counter-clockwise through
the states.
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Data compression and coding theory

Data compression deals with the problem of optimally representing
messages. We refer to Chapter 5 of Cover for a detailed discussion.
This is a short summary of the main ideas. The relation between
information theory and coding was already hinted at in the introduction.
As discussed there, the typical setting is the one where Alice and Bob
need to communicate using a binary channel. Then Alice will encode
her messages to Bob in a string of bits, transmit this string over the
channel, and Bob will read it and decode it to get the original message.
A message X = (X1, . . . , Xn) is a sequence of symbols Xi 2 c drawn
from an alphabet c. The simplest example is a text (e.g. a book) which
is a sequence of ASCII characters (letters, numbers, spaces, punctuation,
etc). But you can likewise think of images, e.g. digital pictures of
paintings, as sequences of RGB values for each pixel. Ultimately, each
message is stored in digital devices in the form of sequences of zeros
and ones, so there is a function C(X) that associates to each message
X a string C(X) of bits. Coding theory deals with the problem of
finding ways of representing the data as efficiently as possible, i.e.
with the minimal number of bits. Each bit can be thought of as the
answer to a yes/no question, so efficient coding, i.e. the problem of
optimally236 representing information, coincides with the problem of 236 In the sense of most parsimoniously.

eliciting information in an optimal manner, that we already discussed.
Coding theory enters into play, for example, when you use a data

compression algorithm (e.g. gzip) on your computer that transforms
a text file written in ASCII code into a file that occupies less space
on the hard disk of your computer. Compression is possible because
messages contain regularities. For example, if the character "q" is always
followed by "u" in a text, a code that translates "q" and "u" by different
sequences of bits (called codewords) is less efficient than one that
codes the pair "qu" directly. Indeed, what the compression program
does when you invoke it, is to scan the file you want to compress
in search of regularities, i.e. of patterns that occur very frequently.
Formally we shall consider messages as being generated as random
draws from a probability distribution. Then the knowledge of the
probability distribution is what makes optimal compression possible.
This is why probability theory, coding theory and information theory
are so intimately connected237.

237 A theatre play, such as Othello, is an
example of a message, because it is a
sequence of letters. It is definitely true
that any understanding of the produc-
tion of Shakespeare has to do with a bet-
ter understanding of the regularities that
one can find in his works. Yet, think-
ing of his works as being generated as
a random draw from a probability dis-
tribution seems somewhat extreme, and
it is at best an approximation. The sim-
plest such approximation is to think of
each letter as being drawn independently
at random from a probability distribu-
tion. The fact that letters from ’a’ to ’z’
do not occur with the same probability
allows a certain degree of compression of
Othello. Furthermore, one realises that
certain words (e.g. ’the’ or ’and’) occur
much more frequently than others (e.g.
’Iago’) and some (e.g. ’yqat’) never oc-
cur. This leads to better approximations
of the generative process, which affords
further compression. Furthermore, the
occurrence of words depends on the oc-
currence of other words in the same act
or even in other acts. The more regular-
ities one detects the better one can com-
press Othello. Note that some of these
features are generic of English texts some
are generic of Shakespeare’s production
and some are specific of Othello.

The main result in coding theory, due to Shannon, makes this con-
nection explicit in the simple case of messages generated as i.i.d. draws
from a a distribution p(x) with x 2 c. We already discussed Shannon’s
theorem when we introduced information theory. Let us briefly recall it.
Shannon theorem is a consequence (or restatement) of the Asymptotic
Equipartition Property. The latter says that, almost surely a message
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X = (X1, . . . , Xn) composed of characters drawn independently from
the same distribution p(x) belongs to the set An of typical sequences,
which contains |An| ⇠ 2nH[X] elements. If we label all messages X 2 An

with an integer C(X) we can take the binary representation of C(X)

as the code238. Then, almost surely for n ! •, C(X)  2nH[X] which 238 A good way of labelling messages is by
their rank in probability, from the most
probable to the least probable. You can
check that in this way at most H[X] bits
per character are needed to transmit a
message.

means that at most H[X] bits per character are needed to transmit a
message.

This strategy, however, is not very practical because the calculation
of C(X) requires ranking all messages which are exponentially many
in n. This is practically unfeasible. Also if a message is composed of
two parts X = (X1, X2) the code of X is not easily related to those of
its parts. For messages where Xi are drawn as i.i.d. variables from the
same distribution, it may be more practical to consider codes such that

C(X) = (c(X1), . . . , c(Xn))

that are sequences of codewords c(x) each of which corresponds to a
character x 2 c. So the key question is, how should the function c(x)

be chosen?
We already encountered examples of codes in the introduction, for

the case where c = {a, b, c, d} has four elements, reported on the
right239. This should allow one to translate each sequence of bits, such 239 Four examples of codes:

c c1(x) c2(x) c3(x) c4(x)
a 1 11 0 00
b 01 10 010 01
c 001 01 01 10
d 000 00 10 000

as
0010110101001 . . .

into a sequence of characters in c. A minimal requirement for codes
is that they be uniquely decodable. This means that any sequence of
bits that is produced by translating a sequence of characters should
be decodable in a unique manner. This does not happen if there are
two or more sequences of characters X that correspond to the same
sequence of bits. The three codes c1, c2 and c3 satisfy this property.
For example, c1 would translate that sequence into cbabbc . . . whereas
c2 will give dbaccd . . .. In both cases, the translated sequence can be
computed as we scan the sequence of bits from left to right. Codes
that have this property are called instantaneous codes, because they
allow to instantaneously translate bit-strings into messages. The key
property that makes a code an instantaneous code is that no codeword
is the prefix of another codeword, i.e. no codeword coincides with the
leftmost part of another codeword.

a cb d

1 0

c2

11 10 01 00

d

b

c

00
a

0

c1

1

01

001 000

a

c

b

d

1 0

c3

10 01

010

a
cb

d

1 0

c4

10 01 00

000

Figure 34: Representation of the codes
c1, c2, c3 and c4 as trees.

This is not true for c3 for which c3(a) is a prefix of c3(b) and c3(c),
for example. In this case it is not possible to figure out what the
translation of the leftmost bits is unless one considers also the bits that
come after. For example, according to c3, the first 0 in the sequence
above could correspond to a or to the beginning of the codewords for
b or c. However the latter two options should be discarded because
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the second bit is a 0, which is not compatible with either a b or a c. If
the first character is an a the second can be a b or a c. Yet it cannot
be a b because otherwise the bits that follow 11 . . . do not correspond
to a decodable sequence (c3 has no codewords that starts with 11). So
the first characters should be accddd . . . but the next characters depend
on what the following characters are. Finally code c4 is not uniquely
decodable. For example the bit string 000000 could either be aaa of dd.

We shall focus on instantaneous codes only. Each of these codes
admits a representation as a tree, as shown in Fig. 34. In this tree, the
codewords correspond to the leaves (the terminal nodes) and the length
`(x) = |c(x)| of each codeword (i.e. the number of bits) corresponds to
the distance of the corresponding node from the root (which is the top
most node). For each instantaneous code c(x), the lengths `(x) satisfy
Kraft’s inequality

Â
x2c

2�`(x)
 1. (303)

This is very easily proven240. 240 Proof: let ¯̀ = maxx2c `(x). Then con-
tinue the tree to all nodes at distance ¯̀
from the root. For each word x, this re-
sults in 2¯̀�`(x) nodes at distance ¯̀ down
the codeword corresponding to x. The
number of these nodes is Âx2c 2¯̀�`(x).
This number has to be smaller than the
total number of nodes at distance ¯̀ from
the root, which is 2¯̀ . This leads to
Eq. (303).

With some more effort one can show (see Cover) that for any set of
lengths L = {`1, `2, . . . , `|c|} that satisfy Kraft’s inequality Eq. (303), i.e.
such that Âi 2�`i  1, there is at least one instantaneous code c(x) such
that the lengths |c(x)| match exactly the `i’s .

Exercise: Indeed there is more than
one code that corresponds to the same
lengths. Count the number of codes
which have the same lengths as the codes
c1 and c2.

Among all instantaneous codes, we want to find those that make
the expected length of the bit-string it produces, when characters are
drawn from a distribution P{X = x} = px, as short as possible. The
two results above imply that it is enough to find a set L of lengths that
satisfy Kraft’s inequality and we’re guaranteed that an instantaneous
code with those lengths exists. So it is enough to solve the problem

min
L

E [`(X)] (304)

over all sets L = {`(x), 8x 2 c} of lengths that satisfy Kraft’s inequality.
Introducing this constraint with a Lagrange multiplier, leads to the
problem241 241 Note the sign of the l term. The

most efficient codes are those which have
shorter codewords, so those for which
the left hand side of Eq. (303) is as large
as possible, i.e. for which Eq. (303) is
satisfied as an equality.
Exercise: check that c1 and c2 satisfy
Kraft’s inequality as an equality whereas
c3 does not satisfy it. What about c4? Can
you find an instantaneous code for which
Kraft’s inequality is not satisfied as an
equality?

min
L,l

"

Â
x2c

px`(x)� l

 

Â
x2c

2�`(x)
� 1

!#
. (305)

What makes this problem complicated is that `(x) must be an integer
variable. If we neglect this problem and minimise over real values of
`(x), then we’re going to obtain a lower bound. The latter problem is
simple and is solved by setting to zero the first order derivative of the
objective function in Eq. (305). This yields `(x) = � log2 px and

min
L

E [`(X)] � H[X] = � Â
x2c

px log2 px. (306)

If you take the smallest integer `(x) which is larger than � log2 px, then
you can get better estimate of the minimal expected length. The smallest
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integer larger than � log2 px is smaller than � log2 px + 1. Therefore
the expected length must be smaller than H[X] + 1. Taken together
these results show that for any X there is an instantaneous code that
allows to represent X with an expected number of bits that is bounded
by

H[X]  min
L

E [`(X)]  H[X] + 1. (307)

This result can be improved by invoking block coding. This means
that, in sending a message X = (X1, . . . , Xn) with n � 1, instead
of using codes that translate each Xi separately, we can look for the
instantaneous codes that translate a pair Xi, Xi+1 of successive variables,
or a subsequence X(m)

i = (Xi+1, . . . , Xi+m) of m successive characters.
The same argument that we have applied above implies that

H[X(m)
i ]  min

L

E
h
`(X(m)

i )
i
 H[X(m)

i ] + 1.

However H[X(m)
i ] = mH[X] which means that block coding can achieve

a compression that satisfies

H[X] 
1
m

min
L

E
h
`(X(m)

i )
i
 H[X] +

1
m

. (308)

This result, for m! •, coincides with Shannon’s bound that ensures
that at most H[X] bits per character need to be exchanged by Alice and
Bob in order to communicate messages generated from the distribution
px.

This derivation also tells us how optimal codes should look like.
Indeed the equation `(x) = � log2 px tells us that short codewords
should be assigned to most probable characters. The Huffman coding
algorithm, for example, is based on the idea of iteratively assigning bits
to the least probable values of x, by grouping them together242. We

242 Huffman codes: Huffman coding al-
gorithm reconstruct the tree from the bot-
tom, starting from a partition of the set c
of words into singleton sets {x} with an
associated probability px . At every step,
the algorithm generates a new partition
from the old one by merging the two sets
S and S

0 with the smallest probability,
assigning to the new set S [ S

0 the sum
of the probabilities pS[S 0 = pS + pS 0 . At
the same time, the algorithm assigns bits
0 and 1 to the edges joining the nodes cor-
responding to S and S

0 to S [ S
0. The al-

gorithm ends when the partition formed
by the single set c is reached, i.e. when
all words are merged in the same set. The
codeword of x is given by the sequence
of bits associated to all the merging of
sets S that contain x, starting from the
root c, down to the set {x}.

refer to Cover for a detailed discussion of this and other algorithms.
Data compression is only the simplest of the problems discussed

in coding theory. A different class of problems have to do with the
fact that most daily life communication channels are affected by noise.
The string of bits in output is not equal to the one in input, because
some bits may be turned from 0 to 1 or viceversa. Communication over
noisy channels requires error correcting codes, i.e. codes with a built in
redundancy that can help recover the original message, even if that
was corrupted by noise. This is a fascinating subject which we will not
discuss, however. Yet again, the solution has to do with understanding
what the typical messages that need to be transmitted are and how
typically they would be corrupted by noise. This allows to get precise
bounds, again in terms of entropies, on the amount of redundancy that
needs to be embedded in messages, in order to achieve an error free
communication.
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If you understood the main gist of the arguments discussed above,
then you may consider pondering on the following questions:243 243 Exercise: Let a text be generated by

first drawing a subject Z 2 Z and then
a message X = (X1, . . . , Xn) of n charac-
ters Xi 2 X drawn independently from
a distribution p(x|z) = P(Xi = x|Z = z).
There are two possible strategies: A) use
the same code irrespective of the subject,
and B) first code the subject Z and then
code the text X depending on the sub-
ject (two way code). Note that code B
represents each text X optimally, at the
expense of the extra cost of coding Z,
whereas texts X are never coded opti-
mally with strategy A, with an over ex-
penditure of bits that should grow with
n. Show that, irrespective of this, the two
way code B is never the best one.

1. What do you expect the sequence of bits of an optimally compressed
sequence X1, . . . , Xn should look like? What is the probability that a
(randomly chosen) bit is equal to one? What is the difference of this
sequence from a sequence of random i.i.d. bits?

2. In all our discussion we have assumed a binary alphabet for the
codes. Yet the same results can be derived for codes in an alphabet
with three different characters (e.g. 0, 1 and 2), or the 26 characters
of the English alphabet. How would this change the results, e.g. Eq.
(303) and Eq. (308)?

3. Languages (e.g. English, French, Chinese, etc) might be though of
as the codes that we use to communicate. A text is a representation
of something (an object, a concept, an idea, etc) that is coded as a
sequence of characters. Yet, if you look at texts as coded messages,
the coding looks rather inefficient. For example, you may delete a
certain fraction of characters from a text but still be able to reconstruct
the entire text or grasp the gist of the text. The most frequent words
in a text (e.g. “the”, "and", "this", etc) do not carry any meaning244 244 George Zipf found that for a text like

the Holy Bible, the frequency with which
the rth most frequent word occurs is
roughly inversely proportional to r. This
is true for many texts (not for phone di-
rectories) and for texts written in differ-
ent languages. Note that this also implies
that the number of occurrences of words
used k times is inversely proportional to
k. This is reminiscent of the Asymptotic
Equipartition Property, that states that
the number of typical sequences is in-
versely proportional to their probability.
Is this a coincidence or does it hints to
the fact that our language has evolved so
that text shares some statistical properties
with typical sequences?

and the least frequent words are very informative on the content
of the text. There is a lot of (apparently useless) redundancy in
language. Why did humans converged to such inefficient ways of
communicating?


