
Large deviation theory

Having discussed typical events, let us discuss a-typical events. There There are several textbooks devoted to
Large Deviation Theory, as e.g.

Richard S Ellis. Entropy, large deviations,
and statistical mechanics. Springer Verlag,
New York, Berlin, 1985

are two reasons (at least) why a-typical events may be of interest.
First we may be interested in rare events that involve fluctuations of
quantities that are larger than the typically expected ones. For example,
the credit rating of an insurance company is based on its estimated
default probability. This occurs if an unexpectedly large number of
contracts in its portfolio demand claims that exceed the equity245 A of 245 The equity is a measure of the value of

the company, and it equals the amount
of money that would result if all of the
assets of the company were liquidated
and all debts were paid off.

the insurance company. The claims Xi from contracts i = 1, . . . , n can
be modeled as random variables and the default corresponds to the
event

D = {Sn � A} , Sn =
n

Â
i=1

Xi.

If n � 1, which is the case in this example, we know that as long
E [Sn] < A this even does not typically occur. So default D is an
a-typical event.

Communications engineers face a similar problem: they need to
calculate safe buffer and bandwidth sizes for network traffic which
arises from a population of many users. This entails estimating the
probability of traffic overflow, making sure that these will be very rare
events. In both cases, we want to estimate how small is the probability
of the large deviation and how do we expect it to occur.

In a stylised picture, biological evolution occurs through random
mutations. Most of them have neutral or deleterious effects but some
rare mutation bring some advantages that increase the reproduction
probability – the fitness – of individuals carrying them. Even if average
fitness decreases, because cells with larger fitness are selected, the
fitness of the population as a whole does not decrease. Evolution is
propelled by rare events.

More in general, when we study a phenomenon we might represent
our current state of knowledge with a distribution Q(w) defined on the
sample space of all possible realisations w 2 W of that phenomenon.
You may think of w as a complete description of that phenomenon
and of Q as the distribution encoding all known (experimental) facts.
The distribution Q is the theory that allows us to predict the value
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µQ = EQ [X] of a quantity X(w). Clearly, we’re interested in predictions
of the theory Q going beyond the range of events that have been used
to derive it.

This prediction can be tested in a repeated series of independent
experiments X = (X1, . . . , Xn) and, if EQ [X] < +• we expect that
Sn/n ! EQ [X]. If this expectation is confirmed by the experiment,
then the experiment brings no new information. But if Sn/n is very
different from EQ [X], then the experimental result calls for a revised
theory P that can accommodate all existing knowledge and the new
observation. In this case, the experiment is an a-typical event because
the theory Q is wrong246. How should we revise the theory Q ! P 246 This logic is routinely applied in statis-

tics, when we want to test an hypothesis.
Then Q(w) stands for the distribution
that we expect if a certain hypothesis H0
is satisfied. A practical example is that
of subjects that receive a treatment for a
certain disease. Then one wants to rule
out the null hypothesis H0 that the treat-
ment is completely ineffective, on the ba-
sis of a sample X of measurement of a
quantity X that is known to be relevant.
In hypothesis testing, we take Q(x) as
the distribution that X would follow in
untreated patients. In this case, if the
treatment is effective then the sample X
is a-typical.

in order to incorporate the new information? And how much did we
learn?

The study of rare (a-typical) events is the domain of Large Deviation
Theory. Let us start by formalising the main questions and concepts in
the case of sequences X = (X1, . . . , Xn) of i.i.d. random variables. Let
us assume that the variance V [Xi] = s2 < • is finite, so that both the
Law of Large Numbers (LLN) and the Central Limit Theorem (CLT)
hold. Then, for large n, the mean Sn/n will be very close to µ = E [X]

(LLN) and the sum Sn is well approximated by Sn ' nµ + s
p

nz where
z is a Gaussian random variable with zero mean and unit variance
(CLT). This is what we typically expect. Yet it may happen to observe
large deviations247, i.e. events such that, for some e > 0, 247 NY Times reports on Dec. 11, 2021 that

Kentuky "was hit by four tornadoes [...]
including one that stayed on the ground
for more than 200 miles." The Governor
of Kentuky said “This has been the most
devastating tornado event in our state’s
history, [...] The level of devastation is
unlike anything I have ever seen.” This is
a very unlikely event according to the
distribution of past events. Scientists
suspect that this suggests that the dis-
tribution of severity of these events has
changed because of climate change.

An(x̄) =

(
X :

�����
1
n

n

Â
i=1

Xi � x̄

����� < e

)
(309)

with x̄ 6= µ. These are clearly a-typical events that we expect to occur
with a vanishingly small probability, as n ! •.

The questions that we shall focus on are:

1. what is the probability P{An(x̄)} of the large deviation? More
specifically, since P{An(x̄)} ! 0 as n ! •, we shall be interested in
the leading behaviour of P{An(x̄)} with n.

2. Conditional on the fact that An(x̄) occurs, what is the distribution of
the Xi? In other words, how are large deviations typically realised?

The answers to these questions depend on the distribution from which
the sample X is drawn. We shall discuss separately the different cases.

Large deviations for i.i.d. variables with finite support

Consider a sequence of n i.i.d. random variables X = (X1, . . . , Xn) This part is discussed in Cover Chapter
11.drawn from a distribution Q(x) over a finite alphabet x 2 X (i.e.

|X | < +•). The probability of a sample X is given by Remember that

H[P] = � Â
x2X

P(x) log P(x)

is the entropy as a functional of P(x).
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P{X} =
n

’
i=1

Q(Xi) = ’
x2X

Q(x)nPX(x) = e�nH[PX ]�nDKL(PX ||Q). (310)

where
PX(x) =

1
n

|{i : Xi = x}| (311)

is the empirical distribution248, which is the fraction of points in the 248 PX(x) is called the type of X. We re-
fer to Cover Chapter 11 for a detailed
discussion of types.

sample that are equal to x. In particular, the probability of a sample
P{X} only depends on its type PX. The event An also can be defined
in terms of types, as a subset in the space of distributions249

P or of 249 The space of disrtibutions is defined
as

P =

(
P : X ! R, P(x) � 0, Â

x2X

P(x) = 1

)
.

The set Pn of types is a subset of P

of distributions where, for all x 2 X ,
p(x) = kx/n with kx = 0, 1, . . . , n and
Âx2X kx = n. Pn is a discrete set of
points in P . For each x 2 X , kx can take
n + 1 values, so the number of points in
Pn can be at most |Pn|  (n + 1)|X |. As
n increases, the number of points in Pn
becomes denser and denser, so that each
P 2 P can be approximated to arbitrary
precision by a P 2 Pn if n is sufficiently
large.

types Pn ✓ P of samples of n points. More precisely, the event defined
in Eq. (309) can be rewritten as An = {PX 2 An} ✓ Pn where

An = {P 2 Pn : |EP [X] � x̄| < e} , EP [X] = Â
x2X

P(x)x (312)

is a subset of the space of distributions defined on X .
The probability that an event An occurs can be written as

P{An} = Â
X2An

P{X} = Â
X2An

e�nH[PX ]�nDKL(PX ||Q) (313)

= Â
P2An

Â
X: PX=P

e�nH[P]�nDKL(P||Q) (314)

= Â
P2An

e�nH[P]�nDKL(P||Q)
���X : PX = P

 �� (315)

v Â
P2An

e�nDKL(P||Q) (316)

where we used the fact that, by Eq. (310) P{X} only depends on PX
in the first equation, and the fact that the number

���X : PX = P
 �� of

samples with PX = P is v enH[P], by the Asymptotic Equipartition
Property250. 250 Let us remind that an v ecn, where c

is a constant, means that 1
n log an ! c as

n ! •.

P
An(x̄)

Q

P P �

Figure 35: Sketch of the minimisation
problem in large deviation theory. We
note in passing that the relative entropy
DKL(P||Q) � DKL(P||P⇤) + DKL(P⇤

||Q)
satisfies the opposite of the triangle in-
equality (see Cover Theorem 11.6.1).

If |x̄ � EQ [X] | < e then the event An is typical, which means that
there is at least one distribution P 2 An that is very close to Q, and
that asymptotically converges to it. Therefore for these distributions
DKL(P||Q) ! 0 as n ! • and, as a consequence, P{An} ! 1. If x̄ is
significantly different from EQ [X] then Q is "far" from any P 2 An.
Then An is an a-typical event and its probability vanishes as n ! •.
Every type P 2 An contributes with a term which is exponentially
small in n, with a coefficient that is proportional to DKL(P||Q). Then
for n large, we expect that the sum will be dominated by the type

P⇤ = arg min
P2An

DKL(P||Q) (317)

that is “closest” to Q, in terms of DKL divergence. Indeed, taking
only the term P = P⇤ in the sum over An in Eq. (316), one gets
P{An} � e�nDKL(P⇤

||Q). On the other hand, e�nDKL(P||Q)
 e�nDKL(P⇤

||Q)
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that provides an upper bound

P{An}  e�nDKL(P⇤
||Q)

|An| (318)

 (1 + n)|X |e�nDKL(P⇤
||Q) (319)

where we first used the fact that the number |An| of types P 2 An is
upper bounded by the total number of types |Pn|, which is less than
(n + 1)|X |. This means that P{An} decays exponentially with a rate
which is equal to DKL(P⇤

||Q). This is the content of Sanov’s theorem, i.e.

lim
n!•

1
n

log P{An} = �DKL(P⇤
||Q). (320)

Summarising, the leading order in the behaviour of the probability of
an a-typical event An when n ! •, is given by P{An} v e�nDKL(P⇤

||Q)

where P⇤ is the solution of Eq. (317).
Let us illustrate this for the case

An =

(
P : Â

x2X

P(x) f (x) � f̄

)

that corresponds to event An where the average of f (X) over a sample
X of points drawn independently from Q(x), is larger than f̄ . If

EQ [ f (X)] ⌘ Â
x2X

Q(x) f (x) � f̄

then Q 2 An and the event is typical. The interesting case is when
EQ [ f (X)] < f̄ because then An is an a-typical event where the sample
average

1
n

n

Â
i=1

f (Xi) � f̄

does not satisfies the law of large numbers. In order to compute P{An}

we should first solve the problem Eq. (317). This is done introducing
Lagrange multipliers and solving the problem

min
P,b,l

"
DKL(P||Q) + b

 

Â
x2X

P(x) f (x) � f0

!
+ l

 

Â
x2X

P(x) � 1

!#
,

where f0 � f̄ has to be chosen so as to satisfy Eq. (317). The solution
has the form

Pb(x) =
Q(x)e�b f (x)

Z(b)
(321)

where
Z(b) = EQ

h
e�b f (x)

i
= Â

x2X

Q(x)e�b f (x) (322)

is the normalisation constant251. The parameter b has to be fixed so 251 Z(b) is often called the partition func-
tion. Note that the derivatives of log Z(b)
is closely related to the cumulant generat-
ing function of X, f(h) = log Z(�h). We
use this property to relate the derivatives
of log Z(b) to the cumulants of X under
the distribution Pb.

that
Eb [ f (X)] = Â

x2X

Pb(x) f (x) = �
d

db
log Z(b) (323)
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where we used Eb [. . .] for expectations over the distribution Pb. Notice
that when b = 0 then Pb(x) = Q(x) is the original distribution. For
this reason, the curve Eb [ f (X)] takes the value EQ [ f (X)] for b = 0. In
other words, the point b = 0 corresponds to typical events, where the
law of large numbers holds. Varying b one “explores” rare events with
large fluctuations of the sample mean of f . In particular, Eb [ f (X)] is a
decreasing function of b (see Fig. 36), because

dEb [ f (X)]

db
= �

n
Eb

h
f 2(X)

i
� Eb [ f (X)]2

o
= �Vb [ f (X)]  0.

So the event An corresponds to all those b for which Eb [ f (X)] � f̄ , i.e.
to the region b  b⇤ where b⇤ is such that Eb⇤ [ f (X)] = f̄ .

Among all the distributions Pb with b  b⇤ we should chose that
one with the smallest DKL(·||Q). Now

DKL(Pb||Q) = �bEb [ f (X)] � log Z(b)

and
EQ[f(X)]

E� [f(X)]

f̄

DKL(P� ||Q)

�

Figure 36: The shaded region corre-
sponds to the event E.

dDKL(Pb||Q)

db
= bVb [ f (X)]

has the same sign of b. Therefore, DKL(Pb||Q) has a minimum at b = 0
and its minimum for b  b⇤

 0 is attained at b⇤. Summarizing,

P{An} ⇠ e�nDKL(P⇤
||Q), DKL(P⇤

||Q) = �b⇤ f̄ � log Z(b⇤)

where b⇤ satisfies Eb⇤ [ f (X)] = f̄ and P⇤ = Pb⇤ .

What is the meaning of the distribution Pb⇤? In order to address
this question, let us compute the marginal distribution of the first m
variables ~X = (X1, . . . , Xm)

P (~x|An(x̄)) = P{X1 = x1, . . . , Xm = xm|An(x̄)}

when n ! • with m finite, conditional on the occurrence of the large
deviation An(x̄). We observe that252 252 We use the previous results with

f (x) = x for simplicity.

P (~x|An(x̄)) =
P{{X1 = x1, . . . , Xm = xm}

T
An�m(x̄0)}

P{An(x̄)}
, (324)

=
Q(x1) · · · Q(xm)P{An�m(x̄0)}

P{An(x̄)}
(325)

' Pb⇤(x1) · · · Pb⇤(xm) (326)

where in the first equality, the event An�m(x̄0) is the event that the
n � m variables (Xm+1, . . . , Xn) sum up to

n

Â
i=m+1

Xi = nx̄ �

m

Â
i=1

xi ⌘ (n � m)x̄0. (327)
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In Eq. (325) we use the fact that the variables Xi are independent and
they are drawn from Q. Finally, Eq. (326) holds because253

253 Here we use the shorthand b = b⇤(x̄)
and b0 = b⇤(x̄0). The second line follows
from the fact that

DKL(P⇤
||Q) = �bx̄ � log Z(b).

In the first term of the exponent we use
Eq. (327) so that

(n � m)b0 x̄0
� nbx̄ = n(b0

� b)x̄ �

m

Â
i=1

xi

The first term cancels with

log Z(b0) � log Z(b) ' �(b0
� b)x̄ + . . .

that is obtained expanding log Z(b0)
around b (note that b � b0

⇠ x̄ � x̄0 is
of order 1/n) using x̄ = �

d
db log Z(b).

P{An�m(x̄0)}
P{An(x̄)}

' e�(n�m)DKL(Pb0 ||Q)+nDKL(Pb ||Q) (328)

' e(n�m)b0 x̄0
�nbx̄�n[log Z(b)�log Z(b0)]�m log Z(b0)

'
1

Z(b⇤)m e�b⇤ Âm
i=1 xi (329)

for n ! •. Eq. (325) shows that in the limit n ! • the joint distribution
of ~X coincides with the distribution of m variables X1, . . . , Xm which
are drawn independently from the same distribution Pb(x). In loose
words, the large deviation is realised as a typical sample of independently
drawn variables from a distribution Pb(x), which is different from Q.

There are in principle many other ways in which a sample that
satisfies An(x̄) could be realised. Any other distribution P 2 An(x̄)

such that EP [X] = x̄ would generate samples that satisfies An(x̄),
typically. However, the probability to generate samples with type
PX = P is e�nDKL(P||Q), which is exponentially smaller (in n) than the
probability of typical samples generated as i.i.d. draws from P⇤ in
Eq. (317). The distribution that is most likely to be observed is the
“closest” to Q in terms of the KL divergence254. 254 This is because the type PX of a ran-

dom sample of i.i.d. draws from a dis-
tribution is not random at all, by the
Glivenko-Cantelli theorem.Large deviations for i.i.d. continuous variables with thin tails

The same solution can be derived by a direct calculation for the cases This derivation can be found also in the
appendix of

Marc Mezard and Andrea Montanari.
Information, physics, and computation. Ox-
ford University Press, 2009

where Xi 2 R are continuous i.i.d. random variables whose common
pdf q(x) decays at least exponentially fast255. We refer to this case by

255 i.e. distributions such that for some
l, K > 0

lim
x!±•

q(x)el|x|
 K .

saying that q(x) has thin tails. The case of fat tails, where q(x) decays
slower than an exponential, will be discussed later.

Let An(x̄) be the event that the mean falls in an interval [x̄, x̄ + dx̄) for
an infinitesimal dx̄. Then P{An(x̄)} = pn(x̄)dx̄ where pn(x̄) is the pdf
of x̄. This can be computed using the integral representation of the
delta function256 256 The Dirac’s d(x) function is defined as

that (generalized) function such that for
any function f (x)

Z •

�•
dx f (x)d(x � x0) = f (x0)

In particular with f (x) = 1 this shows
that d(x � x0) is a pdf whose mass is con-
centrated in x0. With f (x) = eikx the rela-
tion above shows that the Fourier trans-
form of d(x) is 1. Hence

d(x) =
Z •

�•

dk
2p

e�ikx .

Also note that d(ax) = d(x)/a.

pn(x̄) = n
Z •

�•

n

’
i=1

dxiq(xi)d

 

Â
i

xi � nx̄

!
(330)

= n
Z •

�•

dk
2p

eiknx̄
Z

dxq(x)e�ikx
�n

(331)

= n
Z •

�•

dk
2p

eng(ik) (332)

where the function g(b) is defined as.

g(b) = bx̄ + log
Z

dxq(x)e�bx
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The integral in Eq. (332) can be evaluated by the saddle point method.
This entails looking at the stationary point of g(b) and expanding
around it. The maximum of g(b) is attained at b⇤(x̄) that satisfies the
equation g0(b) = 0, i.e.

x̄ =
1

Z(b)

Z
dxxq(x)e�bx, Z(b) =

Z
dxq(x)e�bx = EQ

h
e�bX

i

(333)
Then one can perform the integral in Eq. (332) by substituting

g(ik) = g(b⇤) +
g”(b⇤)

2
(ik � b⇤)2 + O(ik � b⇤)3

Upon changing variables to y =
p

ng”(b)(k + ib⇤) one can check that
higher order terms in the expansion of g beyond the second one are
small for n large and can be neglected. Therefore one can compute the Exercise: There are other ways in which

a large deviation x̄ can be realised. Imag-
ine that a large deviation x̄ = EQ [X] + a
is observed, with a > 0. The “explana-
tion” of large deviation theory is that
the event An(x̄) occurs because Xi are
actually not drawn from q(x) but from
pb(x) of Eq. (335), with b determined by
the condition x̄ = Eb [X]. A different
explanation is that, instead, the Xi are
drawn i.i.d. from a “shifted” distribution
pa(x) = q(x � a). Show, for the specific
example of exponential random variables,
q(x) = e�x for x � 0 and q(x) = 0 for
x < 0, that the “shifted” distribution hy-
pothesis is much less plausible than the
one offered by large deviation theory.

Gaussian integral with the result

pn(x̄) '

r
n

2pg”(b⇤)
eng(b⇤)

⇠ eng(b⇤) (334)

where the leading order behavior in n is retained in the last equation.
There are few things to observe in this result:

1. The form of Eq. (333) that fixes b⇤ is of the form x̄ = Eb [X] where
the expectation is taken on the modified distribution

pb(x) =
q(x)e�bx

Z(b)
(335)

This is not a coincidence, as we’re going to see.

2. The second derivative of g is positive as it is the variance of a random
variable X with pdf pb(x)

g”(b) = Eb

h
X2
i
� Eb [X]2 = Vb [X]

3. The marginal joint distribution of a finite number m of variables, say
~X = (X1, . . . , Xm) conditional on the occurrence of An(x̄), defined
as

p (~x|An(x̄)) dx1 · · · dxm = P{X1 2 [x1, x1 + dx1), . . . , Xm 2 [xm + dxm)|An(x̄)}

can be estimated as before, and

lim
n!•

p (~x|An(x̄)) = pb(x1) · · · pb(xm)

This shows that the large deviation is realised as an independent
draw of variables from the distribution pb(x).
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4. The expression of the rate of exponential decay of the probability
P{An(x̄)} can be written as

lim
n!•

1
n

log P{An(x̄)} = g(b⇤) = �DKL(pb⇤ ||q)

as shown by a direct calculation. This is the same content of Sanov’s
theorem Eq. (320). The fact that P{An(x̄)} is related to a relative
entropy is not accidental, as we discussed earlier.

Large deviations and the Legendre transform

The function
I(x̄) = � lim

n!•

1
n

log P{An(x̄)} (336)

is called the Cramer’s function or the large deviation (rate) function. As
shown above, I(x̄) = DKL(Pb⇤(x̄)||Q) is a relative entropy. Rephrasing
the steps we did above, the practical recipe to compute the Cramer’s
function is condensed in the following steps257:

257 In the derivation above we had

I(x̄) = �g(b⇤), h = �b

and f(h) = log Z(b). The reason for this
change of notation will become clear in
what follows.

1. Compute the cumulant generating function

f(h) = log
Z

dxq(x)ehx = log EQ

h
ehX
i

2. Take a derivative of f and compute

x̄(h) =
df

dh
(337)

3. invert this function and compute h(x̄)

4. compute
I(x̄) = x̄h(x̄) � f[h(x̄)]

The variables h and x̄ are called conjugate variables. Notice that the
function f(h) has to be concave, i.e. its second derivative must be
positive. This is always true in the present case, because f”(h) =

Vb [X] > 0 is given by the variance of X on the distribution Pb (with
b = �h). Indeed the steps above “map" a concave function f(h)

into another concave function I(x̄), because you can easily check that
I”(x̄) = 1/f”(h) > 0.

As a general remark, note that the function I(x̄) contains (and
it has to be consistent with) both the law of large numbers and the
central limit theorem. The first implies that I(x̄) = 0 when x̄ = EQ [X].
The second that the pdf of x̄ is well approximated by a Gaussian for
x̄ ' EQ [X], i.e.

pn(x̄) '

r n
2pVQ [X]

e
�

n(x̄�EQ [X])2

2VQ [X] .
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Therefore, I(x̄) '
(x̄�EQ [X])2

2VQ [X] + . . . is well approximated by a quadratic Exercise: Compute the Cramer func-
tion I(x̄) for the exponential distribution
p(x) = e�x , x � 0.function for x̄ ' EQ [X]. This can indeed be checked explicitly, because

the second derivative of I(x̄) for x̄ = EQ [X] is the inverse of the
second derivative of the cumulant generating function f(h), which is
the variance VQ [X].

The mathematics described here is that of Legendre transforms258.

258 A warmly suggested reading on the
Legendre transform, which discusses its
geometric interpretation and gives much
intuition on its nature, can be found in

Royce KP Zia, Edward F Redish, and
Susan R McKay. Making sense of the
legendre transform. American Journal of
Physics, 77(7):614–622, 2009

This mathematical construction does not arise accidentally. Consider
the following constrained optimisation problem

I(x̄) = min
P: x(P)=x̄

U(P) (338)

where P 2 Rd is a d-dimensional vector and the function U(P) is
concave259. In the case of large deviations for distributions with finite 259 i.e.

U(lP1 +(1 � l)P0)  lU(P1)+ (1 � l)U(P0).support, P is a distribution, U(P) = DKL(P||Q) and x(P) = Âx P(x)x
is a linear function of P (an expected value). P identifies a point in the
(x, U) plane, with x = x(P), and the solution of the problem lies on the
boundary in the (x, U) plane between points that can be achieved for
some value of P and points that cannot be achieved. This boundary is
the function I(x̄) that we want to characterise (see Fig. 37).

I(
x̄
)

x̄

D
K

L
(P

||
Q

) I(x̄) � hx̄ + �(h)

hx̄ � �(h)

d�(h)

dh
EQ[X]

Figure 37: Construction of the large de-
viation function for Q(x) defined for
x 2 c = {1, 2, 3, 4} and Q(1) = 2Q(2) =
4Q(3) = 4Q(4) = 1/2 and n = 20 points.
The red curves show the construction
implied by the Legendre transform for
h = 1.

With the introduction of Lagrange multipliers, we transform the
problem in Eq. (338) into260 260 The fact that the optimisation over h is

a maximisation derives from the fact that
it is the solution of the optimisation of a
concave function hx(P) � U(P). As I(x̄)
inherits its concavity from U(P), f(h) in-
herits its convexity from hx(P) � U(P).

I(x̄) = min
P

max
h

{U(P) � h[x(P) � x̄]} (339)

= max
h

{x̄h � f(h)} (340)

f(h) = max
P

{hx(P) � U(P)}. (341)

In this way we relate the original optimisation problem Eq. (338) to a
dual problem Eq. (341).
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The meaning of h is clear if we consider the same problem, but for
a value x̄ + dx̄ of the constraint. Then if P⇤(x̄) is the point where the
extreme is achieved,

I(x̄ + dx̄) = U (P⇤(x̄ + dx̄)) = U (P⇤(x̄)) + rPU · dP⇤ + . . .

where dP⇤ = P⇤(x̄ + dx̄) � P⇤(x̄). The first order conditions of the
optimisation in Eq. (339) on P imply that rPU = hrPx. Hence the
equation above reads I(x̄ + dx̄) = I(x̄) + hrPxdP⇤ + . . .. The equation
x(P(x̄)) = x̄, on the other hand, implies that rPxdP⇤ = dx̄. These,
taken together, show that

h =
dI
dx̄

is the slope of the tangent of the curve that is the locus of the set of so-
lutions of the optimisation in the (x̄, U) plane. This set can equivalently
be described by the coordinate h. Indeed, because of the concavity of
U(P), the function h(x̄) is an increasing function. Furthermore, this
description is totally equivalent to the one in terms of x̄. If we let P(h)

be the solution of the problem in Eq. (341), then one has

f(h + dh) = x(P(h + dh))(h + dh) � U(P(h + dh))

= f(h) + x̄(h)dh + [hrPx � rPU] dP + . . .

The term in braces vanishes because of the first order conditions of the
problem in Eq. (341). Therefore one concludes that

x̄ =
df

dh
.

Indeed the relation between I(x̄) and f(h) is completely symmetric,
i.e.

I(x̄) + f(h) = x̄h,

so I is the Legendre transform of f and f is the Legendre transform
of I. Indeed, notice that Eq. (341) can be rewritten as

f(h) = max
x̄


hx̄ � min

P: x(P)=x̄
U(P)

�
= max

x̄
[hx̄ � I(x̄)] . (342)

The Legendre transform is not a mere change of variables. Rather
it is a mapping of the solution (x̄, I) of a constrained optimisation
problem Eq. (338) into the solution (h, f) of a dual unconstrained
optimisation problem (Eq. 341). The Legendre transform provides a
precise prescription for identifying the conjugate variable h that should
be used in the transformed problem261.

261 The Legendre transform is the bread
and butter of statistical mechanics. As
we shall see, the thermodynamics of an
isolated system is described by distribu-
tions of maximal entropy, which is called
the microcanonical ensemble. In an isolated
system the energy E is a constant of the
motion and hence it is fixed, as well as
the volume V and the number of par-
ticles. This problem can be related to
the description of a system in equilib-
rium with its environment (the heat bath)
removing the constraint on E. In this
description, which is the canonical ensem-
ble, the new variable is the temperature
T and the objective function is the free
energy F = hEi � TS. Likewise, the con-
straint on fixed volume V can be removed
with a Legendre transform that maps the
problem in one where the pressure P is
fixed, and the constraint on N can be
removed introducing the chemical poten-
tial µ. As an Exercise, identify in each of
these cases what are the variables x̄ and
h and what are the functions I(x̄) and
f(h).

Let us illustrate the properties of I(x̄) for sums Sn = Ân
k=1 Xk

of binary variables that take values Xk = ±1 with equal probability.
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Then, both the recipe above and a direct calculation using Stirling’s
approximation of the binomial coefficient, show that262

262 Exercise: Compute I(x̄) in both ways.

I(x̄) =
1 � x̄

2
ln(1 � x̄) +

1 + x̄
2

ln(1 + x̄)

which is just the relative entropy between the distribution Pb = ( 1�x̄
2 , 1+x̄

2 )

and the uniform distribution Q = (1/2, 1/2), as it should.
The expansion for |x̄| ⌧ 1 yields I(x̄) '

1
2 x̄2 + O(x̄4) for x̄ ⌧ 1,

which is consistent with the law of large number and the central limit
theorem for |x̄| ⇠ 1/

p
n ⌧ 1. For larger values of x̄ the function I(x̄)

provides much more informations on the large deviation properties of
the mean Sn/n. Note that I(x̄) is defined only for x̄ 2 [�1, 1]. Indeed
also |Sn/n|  1 by definition in this case. Next note that I(±1) = ln 2,
and indeed the probability that Sn = ±n is exactly 2�n.

How much do we learn?

Let us go back to our discussion where the distribution Q encodes our This section is a side remark, and it
should be taken as a curiosity driven di-
gression.

current state of knowledge, i.e. our theory. The theory Q predicts that
an observable X should take a value ⇡ EQ [X]. When we perform and
experiment and measure X, the measurement may be consistent with
this prediction or not. In the latter case we need to revise our theory
Q and replace it by Pb, depending on the observed value x̄ of X. How
much do we learn?

The uncertainty is reduced from H[Q] to H[Pb]. Hence the acquired
information is

�DH = H[Q] � H[Pb] (343)

= I(x̄) + EQ

h⇣
ehX�f(h)

� 1
⌘

log Q
i

, (344)

where the second line results from a trite calculation using the results in
previous sections263. The first term I(x̄) = DKL(Pb||Q) quantifies how 263 And it is left as an Exercise.

surprising the result of the experiment is. The second instead, has the
form of a covariance264 between ehX�f(h) and log Q. Hence it depends 264 Note that EQ

h
ehX�f(h)

i
= 1.

on what observable X has been probed in the experiment. This allows
us to ask, given Q, what quantity X should be probed in order for the
experiment to be as informative as possible? Yet DH also depends on h,
i.e. on the observed value x̄ of X. One way to address this question is to
“explore the neighbourhood” of Q, searching for “directions” X where
the reduction in uncertainty DH increases faster. Hence we expand DH

for small values of h and, after some work, we find265

265 We remind that the covariance is de-
fined as

CovQ(X, Y) = EQ
⇥
(X � EQ [X])(Y � EQ [Y])

⇤

where the index specifies that the expec-
tation is taken with respect to Q.

DH ' �h CovQ(X, log Q)

�
1
2

h2
n

VQ [X] + CovQ

h�
X � EQ [X]

�2 , log Q
io

+ O(h3)
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which is an interesting result.

P

Q Ph

X �

X

Figure 38: Probing the space of distri-
butions around Q. Each experiments X
explores the space along a different tra-
jectory Ph.

The leading linear term implies that the largest change in DH occurs
when X = log Q, which is the X that maximises the covariance with
log Q. Note indeed that, by the Asymptotic Equipartition Property, the
value of � log Q ⇡ H[Q] permits to identify the set of typical outcomes.

The choice X = log Q explores the space of distributions along the
curve of parametric distributions266

266 In a statistical mechanics analogy, as
we shall see Q takes the form Q(x) =
1
Z e�E(x)/T , where T is the temperature.
Then also Ph(x) has the same form, with
T0 = T/(1 + h). In addition

DH = �
h

T2 VQ [E]

�
h2

2T2


VQ [E] +

1
T

EQ

h
(E � EQ [E])3

i�
+ . . .

and the coefficient of the linear term in h
is the specific heat.

Ph(x) =
1

EQ
⇥
Qh
⇤Q1+h(x).

The change DH can however be either positive or negative, depending
on whether h < 0 or h > 0. In order to make sure that the measurement
reduces the uncertainty on the system, the measured quantity X should
be such that CovQ(X, log Q) = 0, so that the linear term vanishes.

The first term of order h2 is I(x̄) '
1
2 h2VQ [X], which suggests

that the most potentially surprising experiments, are those that probe
quantities with large fluctuations. This is indeed a well established
recipe in experimental design.

Weakly correlated variables: Phase transitions and the Gartner-
Ellis theorem

The results we have derived so far for large deviations extend to the
case where the random variables Xi are weakly dependent. How weak
the dependence will be clarified below267.

267 To give an idea, one example where
the theory applies is when random vari-
ables interact only “locally”. This means
that for each Xi there is a finite subset
∂i ⇢ {1, . . . , n} of indices such that, con-
ditional on the values of the variables Xj
for j 2 ∂i , Xi is independent of all the
other variables k 62 ∂i , i.e.

P{Xi |Xj, 8j 6= i} = P{Xi |Xj, 8j 2 ∂i}.

A Markov process, where Xi only de-
pends on Xi�1 and Xi+1 (i.e. ∂i = {i �

1, i + 1}) is a sequence of weakly depen-
dent random variables.

Consider the following situation: we have a sample X1, . . . , Xn drawn
i.i.d. from a distribution, but we’re not sure what the distribution is.
With probability a the sample comes from the distribution P and with
probability 1 � a it comes form the distribution Q. Both P and Q have
either finite support or thin tails. What is the probability P{An(x̄)} in
this case? Clearly

E [X] = aEP [X] + (1 � a)EQ [X] ,

where EP [. . .] and EQ [. . .] stand for expectations on the distributions
P and Q, respectively. Do we expect that the law of large numbers

EP[X] EQ[X]

I(x)

 x

IQ(x)IP(x)

Figure 39: The construction of the
Cramer function I(x̄) for the example dis-
cussed in the text.

ɸ(h)

h
Figure 40: The functions fP and fQ for
the example discussed in the text.

1
n

n

Â
i=1

Xi ! aEP [X] + (1 � a)EQ [X]

holds?
The answer can be found by a direct calculation:

P{An(x̄)} = aP{An(x̄)|P} + (1 � a)P{An(x̄)|Q} (345)

v ae�nIP(x̄) + (1 � a)e�nIQ(x̄) (346)
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where P{An(x̄)|W} is the probability of the large deviation, conditional
on the assumption that the variables Xi are drawn i.i.d. from the
distribution W = P or Q, and

IW(x̄) = � lim
n!•

1
n

log P{An(x̄)|W} = min
P2An(x̄)

DKL(P||W) .

It is now clear that

I(x̄) = � lim
n!•

1
n

log P{An(x̄)} = min[IP(x̄), IQ(x̄)]. (347)

Notice that:

• The curve I(x̄) touches the x̄ axis in two point x̄ = EP [X] and
x̄ = EQ [X]. This means that, typically we expect that the sample
mean converges to either EP [X] or to EQ [X], but not to E [X]. This
violation of the law of large numbers occurs because the variables
X1, . . . , Xn are not independent. Indeed, knowledge of a subset k of
the Xi allows us to infer whether the right distribution is P or Q,
and hence informs us on the values of the remaining n � k.

• The curve I(x̄) is not convex. Locally it is convex, apart from the
point x̄c where IP(x̄c) = IQ(x̄c), where it has a cusp.

• The derivative h of I(x̄) is no longer a continuous function of x̄.
Rather it has a jump at the point x̄c, i.e. limx!x̄±

c
I0(x) = h±.

• Following the geometric construction of the function f(h), one finds
that the function f(h) is not single valued in the interval h 2 [h+, h�]

and that it is not continuous.

The Maxwell construction and the Gärtner-Ellis theorem The fact that I(x̄)

derived above is non convex makes the recipe based on the Legendre
transform, that we discussed for i.i.d. variables inapplicable. The
Gärtner-Ellis theorem describes what happens if we apply this recipe
anyhow. Suppose that the function

f̄(h) = lim
n!•

1
n

log E
h
eh(X1+...+Xn)

i
(348)

exists and is finite, for h in a neighbourhood of the origin. Then the
convex hull Ī(x̄) of the large deviation function is given by the Legendre
transform of f̄(h). Exercise: Let X = (X1, . . . , Xn) where

Xi = Y0Yi , with Y0 = ±1 with equal
probability, and Yi 2 {0, 1} are i.i.d. ran-
dom variables with P{Yi = 1} = p =
1 � P{Yi = 0}, and they are all indepen-
dent of Y0. Compute the large deviation
function for the random variables Xi , i.e.

I(x̄) = � lim
n!•

1
n

log P

(
n

Â
i=1

Yi 2 [x̄, x̄ + e)

)

for some e > 0. Compute the function
Ī(x̄) by Gärtner-Ellis theorem, i.e. as the
Legendre transform of f̄.

Let us see how this works for the problem we discussed above, of a
sequence X of variables which is drawn i.i.d. from either P or Q. It is
easy to see that E

h
eh(X1+...+Xn)

|W
i

= enfW (h), where fW(h) is drawn
in Fig. 40 for W = P or Q. Then

f̄(h) = lim
n!•

1
n

log
h

aenfP(h) + (1 � a)enfQ(h)
i

= max
⇥
fP(h), fQ(h)

⇤
(349)
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as shown in Fig. 41(bottom).

EP[X] EQ[X]  x

I(x)

ɸ(h)

h
Figure 41: The Gärtner-Ellis theorem ap-
plied to the problem of a sequence X
drawn i.i.d. from either P or Q.

Notice that f̄(h) has a cusp – i.e. a discontinuity in its first derivative
– for h = 0. The derivative of f̄(h) as h ! 0+ equals EQ [X] whereas
when h ! 0� one finds f̄0(h) = EP [X].

The Legendre transform Ī(x̄) of f̄(h) is shown in Fig. 41(top). This
function Ī(x̄) is identical to I(x̄), except for the part in the interval
x̄ 2

⇥
EP [x] , EQ [x]

⇤
, where I(x̄) is replaced by a straight line.

The Gärtner-Ellis theorem provides the solution to a different yet
related problem, which is the case where an unknown fraction of the
variables are drawn from P and the rest from Q. Specifically, let Xi be
drawn from P if i  nn and from Q if i > nn, with n 2 [0, 1] which is
unknown.

Again we consider the event An(x̄), i.e. that the mean of a sample
X1, . . . Xn of points obtained in this way equals x̄, and we want to
compute the probability of An(x̄). The probability of finding a large
deviation with a sample mean equal to x̄ is

P{An(x̄)} =
Z 1

0
dn
Z

dx̄P

Z
dx̄QP{Ann(x̄P)|P}P{A(1�n)n(x̄Q)|Q}d(x̄ � nx̄P � (1 � n)x̄Q)

⇠

Z 1

0
dn
Z

dx̄P

Z
dx̄Qe�n[nIP(x̄P)+(1�n)IQ(x̄Q)]d(x̄ � nx̄P � (1 � n)x̄Q)

where we assume a uniform prior on n. For all values of x̄ 2
⇥
EP [X] , EQ [X]

⇤

this multiple integral is dominated by the values x̄P = EP [X] and
x̄Q = EQ [X], and n such that x̄ = nEP [X] + (1 � n)EQ [X], because
then IP(x̄P) = IQ(x̄Q) = 0, and one finds that

In(x̄) = � lim
n!•

1
n

log P{A(n)
n (x̄)} = 0.

Put differently, for every x̄ 2
⇥
EP [X] , EQ [X]

⇤
it is possible to find a

value

n =
EQ [X] � x̄

EQ [X] � EP [X]
2 [0, 1] (350)

such that the above construction allows us to realise the large deviation
x̄ as a typical event (i.e. with In(x̄) = 0).

As we’re going to discuss (see footnote 313) the replacement of non-
concave part of I(x̄) with a straight line is conceptually identical to the
Maxwell’s construction in thermodynamics. In physics this construction
relates the thermodynamics of homogenous but unstable states that
that of inhomogeneous states, which are a mixture of two pure states.
Here, it relates the (large deviation) properties of a system which is
either in one pure state (P) or in another (Q), to one which is a mixture
Pn = nP + (1 � n)Q of the two states. Mathematically, the first case is
described by the Cramer function I(x̄) while the mixture is described
by its convex hull Ī(x̄), defined in Eq. (347), which is the Legendre
transform of f̄(h) in Eq. (349)268.

268 Exercise: Consider yet a different
problem where each of the variables Xi
is drawn from P, with probability n, or
from Q with probability 1 � n. What is
the large deviation function I(x̄) in this
case when n is known and when n is un-
known?
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Large deviations for Markov Chains

A further example of a sequence of weakly dependent random vari-
ables is given by Markov Chains. Let us recall that a Markov Chain
Z0, Z1, . . . , Zt, . . . is a sequence of random variables that take values in
a discrete set S , and which is defined by a transition matrix

Ws,s0 = P{Zt = s|Zt�1 = s0
}, s, s0

2 S . (351)

We restrict our attention to irreducible Markov Chains for which the
distribution p{Zt = s} converges, as t ! •, to the unique invariant
measure µs which satisfies the equation µs = Âs0 Ws,s0 µs0 .

For an observable Xt with a distribution P{Xt = x|Zt = s} = q(x|s)
that depends only on the state Zt at time t, we expect that its time
average between times t + 1 and t + N converges as N ! • to the
expected value of Xt on µs, for t ! •, i.e.

lim
t!•

lim
N!•

1
N

t+N

Â
t=t+1

Xt ! Eµ [Xt] ⌘ Â
x,s

xq(x|s)µs.

What is the probability to observe instead a value x̄ different from
Eµ [Xt]? In order to apply Eq. (348) we need to compute the expected
value

E
h
eh Ât Xt

i
= Â

st ,st+1,...,st+N

t+N

’
t=t+1

Wst ,st�1E
h
ehXt |st

i
P0(st) (352)

= Â
st ,st+N

{ÛN
}st+N ,st P0(st), (353)

where {ÛN
}st+N ,st is the st+N , st element of the Nth power of the

matrix Us,s0 = E
h
ehXt |s

i
Ws,s0 . In the repeated matrix multiplication, the

dominant component is the one corresponding to the largest eigenvalue
of Û, corresponding to the right eigenvector

lvs = Â
s0

Us,s0 vs0 = Â
s0

E
h
ehXt |s

i
Ws,s0 vs0 (354)

which leads to E
h
eh Ât Xt

i
⇠ lN . Note that, by virtue of the Perron-

Frobenius theorem, l and all components of vs are positive, because
Us,s0 � 0 for all s, s0. Hence the limit in Eq. (348) leads to f̄(h) = log l.

Summarising, the recipe of large deviations for a Markov Chain is i)
compute the matrix Û, ii) compute its largest eigenvalue l as a function
of h, iii) compute the rate function Ī(x̄) from the Legendre transform of
f̄(h) = log l. The distribution of Zt conditional on the large deviation
is given by the normalised right eigenvector

P{Zt = s|An(x̄)} =
vs

Âs0 vs0

(where h is the solution of df̄
dh = x̄). Note that when h ! 0, this

distribution reverts back to the invariant measure µs.
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Evolution as a large deviation Let us take a branching process as a simple
model of evolution. In order to allow for mutations, let us assume
that the probability p(k| f ) that an individual generates k offsprings
depends on its fitness f and that each offspring has a different fitness
f 0. We define the fitness as the logarithm of the expected number of
offsprings, i.e. f = log E [Xi| f ]. If the fitness is drawn at random
independently from the same distribution p( f ) for each offspring, then
it is easy to see that269 that the total population after n generations 269 Exercise: do that.

grows as E [Zn] = enE[ f ] where E [ f ] = Â f f p( f ) is the expected fitness.
However, if the fitness is inherited, in part, from the parents then the
growth rate of the population is larger than E [ f ]. In order to see this,
consider the case where the fitness is a function f (s) of the “type” s
of individual and assume that the offsprings of an individual of type
s0 end up of type s with probability Ws,s0 . In this way, their fitness
will depend on the fitness of the parent. Let Z(n)

s be the number of
individuals of type s at generation n. Then

E
h

Z(n)
s

i
= Â

s0

Ws,s0 e f (s0)E
h

Z(n�1)
s0

i
.

The vector y(n)
s = e f (s)E

h
Z(n)

s

i
of the expected number of offsprings

from parents of type s at generation n, satisfies the equation

~y(n) = Û~y(n�1) = ÛN~y(0)

where the matrix Û has elements Us,s0 = e f (s)Ws,s0 . This implies that
the growth rate of the population is controlled by the largest eigenvalue
l of the matrix Û, i.e.

lim
n!•

1
n

log E
h

Z(n)
i

= l.

The corresponding eigenvector satisfies the analogue equation to (354)

lvs = Â
s0

Us,s0 vs0 = Â
s0

e f (s)Ws,s0 vs0

This is equivalent to a large deviation principle for the variable X(st) =

f (s) for the Markov chain with transition probability Ws,s0 (with h = 1).
In particular, when the offsprings of fit individuals are likely fit, i.e.
when Ws,s0 is close to diagonal, we expect that the growth rate to be
larger than E [ f (s)]. Also, we expect that the fraction of individuals of
type s at generation n � 1 is asymptotically given by

µ̃s =
E
h

Z(n)
s

i

Âs0 E
h

Z(n)
s0

i '
vse� f (s)

Âs0 vs0 e� f (s0)
.

Notice also that this is also the fraction of individuals of type s that
we expect to find tracing back the types of ancestors of an individual
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at generation n � 1. This is in general different from the invariant
measure µs, which corresponds to the fraction of descendants of type s
of an individual270. 270 Exercise: Compute l and ~v in a

branching process with two types s = ±1
and f (s) = f + gs, in the case Ws,s =
1 � e and Ws,�s = e.Large deviations for fat tailed distributions

The Cramer function I(x̄) has the property that it is positive and it
vanishes for x̄ = E[X], which corresponds to the point h = 0. The
machinery above works if f(h) exists at least for h in an open neigh-
bourhood of the origin. This requires that the pdf of X decays at least
as an exponential for |x| ! •. What happens if this is not true?

We shall call fat tailed distribution any distribution Q(x) for which

lim
|x|!•

1
|x|

log Q(x) = 0 (355)

for x ! +• or x ! +•, or both. In this limit, ehxQ(x) diverges for at
least one value of h in the neighbourhood of h = 0 as x ! ±•.

For simplicity, we focus on the right tail of the pdf, and assume that
Q(x) vanishes at least exponentially fast as x ! �•. This includes
stretched exponential distributions Q(x) ⇠ e�axa with a < 1 and power
law distributions Q(x) ⇠ Ax�g for x � 1. Again we focus on the event

An(x̄) =

(
X :

�����
1
n

n

Â
i=1

Xi � x̄

����� < e

)

for some arbitrarily small e > 0 and our goal is to compute the Cramer’s
function I(x̄) in Eq. (336). For h  0 we can follow the recipe outlined
in the previous sections because E

h
ehX
i
, and hence f(h), is finite.

This allows us to define the Cramer function I(x̄) for all x̄  EQ [X],
which is expected to vanish as x̄ ! EQ [X] with a quadratic behaviour
I(x̄) '

1
2VQ [X]

�
x̄ � EQ [X]

�2
+ . . . for x̄ . EQ [X].

Xi� ⇠ n
Xi ⇠ P� 8i

Xi ⇠ Q 8i 6= i�

EQ[X]

�(h)

h

x̄

I(x̄)

h

EQ[X]

d�

dh

x̄

In order to explore the behaviour of I(x̄) for x̄ > EQ [X], let us
consider the event

Ãn(x̄) =
n[

i⇤=1

(
X :

�����
1

n � 1 Â
i 6=i⇤

Xi � EQ [X]

����� < e, Xi⇤ = x⇤
n

)

x⇤
n = nx̄ � (n � 1)EQ [X] (356)

In words, the event Ãn(x̄) describes a large deviation where the mean
1
n Âi Xi = x̄ deviates from the expected value EQ [X], but all the excess
of the mean is concentrated on only one variable Xi⇤ = x⇤

n, which
is proportional to n, whereas all the other variables are “typical”, i.e.
Xi ⇡ EQ [X]. The probability of this event is

P{Ãn(x̄)} � (1 � e)nQ
�
nx̄ � (n � 1)EQ [X]

�
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where the factor 1 � e comes from the fact that the n � 1 variables i 6= i⇤

take typical values, the factor n accounts for the fact that i⇤ can take n
values, and the last factor is the probability of Xi⇤ .

The event Ãn(x̄) is only one way in which the large deviation
can occur, therefore Ãn(x̄) ✓ An(x̄). As a consequence P{An(x̄)} �

P{Ãn(x̄)} and

I(x̄) = � lim
n!•

1
n

log P{An(x̄)} (357)

 � lim
n!•

1
n

log P{Ãn(x̄)} = 0 (358)

where the last equality is a consequence of Eq. (355). Therefore, for all
x̄ � EQ [X] the Cramer function vanishes, I(x̄) = 0.

In loose words, “democratic” ways to realise large deviations, where
x̄ is obtained as the average of i.i.d. draws from a modified distribution,
are not typical. For fat tailed distributions, large deviations typically
concentrate on a single variable Xi⇤ which is responsible for the whole
excess of the mean x̄. The symmetry between the variables, which are
identically distributed a priori, is broken spontaneously, because one of
them takes an extensive value (i.e. a value proportional to n). Sponta-
neously refers to the fact that, a priori, any variable Xi⇤ can carry the
excess deviation.

The fact that I(x̄) = 0 for all x̄ � EQ [X] implies that I(x̄) has a
singularity at x̄ = EQ [X] in the second derivative. This is the analogue
of a second order phase transition in statistical physics271, that generally 271 In thermodynamics, the order of a

transition is defined as the order of the
derivative that develops a singularity at
the critical point. As we shall see, I(x̄)
is the analog of the entropy in statistical
mechanics.

occur when a symmetry of the system is spontaneously broken272,

272 The typical example is the sponta-
neous magnetisation of metals when the
temperature is decreased below the Curie
temperature.

precisely as in the current situation where the a priori (permutation)
symmetry between the variables Xi is broken.

Note that when the pdf of X decays slower than |x|
�2 the expected

value of X diverges. Then “large deviations” occur typically, and, as
we have seen, they occur with one variable being of the same order of
the whole sum. So also in that case, the large deviation concentrates on
few variables273. 273 In the special case where X are Cauchy

variables p(x) = p�1(1 + x2)�1, you can
check that the Âi Xi/n is itself a Cauchy
variable. Therefore the probability of a
large deviation

P{An(x̄)} =
1
p

1
1 + x̄2

does not decay exponentially with n. Ac-
tually it does not decay at all.



States of knowledge

Now that we have a quantitative notion of information, we can address
the problem of finding distributions that are consistent with a given
state of knowledge. Just like Socrates has been claimed to say that

The only true wisdom is in knowing you know nothing

it seems the only state of knowledge we can precisely identify is the
one where we "know nothing". If lack of information can be measured
by the entropy, the state where we know nothing corresponds to a
probability distribution of maximal entropy. In addition, as we shall
see, large deviation theory allows us to be precise in understanding how
new information can be incorporated in our current state of knowledge
(i.e. in probability distributions). This “becomes a methodology for a
very general type of scientific reasoning", as claimed by E. T. Jaynes274. 274 Edwin T Jaynes. Information theory

and statistical mechanics. Physical review,
106(4):620, 1957

We shall discuss this general approach and then, statistical mechanics
as one of its particular applications.

Maximum entropy

Consider the case of a discrete random variable X 2 c drawn from a fi-
nite set c. The state of maximal ignorance corresponds to a distribution
p(x) = P{X = x} of maximal entropy275

275 You can show this by studying the
maximisation of H[p] with the normali-
sation constraint Âx p(x) = 1.

p(x) =
1

|c|
. (359)

Indeed, in order to dispel uncertainty the number of binary questions
we need to ask is as large as possible276, i.e. H[X] = log2 |c|. The state

276 In this case, the optimal way to elicit
information is to ask questions that split
the number of possible alternatives in
half each time. If |c| = 2H , there are
( 2H

2H�1) ways to choose how to make the

first question, (2H�1

2H�2)
2

ways to pose the
second and so on. In total there are

N =
H�k

’
k=0

✓
2H�k�1

2H�2

◆2k

ways to ask the H questions. Which of
these ways one choses to ask questions is
irrelevant. The fact that this number is so
large means that we have no clue of how
to pose questions in a smart way.

of maximal ignorance is also such that the distribution of X is invariant
under any permutation of the possible values x 2 c. This is consistent
with a state of knowledge where we don’t know anything that can
distinguish event {X = x} from event {X = x0

}.
Now assume that we know that277

277 This knowledge may come from the
fact that, in a series of N � 1 indepen-
dent experiments where we measure the
variables Yi = F(Xi) for i = 1, . . . , N, we
observe that

1
N

N

Â
i=1

F(Xi) ' f ,

and that we expect the Law of Large
Numbers to hold. It may also come from
the fact that we expect that E [F(X)] = f
based on theoretical grounds.

E [F(X)] = Â
x2c

p(x)F(x) = f (360)
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for a function F(X). Then the distribution that encodes this and only
this information, is given by the one that maximises the entropy, subject
to these constraints. This implies that we have to solve the problem:

max
p,l,n

(
� Â

x2c
p(x) log p(x) + l

"

Â
x2c

p(x)F(x) � f

#
+ n

"

Â
x2c

p(x) � 1

#)
.

The solution is
pl(x) =

1
Z(l)

elF(x) (361)

where Z(l) ensures normalisation, and the value of l should be ad-
justed in such a way that Eq. (360) is satisfied, i.e.

E [F(X)] =
d log Z

dl
= f . (362)

Note that the solution to this problem is unique. The way to show
this is to observe that l is the solution of a convex optimisation prob-
lem. Indeed Eqs. (362) correspond to the first order condition of the
maximisation of the entropy as a function of l

S(l) = H[pl] = log Z(l) � lE [F(X)] .

where E [F(X)] is a function of l. Note that

dS
dl

= �l
dE [F(X)]

dl
= �lV [F(X)]

has the opposite sign of l, where V [F(X)] � 0 is the variance of F(X)

under the distribution pl. So S(l) has a unique maximum at l = 0,
because it increases for l < 0 and it decreases for l > 0.

Yet it is important to stress that the entropy

S( f ) = max
p:E[F(X)]= f

H[p] (363)

is a function of f , which is the independent variable. The variables
f and l are conjugate under the Legendre transform that maps the
problem Eq. (363) into the conjugate problem278 278 This follows from

S( f ) = min
l

max
p

{H[p] + l(E [F] � f )}

= min
l

⇢
�l f � min

p
[�H[p] � lE [F]]

�

= min
l

{�l f � y(l)}

y(l) = min
p

[�H[p] � lE [F]] (364)

The solution of Eq. (363) is given by S( f ) = log Z(l) � l f , where
l = l( f ) is given by the solution of Eq. (362), whereas the solution of
Eq. (364) is given by

y(l) = min
f

[�S( f ) � l f ] = � log Z(l). (365)

The function y is not an entropy279. It is called a free energy. 279 Note that �y(l) is the cumulant gen-
erating function of the random variable
F(X).
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Summarising, the maximisation of the entropy at a fixed value of
f = E [F] corresponds to the minimisation of the free energy y at a
fixed value of the conjugate parameter l. Because of this

l( f ) = �
dS
d f

and f (l) = �
dy

dl
(366)

and the functions S and y stand in the relation280 S + y = �l f . 280 Exercise: When Q(x) = 1/|c| the con-
struction discussed in this section is iden-
tical to the one we have followed in large
deviation theory. What is the relation be-
tween the parameters h, x̄ and l, f , and
between the functions I, f and S, y?

This construction generalises in a straightforward manner to the case
where F(X) = (F1(X), . . . , FK(X)) is a vector of K observables and f =

( f1, . . . , fK) is a vector of measurements. The solution of the maximi-
sation of the entropy is again given by Eq. (361) with l = (l1, . . . , lK)

being a vector of parameters, fixed by Eqs. (362), where the derivative
is replaced by the gradient, and lF(x) = Âk lkFk(x) is given by the dot
product.

There are several ways to see that Eq . (361) is the correct choice for
the probability of X that encodes only the information that E [F(X)] =

f , as discussed in 281. Let us discuss one of them. Imagine the situation 281 Y Tikochinsky, NZ Tishby, and
Raphael David Levine. Alternative ap-
proach to maximum-entropy inference.
Physical Review A, 30(5):2638, 1984

where you have a sample of n � 1 values of X, that you think are
drawn from a distribution p(x). Then the analogous of Eq. (360) is

f̄ =
1
n

n

Â
i=1

F(Xi) = Â
x2c

PX(x)F(x) . (367)

where PX(x) is the fraction of times that the outcome x occurs in the
sample X = (X1, . . . , Xn). The number of samples X that correspond
to a given PX = P is

���X : PX = P
 �� =

n!
’x[nP(x)]!

' enH[P]

where the second relation is a trite application of Stirling’s formula.
Then it is clear that, among all the possible distributions P that are
consistent with Eq. (367) those for which H[P] is maximal correspond
to an overwhelmingly larger number of samples. So the probability that
the observed sample is not one of these, is negligibly small as n ! •.

Distributions of maximal entropy are special because the probability
of a sample X = (X1, . . . , Xn)

p(k)(X) =
1

Zn exp

(

Â
k

lk

n

Â
i=1

Fk(Xi)

)

depends on the data only through the empirical averages

f̂k(X) =
1
n

n

Â
i=1

Fk(Xi)



210 lecture notes in probability and information theory or theory of the theories of
everything

of Fk. Therefore these averages contain all the information that is
needed to identify the parameters l of the distribution p(k). All other
information in the sample is uninformative noise. This is why the
empirical averages f̂k are called sufficient statistics. This should not be
surprising. Indeed, the distribution p(k) has been derived precisely as
the one that encodes the state of knowledge in which the values of F,
and only these, are known.

Generalised thermodynamics

Equilibrium: The principle of maximum entropy can also be applied
to a system composed of two or more parts, of which we know the
value of an aggregate quantity. More precisely, let X1 and X2 be two
random variables and imagine that the value

f = E [n1F(X1) + n2F(X2)]

is known. Here n` � 0 can be thought of as the size of system X`, for
` = 1, 2282. The same analysis as before, implies that the maximum 282 Variables that are proportional to the

size of the system n` are called extensive.
Examples in physics include the entropy,
the volume, the energy and the number
of particles. Variables that are indepen-
dent of the system’s size – such as the
temperature, the pressure and the parti-
cle density – are called intensive.

entropy prediction for the combined system is

p(x1, x2) =
1

Z(l)
el[n1F(x1)+n2F(x2)] = pn1l(x1)pn2l(x2).

In other words, in the absence of further information, we need to
assume that X1 and X2 are independent and that their distributions are
given by Eq. (361). In order to check that this is consistent with the
construction above, let S`( f`) be the maximum entropy of X` given that
E [F(X`)] = f`, for ` = 1, 2. Then it must be that

S( f ) = max
f1


S1( f1) + S2

✓
f � n1 f1

n2

◆�
,

where the argument f2 = f �n1 f1
n2

of S2 is determined by the constraint
f = n1 f1 + n2 f2. The first order condition of this maximisation, implies
that

1
n1

dS1
d f1

⌘
l1
n1

=
1
n2

dS2
d f2

⌘
l2
n2

= l . (368)

In words, the maximum entropy principle is associated to a notion of
equilibrium where each of the parts has the same value of l`/n`. This
generalises to systems composed of many parts X`, ` = 1, . . . , L in a
straightforward manner283. 283 In words, in equilibrium all the inten-

sive variables take the same value in each
part of the subsystem.

The first law of thermodynamics: Consider now a slightly dif-
ferent problem where the observables Fk(X) change slightly, i.e. Fk !

Fk + dFk and the measurement also changes fk(x) ! fk(x) + d fk(x).
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This transformation involves an arbitrary (infinitesimal) change of both
the “internal” parameters Fk and of the "external" variables fk, and it can
be regarded as a generalised infinitesimal “thermodynamic” transfor-
mation. The new system is described by new parameters l0

k = lk + dlk,
which are again given by the solution of Eqs. (362). The change in the
entropy, to leading order, can be written as284

284 The entropy at the maximum is given
by

H[pl] = �l f + log Z(l)

where l f = Âk lk Fk stands for the scalar
product. The change in the first term
is given by d(l f ) = dl f + l d f . The
change in the second term instead is
given by d log Z = dlE [F] + lE [dF],
where expected values are taken with re-
spect to pl, and hence E [F] = f so that
the terms proportional to dl cancel.dH = H[pl+dl] � H[pl] '

K

Â
k=1

lkdQk (369)

where
dQk = �d fk + E [dFk(X)] (370)

is a generalised “heat”, that is composed of two parts. The first is due to
to the action d fk of the external variables on the system and the second
is the internal change of the observables. Put differently, the change d fk
of fk in any transformation between maximum entropy states is given
by two terms, one is the “work” E [dFk(X)] done on the system and the
other is due to the change dQk in the information content. Eq. (370) is
the analog of the first law of thermodynamics in physics.

Maxent learning

Maximal entropy – sometimes called maxent – provides a procedure to
learn theories from data. Imagine we’re interested to acquire knowledge
about an unknown quantity X, that we know takes values in a finite
set X 2 c. Our goal is to learn the distribution p(x) = P{X = x} and
to reduce our uncertainty about X. If we’re in a state of total ignorance
about X then our starting point is the maximum entropy distribution
p(0)(x) = 1/|c|. Imagine that we make an experiment and measure285 285 For example, we can take a sample

Y1 = (Y(1)
1 , . . . , Y(N)

1 ) and estimate

E [Y] '
1
N

N

Â
i=1

Y(i)
1 ,

if N is very large.

the observable E [Y1] = E [ f1(X)]. If the value f1 = E [Y1] that we
obtain is consistent with the theory, i.e. if

f1 = Â
x2c

p(0)(x)F1(x)

then the experiment confirms the theory. If it does not, then, in order
to include this observation, the theory has to be modified as

p(1)(x) =
1

Z(1)(l1)
el1F1(x),

where l1 has to be fixed so that Âx2c p(1)(x)F1(x) = ∂ log Z(1)

∂l1
= f1.

This procedure can be repeated by performing further experiments
on other observables Yk = Fk(X), for k = 2, 3, . . .. At each step, if the
prediction of the current theory p(k�1) does not match the outcome
fk of the experiment, i.e. if fk 6= Âx2c p(k�1)(x)Fk(x), then the theory
has to be refined p(k�1)

7! p(k) with the procedure given above. In
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this way the theory p(k) encodes, at each step, all the knowledge that
has been accumulated in past experiments. Notice that if lk = 0 then
p(k) = p(k�1).

The entropy H[p(k)] is clearly a non-increasing function of k, so
it generally decreases in the process of refining the theory286. The 286 Remember our discussion on the mu-

tual information: the knowledge of a ran-
dom variable Y decreases our uncertainty
on X a priori, but a posteriori there may be
values of Y such that the entropy of X is
actually larger. Why is this not the case
in the situation we’re discussing here?

difference H[p(k�1)] � H[p(k)] is the amount of information that is
learned in the kth step.

Continuous variables

It seems natural to generalise the discussion above to continuous vari-
ables X with pdf p(x), by adopting the differential entropy h[X] instead
of H[X] and replacing partial with functional derivatives. So, for ex-
ample, the distribution of maximal (differential) entropy for X 2 [0, •)

with E[X] = µ is the exponential p(x) = µ�1e�x/µ and the distribution
of maximal entropy for X 2 R with E[X] = µ and V[X] = s2 is the
Gaussian

p(x) =
1

p
2ps

e�
(x�µ)2

2s2 .

The main problem with this approach is that re-parametrisation
invariance is lost. Imagine two observers that want to make inference on
the same system and measure the same quantity f. Yet the first observer
represent the observables f(x) as a function of x and the second as a
function of y, where y = f (x), with f (x) a strictly increasing function
of x. Hence, the second observer represents the same quantity with
a different function f̃(y) = f( f �1(y)). On the basis of the same data
f = (f1, . . . , fn) and the same measurement

f̄ =
1
n

n

Â
i=1

fi

their states of knowledge would be encoded in the two distributions

p(x) =
1
Z

eqf(x) , p̃(y) =
1
Z̃

eq̃f̃(y)

respectively, where we assume that the two distributions are normal-
isable (i.e. Z, Z̃ < +•). Yet these correspond to two different states
of knowledge. Indeed, by a change of variable, the pdf p̃(y) for the
second observer would correspond to

p̃(x) = p̃ ( f (x))
d f (x)

dx
=

1
Z̃

eq̃f(x) d f (x)
dx

which is different from p(x). Indeed it is not even a maximum (differ-
ential) entropy distribution287. Indeed, the two observers maximise two 287 For discrete variables X this problem

does not arise. Both observers assign the
same probabilities to corresponding val-
ues of X and Y, because f is a bijection
between discrete values.

different functions h[X] and h[Y] subject to the same constraint. It is
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no wonder that their states of knowledge are different. The problem is
that for continuous variables the differential entropy does not provide
a way to encode a state of complete ignorance, rather it allows us only
to quantify changes in our state of knowledge. The issue of how to
represent, from first principles, a state of ignorance for continuous
variables, corresponds to the problem of choosing the non-informative
prior in Bayesian statistics that is discussed in 288. The bottom line is 288 Edwin T Jaynes. Prior probabilities.

IEEE Transactions on systems science and
cybernetics, 4(3):227–241, 1968

that, when possible, symmetries of the problem can be used to deter-
mine the prior. In order to give a flavour of the argument, imagine we
want to find the pdf p0(x) that encodes the state of complete ignorance
for a random variable X 2 R. We shall call this a prior because this
pdf represents what is known on X before we make any measurement.
Imagine two observers, one that measures the variable X and the other
that measures Y = X + a, with a 2 R a constant. Because of translation
invariance, the state of knowledge of the two observers must be the
same, they both have no clue of what the value of X (or Y) is, i.e. they
should both use the same prior p0. They must also assign the same
probability p0(x)dx = p0(y)dy to the same intervals of X. This means
that p0(x) = p0(x + a) for all values of a, which means that289 289 Exercise: Using the same argument,

show that the prior that encodes a state
of complete ignorance on a positive real
random variable X > 0 is p0(x) = c/x.
This is again an improper prior.

p0(x) = c

must be a constant. The problem is that in order for this pdf to be
normalisable one should have c ! 0, i.e. p0(x) is an improper prior.
In order to understand the origin of the problem, let’s go back to the
discrete case. There, the state of complete ignorance is the one which
is further away from the state of complete knowledge X = x, in terms
of the minimal number of binary questions that need to be asked to
determine X. If X is continuous, it is clear that the minimal number of
binary questions should be infinite. This tallies with the fact that, when
symmetries can be used, one finds improper (i.e. non normalisable)
priors, i.e. priors for which h[X] = +•.

Even if it is disturbing, the fact that p0 is not normalisibale, does not
prevents us from using it in learning. Imagine indeed that we collect a
sample f of n independent observations of the variable f(X), and we
observe that

1
n

n

Â
i=1

f(Xi) = f̄.

Then we can use the machinery of large deviation theory to incorporate
this information in the state of knowledge p0. Formally, the updated
state of knowledge now would read

p(x|f̄) =
p0(x)elf(x)

Z(l)
, Z(l) =

Z •

�•
dxp0(x)elf(x). (371)

If we substitute p0(x) = c, the constant c cancels in both the numerator
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and the denominator. So the fact that p0(x) is improper, does not
prevent p(x|f̄) to be a proper pdf, provided that Z(l) < •290. 290 A limiting procedure that could be ap-

plied is to limit the values of X to the
interval [�1/(2c), 1/(2c)], do the calcu-
lation, and then let c ! 0. This is an
example of a regularisation, a technique
used to remove singularities from a prob-
lem. The prior p0 should be invariant
under affine transformation X0 = a + bX
for all a 2 R and all b > 0. This suggests
that location and scale of a random vari-
able X both need improper priors and
both introduce a singularity that needs to
be regularised. An interesting question,
which is open to the best of my knowl-
edge, is: are these the only (primitive)
singularities or can there be other ones?

Yet there’s another problem with Eq. (361). Take the example where
our current state of knowledge p(0) implies that X is a Gaussian random
variable with mean µ and variance s2. On the basis of this, you would
predict that S = E[X3] should take the value S = µ3 + 3µs2. Imagine
you observe that S is significantly different from this value. What
should you conclude?

If you try to incorporate this information in the distribution, you
end with a distribution

p(1)(x) =
1
Z

el1x+l2x2+l3x3

that cannot be normalised, so the recipe of maximum entropy fails.
There is a way to accommodate the observation S 6= µ3 + 3µs2 that

requires a minimal modification of the distribution p(0). Take

p̃(1)(x) = ed(x � L) + (1 � e)p(0)(x)

then, a trite calculation leads to

E [X] = µ + e(L � µ) (372)

V [X] = s2 + e[s2 + (1 � e)µ(µ � 2L)] (373)

E
h

X3
i

= µ3 + 3µs2 + e
h
L3

� 3µs2
� 3µ3

i
. (374)

If we take
L =

⇣
S � µ3

� 3µs2
⌘1/3

e�1/3

then in the limit e ! 0 we recover all the three observed moments.
At the same time, in this limit, p(1)

! p(0) which is the original
distribution. Formally this is correct, but what does it mean?

The fact that h[ p̃(1)] = h[p(0)] implies that the observation on S does
not dispel any uncertainty on X. The distribution p(1) can be realised
by a sample of n ⇠ e�1 observations of Si = X3

i , in n � 1 of which, Xi is
a typical draw from p(0), and one of them takes value Xi⇤ = L ⇠ n1/3

which is very large. All this is reminiscent of the discussion we had
concerning large deviations of fat tailed distributions.

Indeed the pdf of S, behaves asymptotically as

P{S 2 [s, s + ds)} ⇠ e�c|s|2/3
ds , |s| ! • .

Therefore S has a fat tailed distribution. As we have seen in the
previous chapter, we expect that large deviations (or unexpected events)
of samples drawn from such distributions occur in a peculiar manner,
where one of the points in the sample attains an anomalously large
(or small) value, whereas all the others take typical values. In this
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situation, the observation on S cannot change the state of knowledge
on the variable X.

This indicates what type of observables will bring new information,
in the sense that unexpected events allow us to update our state of
knowledge on X, and what observables do not. This suggests that it
is useless to sample observables which have a fat tailed distribution
under the current state of knowledge, if our goal is to test a theory p(0).

What can we learn?

Remember our discussion on complex systems that maximise a complex
function U(s, s̄) over a set of variables~s = (s, s̄) which are known only
in part, because s̄ are unknown unknowns. We concluded that the
probability to observe a certain value s is given by

P{s⇤ = s} =
1

Z(b)
ebus ,

where us = E [U(s, s̄)|s] is the known part of the function that is
optimised and b > 0 depends on the optimisation over unknown
variables.

If we do not know the function us, can we use the procedure outlined
above to learn it? In other words, can the function us be learned from a
series of experiments?

Let p(0)(s) be the distribution that encodes the current state of knowl-
edge about the system. For a quantity qs, it is possible to compute its
distribution

p(0)(q) = Â
s

p(0)(s)d(q � qs)

Imagine running an experiment where the value qexp is measured.
In particular, for a complex system, we can assume that s is a high
dimensional vector of weakly dependent variables. So that the dis-
tribution of q should be sharply peaked around its expected value
E(0)[q] = Âs p(0)(s)qs, and hence qexp ⇡ E(0)[q].

If qexp ⇡ E(0)[q] within experimental errors, then the state of knowl-
edge p(0) does not need to be updated. Otherwise it has to be revised291. 291 There is a long tradition of experi-

ments designed to test our state of knowl-
edge in physics. For example, until 1964,
we expected that the laws of Nature
should be invariant under time reversal
T. The CPT theorem states that the laws
of Nature should be invariant under the
combined transformation CPT, where C
stands for charge conjugation and P for
parity transformations. The discovery of
the violation of the CP symmetry in ex-
periments on the decays of neutral kaons,
changed our state of knowledge in parti-
cle physics.

In the latter case, the standard recipe to update p(0) is given by Large
Deviation Theory. This maintains that the new distribution should
be such that E(1)[q] = qexp, without assuming anything else. More
precisely, the amount of information that the measurement gives on
the state s is given by the mutual information I(s, q) = DKL(p(1)

||p(0)).
Hence, p(1) should be the distribution with E(1)[q] = qexp for which
DKL(p(1)

||p(0)) is minimal. The distribution that satisfies this require-
ment is

p(1)(s) =
1

Z(g)
p(0)(s)egqs , Z(g) =

Z
dqp(0)(q)egq (375)
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where g is adjusted in such a way to satisfy E(1)[q] = qexp. This process
can be continued with additional measures of different observables
q0

s, qs”, . . ., and, in principle, it leads to infer

bus = log p(0)(s) + gqs + g0q0
s + g”qs” + . . . (376)

to the desired accuracy from a series of experiments.
This recipe, however, only works for quantities which have a dis-

tribution which falls off faster than exponential as q ! ±•. If
� log p(0)(q) ' c|q|g for |q| ! • with g < 1, then the integral defining
Z(g) in Eq. (375) is not defined. There is no well defined way to incor-
porate an observation qexp 6= E [q] in the current state of knowledge in
this case. This clearly applies to us itself. The only models us that can
be learned are those for which the density of states

N (u)du = |{s : us 2 [u, u + du)}|

has thin tails, i.e. decays like or faster than an exponential as u ! •.
In this sense, systems where N (u) have an exponential behaviour with
u are special, because they separates the region of learnable systems
– those for which N (u) has thin tails – from unlearnable one – those
where us has a fat tailed distribution. Interestingly, these are the systems
that are best at learning according to 292. 292 Ryan John Cubero, Junghyo Jo, Matteo

Marsili, Yasser Roudi, and Juyong Song.
Statistical criticality arises in most infor-
mative representations. Journal of Statisti-
cal Mechanics: Theory and Experiment, 2019
(6):063402, jun 2019. doi: 10.1088/1742-
5468/ab16c8; and Matteo Marsili and
Yasser Roudi. Quantifying relevance in
learning and inference. Physics Reports,
963:1–43, 2022


