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Chapter 1

Introduction

These lecture notes concern information-theoretic notions of entropy. They are intended for, and have
been successfully taught to, undergraduate students interested in research careers. Besides basic notions of
analysis related to convergence that are typically taught in the first or second year of undergraduate studies,
no other background is needed to read the notes. The notes might be also of interest to any mathematically
inclined reader who wishes to learn basic facts about notions of entropy in an elementary setting.

As the title indicates, this is the first in a planned series of four lecture notes. The Part II concerns notions of
entropy in study of statistical mechanics, and III/IV are the quantum information theory/quantum statistical
mechanics counterparts of I/II. All four parts target similar audience and are on a similar technical level.
Eventually, Parts I-IV together are intended to be an introductory chapter to a comprehensive volume
dealing with the topic of entropy from a certain point of view on which I will elaborate below.

The research program that leads to these lecture notes concerns the elusive notion of entropy in non-
equilibrium statistical mechanics. It is for this pursuit that the notes are preparing a research-oriented
reader, and it is the pursuit to which the later more advanced topics hope to contribute. Thus, it is important
to emphasize that the choice of topics and their presentation have a specific motivation which may not be
obvious until at least the Part II of the lecture notes is completed. Needless to say, the lecture notes can be
read independently of its motivation, as they provide a concise, elementary, and mathematically rigorous
introduction to the topics they cover.

The theme of this Part I is the Boltzmann–Gibbs–Shannon (BGS) entropy of a finite probability distribu-
tion (p1, · · · , pn), and its various deformations such as the Rényi entropy, the relative entropy, and the
relative Rényi entropy. The BGS entropy and the relative entropy have intuitive and beautiful axiomatic
characterizations discussed in Section 3.4 and Chapter 5. The Rényi entropies also have axiomatic char-
acterizations, but those are perhaps less natural, and we shall not discuss them in detail. Instead, we shall
motivate the Rényi entropies by the so-called Large Deviation Principle (LDP) in probability theory. The
link between the LDP and notions of entropy runs deep and will play a central role in this lecture notes. For
this reason Cramér’s theorem is proven right away in the introductory Chapter 2 (the more involved proof
of Sanov’s theorem is given in Section 5.4). It is precisely this emphasis on the LDP that makes this lecture
notes somewhat unusual in comparison with other introductory presentations of the information-theoretic
entropy.

The Fisher entropy and a related topic of parameter estimation are also an important part of this lecture
notes. The historical background and most of applications of these topics are in the field of statistics.
There is a hope that they may play an important role in study of entropy in non-equilibrium statistical
mechanics, and that is the reason for including them in the lecture notes. Again, Chapters 6 and 7 can
be read independently of this motivation by anyone interested in an elementary introduction to the Fisher
entropy and parameter estimation.

These notes are work in progress, and additional topics may be added in the future.

The notes benefited from the comments of numerous McGill undergraduate students who attended the sem-
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6 CHAPTER 1. INTRODUCTION

inars and courses in which I have taught the presented material. I am grateful for their help and for their
enthusiasm which to a large extent motivated my decision to prepare the notes for publication. In particu-
lar, I am grateful to Sherry Chu, Wissam Ghantous, and Jane Panangaden whose McGill’s undergraduate
summer research projects were linked to the topics of the lecture notes and whose research reports helped
me in writing parts of the notes. I am also grateful to Laurent Bruneau, Noé Cuneo, Tomas Langsetmo,
Renaud Raquépas and Armen Shirikyan for comments and suggestions. I wish to thank Jacques Hurtubise
and David Stephens who, as the chairmans of the McGill Department of Mathematics and Statistics, en-
abled me to teach the material of the notes in a course fomat. Finally, I am grateful to Marisa Rossi for her
exceptional hospitality and support during the period when Chapter 7 was written.

This research that has led to this lecture notes was partly funded by NSERC, Agence Nationale de la

Recherche through the grant NONSTOPS (ANR-17-CE40-0006-01, ANR-17-CE40-0006-02, ANR-17-
CE40-0006-03), the CNRS collaboration grant Fluctuation theorems in stochastic systems, and the Initia-

tive d’excellence Paris-Seine.

1.1 Notes and references.

Shannon’s seminal 1948 paper [Sha], reprinted in [ShaWe], remains a must-read for anyone interested in
notions of entropy. Khintchine’s reworking of the mathematical foundations of Shannon’s theory in early
1950’s, summarized in the monograph [Khi], provides a perspective on the early mathematically rigorous
developments of the subject. For further historical perspective we refer the reader to [Ver] and the detailed
list of references provided there. There are many books dealing with entropy and information theory.
The textbook [CovTh] is an excellent introduction to the subject, [Bill, Gra, Shi] are recommended to
mathematically more advanced reader. Another instructive reference is [CsiKö], where a substantial part
of the material covered in this lecture notes is left as an exercise for the reader!

Discussions of a link between information and statistical mechanics preceded Shannon’s work. Although
Weaver’s remark1 on page 3 of [ShaWe] appears to be historically inaccurate, the discussions of the role
of information in foundations of statistical mechanics goes back at least to the work of L. Szillard [Szi]
in 1929, see also https://plato.stanford.edu/entries/information-entropy/, and
remains to this day a hotly disputed subject; see [GHLS] for a recent discussion. An early discussion can
be found in [Jay1, Jay2]. The textbook [Mer] gives an additional perspective on this topic.

In contrast to equilibrium statistical mechanics whose mathematically rigorous foundations, based on the
19th century works of Boltzmann and Gibbs, were laid in 1960’s and 70’s, the physical and mathematical
theory of non-equilibrium statistical mechanics remains in its infancy. The introduction of non-equilibrium
steady states and the discovery of the fluctuation relations in context of chaotic dynamical systems in
early 1990’s (see [JPR] for references) revolutionized our understanding of some important corners of the
field, and have generated an enormous amount of theoretical, experimental, and numerical works with
applications extending to chemistry and biology. The research program of Claude-Alain Pillet and myself
mentioned in the introduction is rooted in these developments.2 In this program, the search for a notion of
entropy for systems out of equilibrium plays a central role. The planned four parts lecture notes are meant
as an introduction to this search, with this Part I focusing on the information-theoretic notions of entropy.

1" Dr. Shannon’s work roots back, as von Neumann has pointed out, to Boltzmann’s observation, in some of his work on statistical
physics (1894), that entropy is related to "missing information," inasmuch as it is related to the number of alternatives which remain
possible to a physical system after all the macroscopically observable information concerning it has been recorded."

2The references to results of this program are not relevant for this Part I of the lectures and they will be listed in the latter
installements.

https://plato.stanford.edu/entries/information-entropy/


Chapter 2

Elements of probability

2.1 Prologue: integration on finite sets

Let Ω be a finite set. Generic element of Ω is denoted by ω. When needed, we will enumerate elements of
Ω as Ω = {ω1, · · · , ωL}, where |Ω| = L.

A measure on Ω is a map
µ : Ω → R+ = [0,∞[.

The pair (Ω, µ) is called measurable space. The measure of S ⊂ Ω is

µ(S) =
∑

ω∈S

µ(ω).

By definition, µ(∅) = 0.

Let f : Ω → C be a function. The integral of f over S ⊂ Ω is defined by
∫

S

fdµ =
∑

ω∈S

f(ω)µ(ω).

Let Ω and E be two finite sets and T : Ω → E a map. Let µ be a measure on Ω. For ζ ∈ E set

µT (ζ) = µ(T−1(ζ)) =
∑

ω:T (ω)=ζ

µ(ω).

µT is a measure on E induced by (µ, T ). If f : E → C, then
∫

E

fdµT =

∫

Ω

f ◦ Tdµ.

If f : Ω → C, we denote by µf the measure on the set of values E = {f(ω) |ω ∈ Ω} induced by (Ω, f).
µf is called the distribution measure of the function f .

We denote by
ΩN = {ω = (ω1, · · · , ωN) |ωk ∈ Ω},

µN (ω = (ω1, · · · , ωN)) = µ(ω1) · · ·µ(ωN ),

the N -fold product set and measure of the pair (Ω, µ).

Let Ωl/r be two finite sets and µ a measure on Ωl × Ωr. The marginals of µ are measures µl/r on Ωl/r

defined by
µl(ω) =

∑

ω′∈Ωr

µ(ω, ω′), ω ∈ Ωl,

7



8 CHAPTER 2. ELEMENTS OF PROBABILITY

µr(ω) =
∑

ω′∈Ωl

µ(ω′, ω), ω ∈ Ωr.

If µl/r are measures on Ωl/r. we denote by µl ⊗ µr the product measure defined by

µl ⊗ µr(ω, ω
′) = µl(ω)µr(ω

′).

The support of the measure µ is the set

suppµ = {ω |µ(ω) 6= 0}.

Two measures µ1 and µ2 are mutually singular, denoted µ1 ⊥ µ2, iff suppµ1 ∩ suppµ2 = ∅. A measure
µ1 is absolutely continuous w.r.t. another measure µ2, denoted µ1 ≪ µ2, iff suppµ1 ⊂ suppµ2, that is, iff
µ2(ω) = 0 ⇒ µ1(ω) = 0. If µ1 ≪ µ2, the Radon-Nikodym derivative of µ1 w.r.t. µ2 is defined by

∆µ1|µ2
(ω) =

{
µ1(ω)
µ2(ω) if ω ∈ suppµ1

0 if ω 6∈ suppµ1.

Note that ∫

Ω

f∆µ1|µ2
dµ2 =

∫

Ω

fdµ1.

Two measures µ1 and µ2 are called equivalent iff suppµ1 = suppµ2.

Let µ, ρ be two measures on Ω. Then there exists a unique decomposition (called the Lebesgue decompo-
sition) µ = µ1 + µ2, where µ1 ≪ ρ and µ2 ⊥ ρ. Obviously,

µ1(ω) =

{
µ(ω) if ω ∈ supp ρ

0 if ω 6∈ supp ρ,
µ2(ω) =

{
0 if ω ∈ supp ρ

µ(ω) if ω 6∈ supp ρ.

A measure µ is called faithful if µ(ω) > 0 for all ω ∈ Ω.

Proposition 2.1 Let f : Ω → R+, a > 0, and Sa = {ω | f(ω) ≥ a}. Then

µ(Sa) ≤
1

a

∫

Ω

fdµ.

Proof. The statement is obvious is Sa = ∅. If Sa is non-empty,

µ(Sa) =
∑

ω∈Sa

µ(ω) ≤ 1

a

∑

ω∈Sa

f(ω)µ(ω) ≤ 1

a

∫

Ω

fdµ.

�

We recall the Minkowski inequality

(∫

Ω

|f + g|pdµ
)1/p

≤
(∫

Ω

|f |pdµ
)1/p

+

(∫

Ω

|g|pdµ
)1/p

,

where p ≥ 1, and the Hölder inequality

∫

Ω

fgdµ ≤
(∫

Ω

|f |pdµ
)1/p(∫

Ω

|g|qdµ
)1/q

,

where p, q ≥ 1, p−1 + q−1 = 1. For p = q = 2 the Hölder inequality reduces to the Cauchy-Schwarz
inequality.

If f : Ω →] − ∞,∞] or [−∞,∞[, we again set
∫
Ω
fdµ =

∑
ω f(ω)µ(ω) with the convention that

0 · (±∞) = 0.
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2.2 Probability on finite sets

We start with a change of vocabulary adapted to the probabilistic interpretation of measure theory.

A measure P on a finite set Ω is called a probability measure if P (Ω) =
∑

ω∈Ω P (ω) = 1. The pair
(Ω, P ) is called probability space. A set S ⊂ Ω is called an event and P (S) is the probability of the event
S. Points ω ∈ Ω are sometimes called elementary events.

A perhaps most basic example of a probabilistic setting is a fair coin experiment, where a coin is tossed N
times and the outcomes are recorded as Head = 1 and Tail = −1. The set of outcomes is

Ω = {ω = (ω1, · · · , ωN ) |ωk = ±1},
and

P (ω = (ω1, · · · , ωN)) =
1

2N
.

Let S be the event that k Heads and N − k Tails are observed. The binomial formula gives

P (S) =

(
N

k

)
1

2N
.

As another example, let

Sj =

{
ω = (ω1, · · · , ωN)

∣∣ ∑

k

ωk = j

}
,

where −N ≤ j ≤ N . P (Sj) = 0 if N + j is odd. If N + j is even, then

P (Sj) =

(
N

N+j
2

)
1

2N
.

A functionX : Ω → R is called random variable.

The measure PX induced by (P,X) is called the probability distribution of X . The expectation of X is

E(X) =

∫

Ω

XdP.

The moments of X are
Mk = E(Xk), k = 1, 2 · · · ,

and the moment generating function is

M(α) = E(eαX) =
∑

ω∈Ω

eαX(ω)P (ω),

where α ∈ R. Obviously,

Mk =
dk

dαk
M(α)

∣∣
α=0

.

The cumulant generating function of X is

C(α) = logE(eαX) = log

(
∑

ω∈Ω

eαX(ω)P (ω)

)
.

The cumulants of X are

Ck =
dk

dαk
C(α)

∣∣
α=0

, k = 1, 2, · · · .

C1 =M1 = E(X) and
C2 = E(X2)− E(X)2 = E((X − E(X))2).

C2 is called the variance of X and is denoted by Var(X). Note that Var(X) = 0 iff X is constant on
suppP . When we wish to indicate the dependence of the expectation and variance on the underlying
measure P , we shall write EP (X), VarP (X), etc.
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Exercise 2.1. The sequences {Mk} and {Ck} determine each other, i.e., there are functions Fk and
Gk such that

Ck = Fk(M1, · · · ,Mk), Mk = Gk(C1, · · · , Ck).

Describe recursive relations that determine Fk and Gk.

In probabilistic setup Proposition 2.1 takes the form

P ({ω ∈ Ω | |X(ω)| ≥ a}) ≤ 1

a
E(|X |), (2.1)

and is often called Markov or Chebyshev inequality. We shall often use a shorthand and abbreviate the l.h.s
in (2.1) as P{|X(ω)| ≥ a}, etc.

2.3 Law of large numbers

Let (Ω, P ) be a probability space and X : Ω → R a random variable. On the product probability space
(ΩN , PN ) we define

SN (ω = (ω1, · · · , ωN)) =

N∑

k=1

X(ωk).

We shall refer to the following results as the Law of large numbers (LLN).

Proposition 2.2 For any ǫ > 0,

lim
N→∞

PN

{∣∣∣∣
SN (ω)

N
− E(X)

∣∣∣∣ ≥ ǫ

}
= 0.

Remark 2.1 An equivalent formulation of the LLN is that for any ǫ > 0,

lim
N→∞

PN

{∣∣∣∣
SN (ω)

N
− E(X)

∣∣∣∣ ≤ ǫ

}
= 1.

Proof. Denote by EN the expectation w.r.t. PN . Define Xk(ω) = X(ωk) and note that EN (Xk) = E(X),
EN (X2

k) = E(X2), EN (XkXj) = E(X)2 for k 6= j. Then

PN

{∣∣∣∣
SN (ω)

N
− E(X)

∣∣∣∣ ≥ ǫ

}
= PN

{(SN (ω)

N
− E(X)

)2

≥ ǫ2

}

≤ 1

ǫ2
EN

((SN (ω)

N
− E(X)

)2
)

=
1

N2ǫ2
EN


∑

k,j

(Xk − E(Xk))(Xj − E(Xj))




=
1

Nǫ2
Var(X),

and the statement follows. �
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2.4 Cumulant generating function

Let (Ω, P ) be a probability space and X : Ω → R a random variable. In this section we shall study in
some detail the properties of the cumulant generating function

C(α) = logE(eαX).

To avoid discussion of trivialities, until the end of this chapter we shall assume that X is not constant
on suppP , i.e. that X assumes at least two distinct values on suppP . Obviously, the function C(α) is
infinitely differentiable and

lim
α→∞

C′(α) = max
ω

X(ω),

lim
α→−∞

C′(α) = min
ω
X(ω).

(2.2)

Proposition 2.3 C′′(α) > 0 for all α. In particular, the function C is strictly convex.

Remark 2.2 By strictly convex we mean that C′ is strictly increasing, i.e., that the graph of C does not
have a flat piece.

Proof. Set

Qα(ω) =
eαX(ω)P (ω)∑
ω eαX(ω)P (ω)

, (2.3)

and note that Qα is a probability measure on Ω equivalent to P .

One easily verifies that

C′(α) = EQα
(X), C′′(α) = VarQα

(X).

The second identity yields the statement. �

Proposition 2.4 C extends to an analytic function in the strip

|Imα| < π

2

1

maxω |X(ω)| . (2.4)

Proof. Obviously, the function α 7→ E(eαX) is entire analytic. If α = a+ ib, then

E(eαX) =
∑

ω∈Ω

eaX(ω) cos(bX(ω))P (ω) + i
∑

ω∈Ω

eaX(ω) sin(bX(ω))P (ω).

If |bX(ω)| < π/2 for all ω, then the real part of E(eαX) is strictly positive. It follows that the function

LogE(eαX),

where Log is the principal branch of complex logarithm, is analytic in the strip (2.4) and the statement
follows. �

Remark 2.3 Let Ω = {−1, 1}, P (−1) = P (1) = 1/2, X(1) = 1, X(−1) = −1. Then

C(α) = log coshα.

Since cosh(πi/2) = 0, we see that Proposition 2.4 is an optimal result.
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2.5 Rate function

We continue with the framework of the previous section. The rate function of the random variable X is
defined by

I(θ) = sup
α∈R

(αθ − C(α)), θ ∈ R.

In the language of convex analysis, I is the Fenchel-Legendre transform of the cumulant generating func-
tion C. Obviously, I(θ) ≥ 0 for all θ. Set

m = min
ω
X(ω), M = max

ω
X(ω),

and recall the relations (2.2). By the intermediate value theorem, for any θ in ]m,M [ there exists unique
α(θ) ∈ R such that

θ = C′(α(θ)).

The function
α(θ) = (C′)−1(θ)

is infinitely differentiable on ]m,M [, strictly increasing on ]m,M [, α(θ) ↓ −∞ iff θ ↓ m, and α(θ) ↑ ∞
iff θ ↑M .

Exercise 2.2. Prove that the function ]m,M [∋ θ 7→ α(θ) is real-analytic.
Hint: Apply the analytic implicit function theorem.

Proposition 2.5 (1) For θ ∈]m,M [,

I(θ) = α(θ)θ − C(α(θ)).

(2) The function I is infinitely differentiable on ]m,M [.

(3) I ′(θ) = α(θ). In particular, I ′ is strictly increasing on ]m,M [ and

lim
θ↓m

I ′(θ) = −∞, lim
θ↑M

I ′(θ) = ∞.

(4) I ′′(θ) = 1/C′′(α(θ)).

(5) I(θ) = 0 iff θ = E(X).

Proof. To prove (1), note that for θ ∈]m,M [ the function

d

dα
(αθ − C(α)) = θ − C′(α)

vanishes at α(θ), is positive for α < α(θ), and is negative for α > α(θ). Hence, the function α 7→
αθ − C(α) has the global maximum at α = α(θ) and Part (1) follows. Parts (2), (3) and (4) are obvious.
To prove (5), note that if I(θ) = 0 for some θ ∈]m,M [, then, since I is non-negative, we also have
0 = I ′(θ) = α(θ), and the relation θ = C′(α(θ)) = C′(0) = E(X) follows. On the other hand, if
θ = E(X) = C′(0), then α(θ) = 0, and I(θ) = −C(0) = 0. �

Exercise 2.3. Prove that the function I is real-analytic in ]m,M [.

Let
Sm = {ω ∈ Ω |X(ω) = m}, SM = {ω ∈ Ω |X(ω) =M}.
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Proposition 2.6 (1) I(θ) = ∞ for θ 6∈ [m,M ].

(2)

I(m) = lim
θ↓m

I(θ) = − logP (Sm),

I(M) = lim
θ↑M

I(θ) = − logP (SM ).

Proof. (1) Suppose that θ > M . Then

d

dα
(αθ − C(α)) = θ − C′(α) > θ −M.

Integrating this inequality over [0, α] we derive

αθ − C(α) > (θ −M)α,

and so
I(θ) = sup

α∈R

(αθ − C(α)) = ∞.

The case θ < m is similar.

(2) We shall prove only the second formula, the proof of the first is similar. Since the function αM −C(α)
is increasing,

I(M) = lim
α→∞

(αM − C(α)).

Since
C(α) = αM + logP (SM ) + log(1 +A(α)), (2.5)

where

A(α) =
1

P (SM )

∑

ω 6∈SM

eα(X(ω)−M)P (ω),

we derive that I(M) = − logP (SM ).

Since C′(α(θ)) = θ, Part (1) of Proposition 2.5 gives that

lim
θ↑M

I(θ) = lim
α→∞

(αC′(α)− C(α)).

Write

C′(α) =M
1 +B(α)

1 +A(α)
, (2.6)

where

B(α) =
1

MP (SM )

∑

ω 6∈SM

X(ω)eα(X(ω)−M)P (ω).

The formulas (2.5) and (2.6) yield

αC′(α)− C(α) = αM
B(α) −A(α)

1 +A(α)
− logP (SM )− log(1 +A(α)).

Since A(α) and B(α) converge to 0 as α → ∞,

lim
θ↑M

I(θ) = lim
α→∞

(αC′(α) − C(α)) = − logP (SM ).

�

Proposition 2.7

C(α) = sup
θ∈R

(θα− I(θ)). (2.7)
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Proof. To avoid confusion, fix α = α0. Below, α(θ) = (C′)−1(θ) is as in Proposition 2.5.

The supremum in (2.7) is achieved at θ0 satisfying

α0 = I ′(θ0).

Since I ′(θ0) = α(θ0), we have α0 = α(θ0), and

I(θ0) = θ0α(θ0)− C(α(θ0)) = θ0α0 − C(α0).

Hence
sup
θ∈R

(θα0 − I(θ)) = α0θ0 − I(θ0) = C(α0).

�

Returning to the example of Remark 2.3, m = −1, M = 1, C(α) = log coshα, and C′(α) = tanhα.
Hence, for θ ∈]− 1, 1[,

α(θ) = tanh−1(θ) =
1

2
log

1 + θ

1− θ
.

It follows that

I(θ) = θα(θ) − C(α(θ)) =
1

2
(1 + θ) log(1 + θ) +

1

2
(1− θ) log(1− θ).

2.6 Cramér’s theorem

This section is devoted to the proof of Cramér’s theorem:

Theorem 2.8 For any interval [a, b],

lim
N→∞

1

N
logPN

{SN (ω)

N
∈ [a, b]

}
= − inf

θ∈[a,b]
I(θ).

Remark 2.4 To prove this result without loss of generality we may assume that [a, b] ⊂ [m,M ].

Remark 2.5 Note that

inf
θ∈[a,b]

I(θ) =





0 if E(X) ∈ [a, b]

I(a) if a > E(X)

I(b) if b < E(X),

and that

lim
N→∞

1

N
logPN

{SN (ω)

N
=M

}
= logP (SM ) = −I(M),

lim
N→∞

1

N
logPN

{SN (ω)

N
= m

}
= logP (Sm) = −I(m).

We start the proof with

Proposition 2.9 (1) For θ ≥ E(X),

lim sup
N→∞

1

N
logPN

{SN (ω)

N
≥ θ

}
≤ −I(θ).

(2) For θ ≤ E(X),

lim sup
N→∞

1

N
logPN

{SN (ω)

N
≤ θ

}
≤ −I(θ).
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Remark 2.6 Note that if θ < E(X), then by the LLN

lim
N→∞

1

N
logPN

{SN (ω)

N
≥ θ

}
= 0.

Similarly, if θ > E(X),

lim
N→∞

1

N
logPN

{SN (ω)

N
≤ θ

}
= 0.

Proof. For α > 0,

PN {SN (ω) ≥ Nθ} = PN

{
eαSN (ω) ≥ eαNθ

}

≤ e−αNθ
EN

(
eαSN (ω)

)

= e−αNθ
E
(
eαX

)N

= eN(C(α)−αθ).

It follows that

lim sup
N→∞

1

N
logPN

{SN (ω)

N
≥ θ

}
≤ inf

α>0
(C(α) − αθ) = − sup

α>0
(αθ − C(α)).

If θ ≥ E(X), then αθ − C(α) ≤ 0 for α ≤ 0 and

sup
α>0

(αθ − C(α)) = sup
α∈R

(αθ − C(α)) = I(θ).

This yields Part (1). Part (2) follows by applying Part (1) to the random variable −X . �

Exercise 2.4. Using Proposition 2.9 prove that for any ǫ > 0 there exist γǫ > 0 and Nǫ such that for
N ≥ Nǫ,

PN

{∣∣∣∣
SN (ω)

N
− E(X)

∣∣∣∣ ≥ ǫ

}
≤ e−γǫN .

Proposition 2.10 (1) For θ ≥ E(X),

lim inf
N→∞

1

N
logPN

{SN (ω)

N
≥ θ

}
≥ −I(θ).

(2) For θ ≤ E(X),

lim inf
N→∞

1

N
logPN

{SN (ω)

N
≤ θ

}
≥ −I(θ).

Remark 2.7 Note that Part (1) trivially holds if θ < E(X). Similarly, Part (2) trivially holds if θ > E(X).

Proof. We again need to prove only Part (1) (Part (2) follows by applying Part (1) to the random variable
−X). If θ ≥ M , the statement is obvious and so without loss of generality we may assume that θ ∈
[E(X),M [. Fix such θ and choose s and ǫ > 0 such that θ < s− ǫ < s+ ǫ < M .

Let Qα be the probability measure introduced in the proof of Proposition 2.3, and let Qα,N be the induced
product probability measure on ΩN . The measures PN and Qα,N are equivalent, and for ω ∈ suppPN

∆PN |Qα,N
(ω) = e−αSN (ω)+NC(α).
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We now consider the measure Qα,N for α = α(s). Recall that

C′(α(s)) = s = EQα(s)
(X).

Set

TN =

{
ω ∈ ΩN

∣∣ SN (ω)

N
∈ [s− ǫ, s+ ǫ]

}
,

and note that the LLN implies
lim

N→∞
Qα(s),N (TN) = 1. (2.8)

The estimates

PN

{SN (ω)

N
≥ θ

}
≥ PN (TN ) =

∫

TN

∆PN |Qα(s),N
dQα(s),N

=

∫

TN

e−α(s)SN+NC(α(s))dQα(s),N

≥ eN(C(α(s))−sα(s)−ǫ|α(s)|Qα(s),N (TN)

and (2.8) give

lim inf
N→∞

1

N
logPN

{SN (ω)

N
≥ θ

}
≥ C(α(s)) − sα(s) − ǫ|α(s)| = −I(s)− ǫ|α(s)|.

The statement now follows by taking first ǫ ↓ 0 and then s ↓ θ. �

Combining Propositions 2.9 and 2.10 we derive

Corollary 2.11 For θ ≥ E(X),

lim
N→∞

1

N
logPN

{SN (ω)

N
≥ θ

}
= −I(θ).

For θ ≤ E(X),

lim
N→∞

1

N
logPN

{SN (ω)

N
≤ θ

}
= −I(θ).

We are now ready to complete

Proof of Theorem 2.8. If E(X) ∈]a, b[ the result follows from the LLN. Suppose that M > a ≥ E(X).
Then

PN

{SN (ω)

N
∈ [a, b]

}
= PN

{SN (ω)

N
≥ a

}
− PN

{SN (ω)

N
> b

}
.

It follows from Corollary 2.11 that

lim
N→∞

1

N
log


1−

PN

{
SN (ω)

N > b
}

PN

{
SN (ω)

N ≥ a
}


 = 0, (2.9)

and so

lim
N→∞

1

N
logPN

{SN (ω)

N
∈ [a, b]

}
= lim

N→∞

1

N
logPN

{SN (ω)

N
≥ a

}
= −I(a).

The case m < b ≤ E(X) is similar. �
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Exercise 2.5. Write down the proof of (2.9) and of the case m < b ≤ E(X).

Exercise 2.6. Consider the example introduced in Remark 2.3 and prove Cramér’s theorem in this
special case by using Stirling’s formula and a direct combinatorial argument.
Hint: See Theorem 1.3.1 in [Ell].

2.7 Notes and references

Although it is assumed that the student reader had no previous exposure to probability theory, a reading of
additional material could be helpful at this point. Recommended textbooks are [Chu, RohSa, Ross].

For additional information and original references regarding Cramer’s theorem we refer the reader to Chap-
ter 2 of [DeZe]. Reader interested to learn more about theory of large deviations may consult classical refer-
ences [dHoll, DeZe, Ell], and the lecture notes of S.R.S. Varadhanhttps://math.nyu.edu/~varadhan/LDP.html.

It is possible to give a combinatorial proof of Theorem 2.8, as indicated in the Exercise 2.6. The advantage
of the argument presented in this chapter is that it naturally extends to a proof of much more general results
(such as the Gärtner-Ellis theorem) which will be discussed in the Part II of the lecture notes.

https://math.nyu.edu/~varadhan/LDP.html
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Chapter 3

Boltzmann–Gibbs–Shannon entropy

3.1 Preliminaries

Let Ω be a finite set, |Ω| = L, and let P(Ω) be the collection of all probability measures on Ω. P(Ω) is
naturally identified with the set

PL =

{
(p1, · · · , pL) | pk ≥ 0,

L∑

k=1

pk = 1

}
(3.1)

(the identification map is P 7→ (P (ω1), · · ·P (ωL)). We shall often use this identification without further
notice. A convenient metric on P(Ω) is the variational distance

dV (P,Q) =
∑

ω∈Ω

|P (ω)−Q(ω)|. (3.2)

We denote by Pf(Ω) the set of all faithful probability measures on P(Ω) (recall that P ∈ Pf(Ω) iff
P (ω) > 0 for all ω ∈ Ω). Pf(Ω) coincides with the interior of P(Ω) and is identified with

PL,f =

{
(p1, · · · , pL) | pk > 0,

L∑

k=1

pk = 1

}
.

Note that P(Ω) and Pf(Ω) are convex sets.

The probability measure P is called pure if P (ω) = 1 for some ω ∈ Ω. The chaotic probability measure is
Pch(ω) = 1/L, ω ∈ Ω.

We shall often make use of Jensen’s inequality. This inequality states that if f : [a, b] → R is concave, then
for xk ∈ [a, b], k = 1, · · · , n, and (p1, · · · , pn) ∈ Pn,f we have

n∑

k=1

pkf(xk) ≤ f

(
n∑

k=1

pkxk

)
. (3.3)

Moreover, if f is strictly concave the inequality is strict unless x1 = · · · = xn. A similar statement holds
for convex functions.

Exercise 3.1. Prove Jensen’s inequality.

19
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3.2 Definition and basic properties

The entropy function (sometimes called the information function) of P ∈ P(Ω) is1

SP (ω) = −c logP (ω), (3.4)

where c > 0 is a constant that does not depend on P or Ω, and − log 0 = ∞. The function SP takes values
in [0,∞]. The Boltzmann–Gibbs–Shannon entropy (in the sequel we will often call it just entropy) of P is

S(P ) =

∫

Ω

SPdP = −c
∑

ω∈Ω

P (ω) logP (ω). (3.5)

The value of the constant c is linked to the choice of units (or equivalently, the base of logarithm). The
natural choice in the information theory is c = 1/ log 2 (that is, the logarithm is taken in the base 2). The
value of c plays no role in these lecture notes, and from now on we set c = 1 and call

S(P ) = −
∑

ω∈Ω

P (ω) logP (ω)

the Boltzmann–Gibbs–Shannon entropy of P . We note, however, that the constant c will reappear in the
axiomatic characterizations of entropy given in Theorems 3.4 and 3.5.

The basic properties of entropy are:

Proposition 3.1 (1) S(P ) ≥ 0 and S(P ) = 0 iff P is pure.

(2) S(P ) ≤ logL and S(P ) = logL iff P = Pch.

(3) The map P(Ω) ∋ P 7→ S(P ) is continuous and concave, that is, if pk’s are as in (3.3) and Pk ∈ P(Ω),
then

p1S(P1) + · · ·+ pnS(Pn) ≤ S(p1P1 + · · · pnPn), (3.6)

with equality iff P1 = · · · = Pn.

(4) The concavity inequality (3.6) has the following "almost convexity" counterpart:

S(p1P1 + · · ·+ pnPn) ≤ p1S(P1) + · · ·+ pnS(Pn) + S(p1, · · · , pn),

with equality iff suppPk ∩ suppPj = ∅ for k 6= j.

Proof. Parts (1) and (3) follow from the obvious fact that the function [0, 1] ∋ x 7→ −x log x is continuous,
strictly concave, non-negative, and vanishing iff x = 0 or x = 1. Part (2) follows from Jensen’s inequality.

1 Regarding the choice of logarithm, in the introduction of [Sha] Shannon comments: "(1) It is practically more useful. Parameters
of engineering importance such as time, bandwidth, number of relays, etc., tend to vary linearly with the logarithm of the number
of possibilities. For example, adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base
2 logarithm of this number. Doubling the time roughly squares the number of possible messages, or doubles the logarithm, etc. (2)
It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we intuitively measure entities by
linear comparison with common standards. One feels, for example, that two punched cards should have twice the capacity of one for
information storage, and two identical channels twice the capacity of one for transmitting information. (3) It is mathematically more
suitable. Many of the limiting operations are simple in terms of the logarithm but would require clumsy restatement in terms of the
number of possibilities."
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Part (4) follows from the monotonicity of log x:

S(p1P1 + · · ·+ pnPn) =
∑

ω∈Ω

n∑

k=1

−pkPk(ω) log




n∑

j=1

pjPj(ω)




≤
∑

ω∈Ω

n∑

k=1

−pkPk(ω) log (pkPk(ω))

=

n∑

k=1

pk

(
∑

ω∈Ω

−Pk(ω) logPk(ω)

)
−

n∑

k=1

(
∑

ω∈Ω

Pk(ω)

)
pk log pk

=

n∑

k=1

pkS(Pk) + S(p1, · · · , pn).

The equality holds if for all ω and k 6= j, pkPk(ω) > 0 ⇒ pjPj(ω) = 0, which is equivalent to
suppPk ∩ suppPj = ∅ for all k 6= j. �

Suppose that Ω = Ωl × Ωr and let Pl/r be the marginals of P ∈ P(Ω). For a given ω ∈ suppPl the
conditional probability measure Pω

r|l on Ωr is defined by

Pω
r|l(ω

′) =
P (ω, ω′)

Pl(ω)
.

Note that ∑

ω∈suppPl

Pl(ω)P
ω
r|l = Pr.

Proposition 3.2 (1)
S(P ) = S(Pl) +

∑

ω∈Ωl

Pl(ω)S(P
ω
r|l).

(2) The entropy is strictly sub-additive:

S(P ) ≤ S(Pl) + S(Pr),

with the equality iff P = Pl ⊗ Pr.

Proof. Part (1) and the identity S(Pl ⊗ Pr) = S(Pl) + S(Pr) follow by direct computation. To prove (2),
note that Part (3) of Proposition 3.1 gives

∑

ω∈suppPl

Pl(ω)S(P
ω
r|l) ≤ S


 ∑

ω∈suppPl

Pl(ω)P
ω
r|l


 = S(Pr),

and so it follows from Part (1) that S(P ) ≤ S(Pl)+S(Pr) with the equality iff all the probability measures
Pω
r|l, ω ∈ suppPl, are equal. Thus, if the equality holds, then for all (ω, ω′) ∈ Ωl × Ωr, P (ω, ω′) =

C(ω′)Pl(ω). Summing over ω’s gives that P = Pl ⊗ Pr. �

Exercise 3.2. The Hartley entropy of P ∈ P(Ω) is defined by

SH(P ) = log |{ω |P (ω) > 0}|.



22 CHAPTER 3. BOLTZMANN–GIBBS–SHANNON ENTROPY

1. Prove that the Hartley entropy is also strictly sub-additive: SH(P ) ≤ SH(Pl) + SH(Pr), with the
equality iff P = Pl ⊗ Pr.

2. Show that the map P 7→ SH(P ) is not continuous if L ≥ 2.

3.3 Covering exponents and source coding

To gain further insight into the concept of entropy, assume that P is faithful and consider the product
probability space (ΩN , PN ). For given ǫ > 0 let

TN,ǫ =

{
ω = (ω1, · · · , ωN ) ∈ ΩN

∣∣
∣∣∣∣
SP (ω1) + · · ·SP (ωN )

N
− S(P )

∣∣∣∣ < ǫ

}

=

{
ω ∈ ΩN

∣∣
∣∣∣∣−

logPN (ω)

N
− S(P )

∣∣∣∣ < ǫ

}

=
{
ω ∈ ΩN

∣∣ e−N(S(P )+ǫ) < PN (ω) < e−N(S(P )−ǫ)
}
.

The LLN gives
lim

N→∞
PN (TN,ǫ) = 1.

We also have the following obvious bounds on the cardinality of TN,ǫ:

PN (TN,ǫ)e
N(S(P )−ǫ) < |TN,ǫ| < eN(S(P )+ǫ).

It follows that

S(P )− S(Pch)− ǫ ≤ lim inf
N→∞

1

N
log

|TN,ǫ|
|Ω|N ≤ lim sup

N→∞

1

N
log

|TN,ǫ|
|Ω|N ≤ S(P )− S(Pch) + ǫ.

This estimate implies that if P 6= Pch, then, as N → ∞, the measure PN is "concentrated" and "equipar-
tioned" on the set TN,ǫ whose size is "exponentially small" with respect to the size of ΩN .

We continue with the analysis of the above concepts. Let γ ∈]0, 1[ be fixed. The (N, γ) covering exponent
is defined by

cN (γ) = min
{
|A| |A ⊂ ΩN , PN (A) ≥ γ

}
. (3.7)

One can find cN (γ) according to the following algorithm:

(a) List the events ω = (ω1, · · · , ωN ) in order of decreasing probabilities.

(b) Count the events until the first time the total probability is ≥ γ.

Proposition 3.3 For all γ ∈]0, 1[,

lim
N→∞

1

N
log cN (γ) = S(P ).

Proof. Fix ǫ > 0 and recall the definition of TN,ǫ. For N large enough, PN (TN,ǫ) ≥ γ, and so for such
N ’s,

cN (γ) ≤ |TN,ǫ| ≤ eN(S(P )+ǫ).

It follows that

lim sup
N→∞

1

N
log cN (γ) ≤ S(P ).
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To prove the lower bound, let AN,γ be a set for which the minimum in (3.7) is achieved. Let ǫ > 0. Note
that

lim inf
N→∞

PN (TN,ǫ ∩ AN,γ) ≥ γ. (3.8)

Since for PN (ω) ≤ e−N(S(P )−ǫ) for ω ∈ TN,ǫ,

PN (TN,ǫ ∩AN,γ) =
∑

ω∈TN,ǫ∩AN,γ

PN (ω) ≤ e−N(S(P )−ǫ)|TN,ǫ ∩ AN,γ |.

Hence,

|AN,γ | ≥ eN(S(P )−ǫ)PN (TN,ǫ ∩AN,γ),

and it follows from (3.8) that

lim inf
N→∞

1

N
log cN (γ) ≥ S(P )− ǫ.

Since ǫ > 0 is arbitrary,

lim inf
N→∞

1

N
log cN (γ) ≥ S(P ),

and the proposition is proven. �

We finish this section with a discussion of Shannon’s source coding theorem. Given a pair of positive
integers N,M , the encoder is a map

FN : ΩN → {0, 1}M .

The decoder is a map

GN : {0, 1}M → ΩN .

The error probability of the coding pair (FN , GN ) is

PN {GN ◦ FN (ω) 6= ω} .

If this probability is less than some prescribed 1 > ǫ > 0, we shall say that the coding pair is ǫ-good. Note
that to any ǫ-good coding pair one can associate the set

A = {ω |GN ◦ FN (ω) = ω}

which satisfies

PN (A) ≥ 1− ǫ, |A| ≤ 2M . (3.9)

On the other hand, if A ⊂ ΩN satisfies (3.9), we can associate to it an ǫ-good pair (FN , GN ) by setting
FN to be one-one on A (and arbitrary otherwise), and GN = F−1

N on FN (A) (and arbitrary otherwise).

In the source coding we wish to find M that minimizes the compression coefficients M/N subject to an
allowed ǫ-error probability. Clearly, the optimal M is

MN =
[
log2 min

{
|A| |A ⊂ ΩN PN (A) ≥ 1− ǫ

}]
,

where [ · ] denotes the greatest integer part. Shannon’s source coding theorem now follows from Proposition
3.3: the limiting optimal compression coefficient is

lim
N→∞

MN

N
=

1

log 2
S(P ).



24 CHAPTER 3. BOLTZMANN–GIBBS–SHANNON ENTROPY

3.4 Why is the entropy natural?

Set P = ∪ΩP(Ω). In this section we shall consider functions S : P → R that satisfy properties that
correspond intuitively to those of entropy as a measure of randomness of probability measures. The goal
is to show that those intuitive natural demands uniquely specify S up to a choice of units, that is, that for
some c > 0 and all P ∈ P , S(P ) = cS(P ).

We describe first three basic properties that any candidate for S should satisfy. The first is the positivity
and non-triviality requirement: S(P ) ≥ 0 and this inequality is strict for at least one P ∈ P . The second
is that if |Ω1| = |Ω2| and θ : Ω1 → Ω2 is a bijection, then for any P ∈ P(Ω1), S(P ) = S(P ◦ θ). In
other words, the entropy of P should not depend on the labeling of the elementary events. This second
requirement gives that S is completely specified by its restriction S : ∪L≥1PL → [0,∞[ which satisfies

S(p1, · · · , pL) = S(pπ(1), · · · , pπ(L)) (3.10)

for any L ≥ 1 and any permutation π of {1, · · · , L}. In the proof of Theorem 3.5 we shall also assume that

S(p1, · · · , pL, 0) = S(p1, · · · , pL) (3.11)

for all L ≥ 1 and (p1, · · · , pL) ∈ PL. In the literature, the common sense assumption (3.11) is sometimes
called expansibility.

Throughout this section we shall assume that the above three properties hold. We remark that the assump-
tions of Theorem 3.5 actually imply the positivity and non-triviality requirement.

3.4.1 Split additivity characterization

If Ω1,Ω2 are two disjoint sets, we denote by Ω1 ⊕ Ω2 their union (the symbol ⊕ is used to emphasize the
fact that the sets are disjoint). If µ1 is a measure on Ω1 and µ2 is a measure on Ω2, then µ = µ1 ⊕ µ2 is a
measure on Ω1 ⊕ Ω2 defined by µ(ω) = µ1(ω) if ω ∈ Ω1 and µ(ω) = µ2(ω) if ω ∈ Ω2. Two measurable
spaces (Ω1, µ1), (Ω2, µ2) are called disjoint if the sets Ω1, Ω2, are disjoint.

The split additivity characterization has its roots in the identity

S(p1P1 + · · ·+ pnPn) = p1S(P1) + · · ·+ pnS(Pn) + S(p1, · · · , pn)

which holds if suppPk ∩ suppPj = ∅ for k 6= j.

Theorem 3.4 Let S : P → [0,∞[ be a function such that:

(a) S is continuous on P2.

(b) For any finite collection of disjoint probability spaces (Ωj , Pj), j = 1, · · · , n, and any (p1, · · · , pn) ∈
Pn,

S

(
n⊕

k=1

pkPk

)
=

n∑

k=1

pkS(Pk) +S(p1, · · · , pn). (3.12)

Then there exists c > 0 such that for all P ∈ P ,

S(P ) = cS(P ). (3.13)

Remark 3.1 If the positivity and non-triviality assumptions are dropped, then the proof gives that (3.13)
holds for some c ∈ R.

Remark 3.2 The split-additivity property (3.12) is sometimes called the chain rule for entropy. It can be
verbalized as follows: if the initial choices (1, · · · , n), realized with probabilities (p1, · · · , pn), are split
into sub-choices described by probability spaces (Ωk, Pk), k = 1, · · · , n, then the new entropy is the sum
of the initial entropy and the entropies of sub-choices weighted by their probabilities.
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Proof. In what follows, Pn ∈ Pn denotes the chaotic probability measure

Pn =

(
1

n
, · · · , 1

n

)
,

and

f(n) = S(Pn) = S

(
1

n
, · · · , 1

n

)
.

We split the argument into six steps.

Step 1. S(1) = S(0, 1) = 0.

Suppose that |Ω| = 2 and let P = (q1, q2) ∈ P2. Writing Ω = Ω1 ⊕Ω2 where |Ω1| = |Ω2| = 1 and taking
P1 = (1), P2 = (1), p1 = q1, p2 = q2, we get S(q1, q2) = S(1)+S(q1, q2), and so S(1) = 0. Similarly,
the relations

S(0, q1, q2) = q1S(0, 1) + q2S(1) +S(q1, q2),

S(0, q1, q2) = 0 ·S(1) + 1 ·S(q1, q2) +S(0, 1),

yield that S(0, 1) = q1S(0, 1) for all q1, and so S(0, 1) = 0.

Step 2. f(nm) = f(n) + f(m).

Take Ω = Ω1 ⊕ · · · ⊕ Ωm with |Ωk| = n for all 1 ≤ k ≤ m, and set Pk = Pn, pk = 1/m. It then follows
from (3.12) that f(nm) = m · 1

mf(n) + f(m) = f(n) + f(m).

Step 3. limn→∞(f(n)− f(n− 1)) = 0.

In the proof of this step we shall make use of the following elementary result regarding convergence of the
Cesàro means: if (an)n≥1 is a converging sequence of real numbers and limn→∞ an = a, then

lim
n→∞

1

n

n∑

k=1

ak = a.

As an exercise, prove this result.

Set dn = f(n)− f(n− 1), δn = S( 1n , 1− 1
n ). Since f(1) = S(1) = 0,

f(n) = dn + · · ·+ d2.

The relation (3.12) gives

f(n) =

(
1− 1

n

)
f(n− 1) + δn,

and so
nδn = ndn + f(n− 1).

It follows that
n∑

k=2

kδk = nf(n) = n(dn + f(n− 1)) = n(nδn − (n− 1)dn),

which yields

dn = δn − 1

n(n− 1)

n−1∑

k=2

kδk.

By Step 1, limn→∞ δn = 0. Obviously,

0 ≤ 1

n(n− 1)

n−1∑

k=2

kδk ≤ 1

n

n−1∑

k=2

δk,
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and we derive

lim
n→∞

1

n(n− 1)

n−1∑

k=2

kδk = 0.

It follow that limn→∞ dn = 0.

Step 4. There is a constant c such that f(n) = c logn for all n.

By Step 2, for any k ≥ 1,
f(nk)

lognk
=

n

logn
.

Hence, to prove the statement it suffices to show that the limit

c = lim
n→∞

f(n)

logn

exists. To prove that, we will show that g(n) defined by

g(n) = f(n)− f(2)

log 2
logn (3.14)

satisfies

lim
n→∞

g(n)

logn
= 0.

The choice of integer 2 in (3.14) is irrelevant, and the the argument works with 2 replaced by any integer
m ≥ 2.

Obviously, g(nm) = g(n) + g(m) and g(1) = g(2) = 0. Set ξm = g(m)− g(m− 1) if n is odd, ξm = 0
if m is even. By Step 3, limm→∞ ξm = 0. Let n > 1 be given. Write n = 2n1 + r1, where r1 = 0 or
r1 = 1. Then

g(n) = ζn + g(2n1) = ζn + g(n1),

where we used that g(2) = 0. If n1 > 1, write again n1 = 2n1 + r2, where r2 = 0 or r2 = 1, so that

g(n1) = ζn1 + g(n2).

This procedure terminates after k0 steps, that is, when we reach nk0 = 1. Obviously,

k0 ≤ logn

log 2
, g(n) =

k0−1∑

k=0

ζnk
,

where we set n0 = n. Let ǫ > 0 and mǫ be such that for m ≥ mǫ we have |ξm| < ǫ/ log 2. Then

|g(n)|
logn

≤ 1

logn



∑

m≤mǫ

|ξm|


+ ǫ

k0 log 2

logn
≤ 1

logn



∑

m≤mǫ

|ξm|


+ ǫ.

It follows that

lim sup
n→∞

|g(n)|
logn

≤ ǫ.

Since ǫ > 0 is arbitary, the proof is complete.

Step 5. If c is as in Step 4, then
S(q1, q2) = cS(q1, q2).

Let Ω = Ω1 ⊕ Ω2 with |Ω1| = m, |Ω2| = m − n. Applying (3.12) to P1 = Pn, P2 = Pn−m, p1 = n
m ,

p2 = m−n
m , we derive

f(m) =
n

m
f(n) +

m− n

m
f(m− n) +S

(
n

m
,
m− n

m

)
.
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Step 4 gives that

S

(
n

m
,
m− n

m

)
= cS

(
n

m
,
m− n

m

)
.

Since this relation holds for any m < n, the continuity of S and S on P2 yields the statement.

Step 6. We now complete the proof by induction on |Ω|. Suppose that S(P ) = cS(P ) holds for all
P ∈ P(Ω) with |Ω| = n − 1, where c is as in Step 4. Let P = (p1, · · · , pn) be a probability measure on
Ω = Ωn−1⊕Ω1, where |Ωn−1| = n−1, |Ω1| = 1. Without loss of generality we may assume that qn < 1.
Applying (3.12) with

P1 =

(
q1

1− qn
, · · · , qn−1

1− qn

)
,

P2 = (1), p1 = 1− qn, p2 = qn, we derive

S(P ) = cS(P1) + cS(p1, p2) = cS(P ).

This completes the proof. The non-triviality assumption yields that c > 0. �

3.4.2 Sub-additivity characterization

The sub-additivity of entropy described in Proposition 3.2 is certainly a very intuitive property. If the
entropy quantifies randomness of a probability measure P , or equivalently, the amount of information
gained by an outcome of a probabilistic experiment described by P , than the product of marginals Pl ⊗Pr

is certainly more random then P ∈ P(Ωl × Ωr). The Boltzmann–Gibbs–Shannon entropy S and the
Hartley entropy SH introduced in Exercise 3.2 are strictly sub-additive, and so is any linear combination

S = cS + CSH , (3.15)

where c ≥ 0, C ≥ 0, and at least one of these constants is strictly positive. It is a remarkable fact
that the strict sub-additivity requirement together with the obvious assumption (3.11) selects (3.15) as the
only possible choices for entropy. We also note the strict sub-additivity assumption selects the sign of the
constants in (3.15), and that here we can omit the assumption (a) of Theorem 3.4.

Theorem 3.5 Let S : P → [0,∞[ be a strictly sub-additive map, namely if Ω = Ωl ×Ωr and P ∈ P(Ω),
then

S(P ) ≤ S(Pl) +S(Pr)

with equality iff P = Pl ⊗Pr. Then there are constants c ≥ 0, C ≥ 0, c+C > 0, such that for all P ∈ P ,

S(P ) = cS(P ) + CSH(P ). (3.16)

If in addition S is continuous on P2, then C = 0 and S = cS for some c > 0.

Proof. We denote by Sn the restriction of S to Pn. Note that the sub-additivity implies that

S2n(p11, p12, · · · , pn1, pn2) ≤ S2(p11 + · · ·+ pn1, p12 + · · ·+ pn2)

+Sn(p11 + p12, · · · , pn1 + pn2).
(3.17)

For x ∈ [0, 1] we set x = 1− x. The function

F (x) = S2(x, x) (3.18)

will play an important role in the proof. It follows from (3.10) that F (x) = F (x). By taking Pl = Pr =
(1, 0), we see that

2F (0) = S(Pl) +S(Pr) = S(Pl ⊗ Pr) = S(1, 0, 0, 0) = S(1, 0) = F (0),
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and so F (0) = 0.

We split the proof into eight steps.

Step 1. For all q, r ∈ [0, 1] and (p, p3, · · · , pn) ∈ Pn−1, n ≥ 3, one has

S2(q, q)−S2(p q + pr, pq + pr) ≤ Sn(pq, pq, p3, · · · , pn)−Sn(pr, pr, p3, · · · , pn)

≤ S2(p r + pq, pr + rq) −S2(r, r).
(3.19)

By interchanging q and r, it suffices to prove the first inequality in (3.19). We have

S2(q, q) +Sn(pr, pr, p3, · · · , pn) = S2n(qpr, qpr, qpr, qpr, qp3, qp3, · · · , qpn, qpn)

= S2n(qpr, qpr, qpr, qpr, qp3, qp3, · · · , qpn, qpn)

≤ S2(qpr + qpr + q(p3 + · · ·+ pn), qpr + qpr + q(p3 + · · ·+ pn))

+Sn(qpr + qpr, qpr + qpr, qp3 + qp3, · · · , qpn + qpn)

= S2(p q + pr, pq + pr) + Sn(pr, pr, p3, · · · , pn).

The first equality follows from (3.10) and the first inequality from (3.17). The final equality is elementary
(we used that p+ p3 + · · · pn = 1).

Step 2. The function F , defined by (3.18), is increasing on [0, 1/2], decreasing on [1/2, 1], and is continu-
ous and concave on ]0, 1[. Morever, for q ∈]0, 1[ the left and right derivatives

D+F (q) = lim
h↓0

F (q + h)− F (q)

h
, D−F (q) = lim

h↑0

F (q + h)− F (q)

h

exist, are finite, and D+F (q) ≥ D−F (q).

We first establish the monotonicity statement. Note that the inequality of Step 1

S2(q, q)−S2(p q + pr, pq + pr) ≤ S2(p r + pq, pr + rq) −S2(r, r) (3.20)

with r = q gives

2S2(q, q) ≤ S2((1− p)(1− q) + pq, (1− p)q + p(1− q))

+S2((1 − p)q + p(1− q), (1− p)(1− q) + pq),

or equivalently, that
F (q) ≤ F ((1 − p)q + p(1− q)). (3.21)

Fix q ∈ [0, 1/2] and note that [0, 1] ∋ p 7→ (1−p)q+p(1−q) is the parametrization of the interval [q, 1−q].
Since F (q) = F (1 − q), we derive that F (q) ≤ F (x) for x ∈ [q, 1/2], and that F (x) ≥ F (1 − q) for
x ∈ [1/2, q]. Thus, F is increasing on [0, 1/2] and decreasing on [1/2, 1]. In particular, for all x ∈ [0, 1],

F (1/2) ≥ F (x) ≥ 0, (3.22)

where we used that F (0) = F (1) = 0.

We now turn to the continuity and concavity, starting with continuity first. The inequality (3.20) with
p = 1/2 gives that for any q, r ∈ [0, 1],

1

2
F (q) +

1

2
F (r) ≤ F

(
1

2
q +

1

2
r

)
. (3.23)

Fix now q ∈]0, 1[, set λn = 2−n and, starting with large enough n so that q ± λn ∈ [0, 1], define

∆+
n (q) =

F (q + λn)− F (q)

λn
, ∆−

n (q) =
F (q − λn)− F (−q)

−λn
.
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It follows from (3.23) that the sequence ∆+
n (q) is increasing, that the sequence ∆−

n (q) is decreasing , and
that ∆+

n (q) ≤ ∆−
n (q) (write down the details!). Hence, the limits

lim
n→∞

∆+
n (q), lim

n→∞
∆−

n (q)

exists, are finite, and
lim
n→∞

F (q ± λn) = F (q). (3.24)

The established monotonicity properties of F yield that the limits limh↓0 F (q + h) and limh↑0 F (q + h)
exist. Combining this observation with (3.24), we derive that

lim
h→0

F (q + h) = F (q),

and so F is continuous on ]0, 1[. We now prove the concavity. Replacing r with (q + r)/2 in (3.23), we
get that

λF (q) + (1− λ)F (r) ≤ F (λq + (1− λ)r) (3.25)

holds for λ = 3/4, while replacing q with (q+r)/2 shows that (3.25) holds for λ = 1/4. Continuing in this
way shows that (3.25) holds for all dyadic fractions λ = k/2n, 1 ≤ k ≤ 2n, n = 1, 2, · · · . Since dyadic
fractions are dense in [0, 1], the continuity of F yields that (3.25) holds for λ ∈ [0, 1] and q, r ∈]0, 1[.
Finally, to prove the statement about the derivatives, fix q ∈]0, 1[ and for h > 0 small enough consider the
functions

∆+(h) =
F (q + h)− F (q)

h
, ∆−(h) =

F (q − h)− F (q)

−h .

The concavity of F gives that the function h 7→ ∆+(h) is increasing, that h 7→ ∆−(h) is increasing, and
that ∆+(h) ≤ ∆−(h). This establishes the last claim of the Step 2 concerning left and right derivatives of
F on ]0, 1[.

Step 3. There exist functions Rn : Pn → R, n ≥ 2, such that

Sn(pq, pq, p3, · · · , pn) = pF (q) +Rn−1(p, p3, · · · , pn) (3.26)

for all q ∈]0, 1[, (p, p3, · · · , pn) ∈ Pn−1 and n ≥ 2.

To prove this, note that the Step 1 and the relation F (x) = F (x) give

F (pq + pq)− F (pq + pr)

q − r
≤ Sn(pq, pq, p3, · · · , pn)− Sn(pr, pr, p3, · · · , pn)

q − r

≤ F (pq + pr)− F (pr + pr)

q − r

(3.27)

for 0 < r < q < 1 and (p, p3, · · · , pn) ∈ Pn. Fix (p, p3, · · · , pn) ∈ Pn and set

L(q) = Sn(pq, pq, p3, · · · , pn).

Taking q ↓ r in (3.27) we get
pD−F (r) = D−L(r),

while taking r ↑ q gives
pD+F (q) = D+L(q).

Since D±F (q) is finite by Step 2, we derive that the function L(q)− pF (q) is differentiable on ]0, 1[ with
vanishing derivative. Hence, for q ∈]0, 1[,

L(q) = pF (q) +Rn−1(p, p3, · · · , pn),

where the constant Rn−1 depends on the values (p, p3, · · · , pn) we have fixed in the above argument.
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Step 4. There exist constants c ≥ 0 and C such that for all q ∈]0, 1[,

F (q) = cS(1− q, q) + C. (3.28)

We start the proof by taking (p1, p2, p3) ∈ P3,f . Setting

p = p1 + p2, q =
p2

p1 + p2
,

we write
S3(p1, p2, p3) = S3(pq, pq, p3).

It then follows from Step 3 that

S3(p1, p2, p3) = (p1 + p2)S2

(
p1

p1 + p2
,

p2
p1 + p2

)
+R2(p1 + p2, p3). (3.29)

By (3.10) we also have

S3(p1, p2, p3) = S3(p1, p3, p2) = (p1 + p3)S2

(
p1

p1 + p3
,

p3
p1 + p3

)
+R2(p1 + p3, p3). (3.30)

Setting G(x) = R2(x, x), x = p3, y = p2, we rewrite (3.29)=(3.30) as

(1− x)F

(
y

1− x

)
+G(x) = (1− y)F

(
x

1− y

)
+G(y), (3.31)

where x, y ∈]0, 1[ and x+ y < 1. The rest of the proof concerns analysis of the functional equation (3.31).

Since F is continuous on ]0, 1[, fixing one variable one easily deduces from (3.31) thatG is also continuous
on ]0, 1[. Let 0 < a < b < 1 and fix y ∈]0, 1− b[. It follows that (verify this!)

x

1− y
∈
]
a,

b

1− y

]
⊂ ]0, 1[,

y

1− x
∈
]
y,

y

1− b

]
⊂ ]0, 1[.

Integrating (3.31) with respect to x over [a, b] we derive

(b− a)G(y) =

∫ b

a

G(y)dx

=

∫ b

a

G(x)dx +

∫ b

a

(1− x)F

(
y

1− x

)
dx− (1− y)

∫ b

a

F

(
x

1− y

)
dx

=

∫ b

a

G(x)dx + y2
∫ y/(1−b)

y/(1−a)

s−3F (s)ds− (1− y)2
∫ b/(1−y)

a/(1−y)

F (t)dt,

(3.32)

where we have used the change of variable

s =
y

1− x
, t =

x

1− y
. (3.33)

It follows that G is differentiable on ]0, b[. Since 0 < b < 1 is arbitrary,G is differentiable on ]0, 1[.

The change of variable (3.33) maps bijectively {(x, y) |x, y > 0} to {(s, t) | s, t ∈]0, 1[} (verify this!), and
in this new variables the functional equation (3.31) reads

F (t) =
1− t

1− s
F (s) +

1− st

1− s

[
G

(
t− st

1− st

)
−G

(
s− st

1− st

)]
. (3.34)
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Fixing s, we see that the differentiablity of G implies the differentiability of F on ]0, 1[. Returning to
(3.32), we get that G is twice differentiable on ]0, 1[, and then (3.34) gives that F is also twice differen-
tiable on ]0, 1[. Continuing in this way we derive that both F and G are infinitely differentiable on ]0, 1[.
Differentiating (3.31) first with respect to x and then with respect to y gives

y

(1 − x)2
F ′′

(
y

1− x

)
=

x

(1− y)2
F ′′

(
x

1− y

)
. (3.35)

The substitution (3.33) gives that for s, t ∈]0, 1[,

s(1− s)F ′′(s) = t(1− t)F ′′(t).

It follows that for some c ∈ R,
t(1− t)F ′′(t) = −c.

Integration gives
F (t) = cS(1− t, t) +Bt+ C.

Since F (t) = F (t), we have B = 0, and since F is increasing on [0, 1/2], we have c ≥ 0. This completes
the proof of the Step 4. Note that as a by-product of the proof we have derived that for some constant D,

G(x) = F (x) +D, x ∈]0, 1[. (3.36)

To prove (3.36), note that (3.28) gives that F satisfies the functional equation

(1− x)F

(
y

1− x

)
+ F (x) = (1− y)F

(
x

1− y

)
+ F (y).

Combining this equation with (3.31) we derive that for x, y > 0, 0 < x+ y < 1,

G(x)− F (x) = G(y)− F (y).

Hence, G(x)− F (x) = Dy for x ∈]0, 1− y[. If y1 < y2, we must have Dy1 = Dy2 , and so D = Dy does
not depend on y, which gives (3.36).

Step 5. For any n ≥ 2 there exists constant C(n) such that for (p1, · · · , pn) ∈ Pn,f ,

Sn(p1, · · · , pn) = cS(p1, · · · , pn) + C(n), (3.37)

where c ≥ 0 is the constant from the Step 4.

In the Step 4 we established (3.37) for n = 2 (we set C(2) = C), and so we assume that n ≥ 3. Set
p = p1 + p2, q = p2/(p1 + p2). It then follows from Steps 3 and 4 that

Sn(p1, · · · , pn) = (p1 + p2)S2

(
p1

p1 + p2
,

p2
p1 + p2

)
+Rn−1(p1 + p2, p3, · · · , pn)

= (p1 + p2)cS

(
p1

p1 + p2
,

p2
p1 + p2

)
+ R̂n−1(p1 + p2, p3, · · · , pn),

(3.38)

where R̂n−1(p, p3, · · · , pn) = pC2 +Rn−1(p, p3, · · · , pn). Note that since Rn−1 is invariant under the
permutations of the variables (p3, · · · , pn) (recall (3.38)), so is R̂n−1. The invariance of Sn under the
permutation of the variables gives

Sn(p1, · · · , pn) = (p1 + p3)cS

(
p1

p1 + p3
,

p3
p1 + p3

)
+ R̂n−1(p1 + p3, p2, p4 · · · , pn),

and so

(p1 + p2)cS

(
p1

p1 + p2
,

p2
p1 + p2

)
− (p1 + p3)cS

(
p1

p1 + p3
,

p3
p1 + p3

)

= R̂n−1(p1 + p2, p3, · · · , pn)− R̂n−1(p1 + p3, p2, p4 · · · , pn).
(3.39)
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Until the the end of the proof when we wish to indicate the number of variables in the Boltzmann–Gibbs–
Shannon entropy we will write Sn(p1, · · · , pn). One easily verifies that

Sn(p1, · · · , pn) = (p1 + p2)S2

(
p1

p1 + p2
,

p2
p1 + p2

)
+ Sn−1(p1 + p2, p3, · · · , pn)

= (p1 + p3)S2

(
p1

p1 + p3
,

p3
p1 + p3

)
+ Sn−1(p1 + p3, p2, p4, · · · , pn),

and so

(p1 + p2)S2

(
p1

p1 + p2
,

p2
p1 + p2

)
− (p1 + p3)S2

(
p1

p1 + p3
,

p3
p1 + p3

)

= Sn−1(p1 + p2, p3, · · · , pn)− Sn−1(p1 + p3, p2, p4 · · · , pn).
(3.40)

Since in the formulas (3.39) and (3.40) S = S2, we derive that the function

Tn−1(p, q, p4, · · · , pn) = R̂n−1(p, q, p4, · · · , pn)− cSn−1(p, q, p4, · · · , pn)

satisfies
Tn−1(p1 + p2, p3, p4, · · · , pn) = Tn−1(p1 + p3, p2, p4, · · · , pn) (3.41)

for all (p1, · · · pn) ∈ Pn,f . Moreover, by construction, Tn−1(p, q, p4, · · · , pn) is invariant under the per-
mutation of the variables (q, p4, · · · , pn). Set s = p1 + p2 + p3. Then (3.41) reads as

Tn−1(s− p3, p3, p4, · · · , pn) = Tn−1(s− p2, p2, p− p4, · · · , pn).

Hence, the map
]0, s[∋ p 7→ Tn−1(s− p, p, p4, · · · , pn)

is contant. By the permutation invariance, the maps

]0, s[∋ p 7→ Tn−1(s− p, p3, · · · , pm−1, p, pm+1, · · · )

are also constant. Setting s = p1 + p2 + p3 + p4, we deduce that the map

(p3, p4) 7→ Tn−1(s− p3 − p4, p3, p4, · · · , pn)

with domain p3 > 0, p4 > 0, p3 + p4 < s, is constant. Continuing inductively, we conclude that the map

(p3, · · · , pn) 7→ Tn−1(1 − (p3 + · · ·+ pn), p3, p4, · · · , pn)

with domain pk > 0,
∑n

k=3 pk < 1 is constant. Hence, the map

Pn,f ∋ (p1, · · · , pn) 7→ Tn−1(p1 + p2, p3, · · · , pn)

is constant, and we denote the value it assumes by C(n). Returning now to (3.38), we conclude the proof
of (3.37):

Sn(p1, · · · , pn) = (p1 + p2)cS2

(
p1

p1 + p2
,

p2
p1 + p2

)
+ R̂n−1(p1 + p2, p3, · · · , pn)

= (p1 + p2)cS2

(
p1

p1 + p2
,

p2
p1 + p2

)
+ cSn−1(p1 + p2, p3, · · · , pn) + C(n)

= cSn(p1, · · · , pn) + C(n).

(3.42)

Step 6. C(n+m) = C(n)C(m) for n,m ≥ 2, and

lim inf
n→∞

(C(n+ 1)− C(n)) = 0. (3.43)
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If Pl ∈ Pn and Pr ∈ Pm, then the identity Snm(Pl × Pr) = Sn(Pl) + S(Pr) and (3.37) give that
C(n + m) = C(n) + C(m). To prove (3.43), suppose that n ≥ 3 and take in (3.19) q = 1/2, r = 0,
p = p3 = · · · = pn = 1/(n− 1). Then, combining (3.19) with Step 5, we derive

F

(
1

2

)
− F

(
n− 2

2(n− 1)

)

≤ Sn

(
1

2(n− 1)
,

1

2(n− 1)
,

1

n− 1
, · · · , 1

n− 1

)
−Sn

(
1

n− 1
, 0,

1

n− 1
, · · · 1

n− 1

)

= cSn

(
1

2(n− 1)
,

1

2(n− 1)
,

1

n− 1
, · · · , 1

n− 1

)
− cSn−1

(
1

n− 1
,

1

n− 1
, · · · 1

n− 1

)

+ C(n)− C(n− 1)

=
log 2

n− 1
+ C(n)− C(n− 1).

The first inequality in (3.22) gives

0 ≤ log 2

n− 1
+ C(n)− C(n− 1),

and the statement follows.

Step 7. There is a constant C ≥ 0 such that for all n ≥ 2, C(n) = C logn.

Fix ǫ > 0 and n > 1. Let k ∈ N be such that for all integers p ≥ nk, C(p + 1) − C(p) ≥ −ǫ. It follows
that for p ≥ pk and j ∈ N,

C(p+ j)− C(p) =

j∑

i=1

(C(p+ i)− C(p+ i− 1)) ≥ −jǫ.

Fix now p ≥ nk and let m ∈ N be such that nm ≤ p < nm+1. Obviously,m ≥ k. Write

p = amn
m + am−1n

m−1 + · · ·+ a1p+ a0,

where ak’s are integers such that 1 ≤ am < n and 0 ≤ ak < n for k < m. It follows that

C(p) > C(amn
m + · · ·+ a1n)− nǫ = C(n) + C(amn

m−1 + · · ·+ a2n+ a1)− nǫ.

Continuing inductively, we derive that

C(p) > (m− k + 1)C(n) + C(amn
k−1 + am−1n

k−2 + · · ·+ am−k+1)− (m− k + 1)ǫ.

If M = max2≤j≤nk+1 |C(j)|, then the last inequality gives

C(p) > (m− k + 1)C(n)−M − (m− k + 1)ǫ.

By the choice of m, log p ≤ (m+ 1) logn, and so

lim inf
p→∞

C(p)

log p
≥ C(n)

log n
.

Since

lim inf
n→∞

C(p)

log p
≤ lim inf

j→∞

C(nj)

lognj
=
C(n)

n
,

we derive that for all n ≥ 2,
C(n) = C logn,
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where

C = lim inf
p→∞

C(p)

p
.

It remains to show that C ≥ 0. Since

F (x) = cS2(1− x, x) + C log 2,

we have limx↓0 F (x) = C log 2, and (3.22) yields that C ≥ 0.

Step 8. We now conclude the proof. Let P = (p1, · · · , pn) ∈ Pn. Write

P = (pj1 , · · · , pjk , 0, · · · , 0),

where pjm > 0 for m = 1, · · · , k. Then

Sn(P ) = Sk(pj1 , · · · , pjk) = cSk(pj1 , · · · , pjk) + C log k = cSn(P ) + CSH(P ).

Since Sn is strictly sub-additive, we must have c+C > 0. The final statement is a consequence of the fact
that SH is not continuous on Pn for n ≥ 2. �

3.5 Rényi entropy

Let Ω be a finite set and P ∈ P(Ω). For α ∈]0, 1[ we set

Sα(P ) =
1

1− α
log

(
∑

ω∈Ω

P (ω)α

)
.

Sα(P ) is called the Rényi entropy of P .

Proposition 3.6 (1) limα↑1 Sα(P ) = S(P ).

(2) limα↓0 Sα(P ) = SH(P ).

(3) Sα(P ) ≥ 0 and Sα(P ) = 0 iff P is pure.

(4) Sα(P ) ≤ log |Ω| with equality iff P = Pch.

(5) The map ]0, 1[∋ α 7→ Sα(P ) is decreasing and is strictly decreasing unless P = Pch.

(6) The map P(Ω) ∋ P 7→ Sα(P ) is continuous and concave.

(7) If P = Pl ⊗ Pr is a product measure on Ω = Ωl × Ωr, then Sα(P ) = Sα(Pl) + Sα(Pr).

(8) The map α 7→ Sα(P ) extends to a real analytic function on R by the formulas S1(P ) = S(P ) and

Sα(P ) =
1

1− α
log




∑

ω∈suppP

P (ω)α


 , α 6= 1.

Exercise 3.3. Prove Proposition 3.6.

Exercise 3.4. Describe properties of Sα(P ) for α 6∈ ]0, 1[.
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Exercise 3.5. Let Ω = {−1, 1} × {−1, 1}, 0 < p, q < 1, p+ q = 1, p 6= q, and

Pǫ(−1,−1) = pq + ǫ, Pǫ(−1, 1) = p(1− q)− ǫ,

Pǫ(1,−1) = (1 − p)q − ǫ, Pǫ(1, 1) = (1− p)(1 − q) + ǫ.

Show that for α 6= 1 and small non-zero ǫ,

Sα(Pǫ) > Sα(Pǫ,l) + Sα(Pǫ,r).

Hence, Rényi entropy is not sub-additive (compare with Theorem 3.5).

3.6 Why is the Rényi entropy natural?

In introducing Sα(P ) Rényi was motivated by a concept of generalized means. Let wk > 0,
∑n

k=1 wk = 1
be weights and G :]0,∞[→ ]0,∞[ a continuous strictly increasing function. We shall call such G a mean

function. The G -mean of strictly positive real numbers x1, · · · , xn is

SG(x1, · · · , xn) = G−1

(
n∑

k=1

wkG(xk)

)
.

Set Pf = ∪n≥1Pn,f .

One then has:

Theorem 3.7 Let S : Pf → [0,∞[ be a function with the following properties.

(a) If P = Pl ⊗ Pr, then S(P ) = S(Pl) +S(Pr).

(b) There exists a mean function G such that for all n ≥ 1 and P = (p1, · · · , pn) ∈ Pn,f ,

S(p1, · · · , pn) = G−1 (EP (G(SP ))) = G−1

(
n∑

k=1

pkG(− log pk)

)
.

(c) S(p, 1− p) → 0 as p→ 0.

Then there exists α > 0 and a constant c ≥ 0 such that for all P ∈ Pf ,

S(P ) = cSα(P ).

Remark 3.3 The assumption (c) excludes the possibility α ≤ 0.

Remark 3.4 If in addition one requires that the map Pn,f ∋ P → S(P ) is concave for all n ≥ 1, then
S(P ) = cSα(P ) for some α ∈]0, 1].

Although historically important, we find that Theorem 3.7 (and any other axiomatic characterization of the
Rényi entropy) is less satisfactory then the powerful characterizations of the Boltzmann–Gibbs–Shannon
entropy given in Section 3.4. Taking Boltzmann–Gibbs–Shannon entropy for granted, an alternative un-
derstanding of the Rényi entropy arises through Cramér’s theorem for the entropy function SP . For the
purpose of this interpretation, without loss of generality we may assume that P ∈ P(Ω) is faithful. Set

Ŝα(P ) = log

(
∑

ω∈Ω

[P (ω)]1−α

)
, α ∈ R. (3.44)



36 CHAPTER 3. BOLTZMANN–GIBBS–SHANNON ENTROPY

Obviously, for α ∈ R,
Ŝα(P ) = αS1−α(P ). (3.45)

The naturalness of the choice (3.44) stems from the fact that the function α 7→ Ŝα(P ) is the cumulant
generating function of SP (ω) = − logP (ω) with respect to P ,

Ŝα(P ) = logEP (e
αSP ). (3.46)

Passing to the products (ΩN , PN ), the LLN gives that for any ǫ > 0,

lim
N→∞

PN

{
ω = (ω1, · · · , ωN) ∈ ΩN

∣∣
∣∣∣∣
SP (ω1) + · · ·SP (ωN )

N
− S(P )

∣∣∣∣ ≥ ǫ

}
= 0. (3.47)

It follows from Cramér’s theorem that the rate function

I(θ) = sup
α∈R

(αθ − Ŝα(P )), θ ∈ R, (3.48)

controls the fluctuations that accompany the limit (3.47):

lim
N→∞

1

N
logPN

{
ω = (ω1, · · · , ωN) ∈ ΩN

∣∣ SP (ω1) + · · ·SP (ωN )

N
∈ [a, b]

}
= − inf

θ∈[a,b]
I(θ). (3.49)

We shall adopt a point of view that the relations (3.45), (3.48), and (3.49) constitute the foundational basis
for introduction of the Rényi entropy. In accordance with this interpretation, the traditional definition of
the Rényi entropy is somewhat redundant, and one may as well work with Ŝα(P ) from the beginning and
call it the Rényi entropy of P (or α-entropy of P when there is a danger of confusion).

The basic properties of the map α 7→ Ŝα(P ) follow from (3.46) and results described in Section 2.4. Note
that S0(P ) = 0 and S1(P ) = log |Ω|. The map Pf(Ω) ∋ P 7→ Ŝα(P ) is convex for α 6∈ [0, 1] and concave
for α ∈]0, 1[.

3.7 Notes and references

The celebrated expression (3.5) for entropy of a probability measure goes back to 1870’s and works of
Boltzmann and Gibbs on the foundations of statistical mechanics. This will be discussed in more detail
in Part II of the lecture notes. Shannon has rediscovered this expression in his work on foundations of
mathematical information theory [Sha]. The results of Section 3.2 and 3.3 go back to this seminal work.
Regarding Exercise 3.2, Hartley entropy was introduced in [Har]. Hartley’s work has partly motivated
Shannon’s [Sha].

Shannon was also first to give an axiomatization of entropy. The axioms in [Sha] are the continuity of
S on Pn for all n, the split-additivity (3.12), and the monotonicity S(Pn+1) < S(Pn), where P k ∈
Pk is the chaotic probability measures. Shannon then proved that the only functions S satisfying these
properties are cS, c > 0. Theorem 3.4 is in spirit of Shannon’s axiomatization, with the monotonicity
axiom S(Pn+1) < S(Pn) dropped and the continuity requirement relaxed; see Chapter 2 in [AczDa] for
additional information and Theorem 2.2.3 in [Thi] whose proof we roughly followed. We leave it as an
exercise for the reader to simplify the proof of Theorem 3.4 under additional Shannon’s axioms.

Shannon comments in [Sha] on the importance of his axiomatization as

This theorem, and the assumptions required for its proof, are in no way necessary for the

present theory. It is given chiefly to lend a certain plausibility to some of our later definitions.

The real justification of these definitions, however, will reside in their implications.

The others beg to differ on its importance, and axiomatizations of entropies became an independent research
direction, starting with early works of Khintchine [Khi] and Faddeev [Fadd]. Much of these efforts are
summarized in the monograph [AczDa], see also [Csi].
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The magnificent Theorem 3.5 is due to Aczél, Forte, and Ng [AcFoNg]. I was not able to simplify their
arguments and the proof of Theorem 3.5 follows closely the original paper. The Step 7 is due to [Kát]. The
proof of Theorem 3.5 can be also found in [AczDa], Section 4.4. An interesting exercise that may elucidate
a line of thought that has led to the proof of Theorem 3.5 is to simplify various steps of the the proof by
making additional regularity assumptions.

Rényi entropy has been introduced in [Rén]. Theorem 3.7 was proven in [Dar]; see Chapter 5 in [AczDa]
for additional information.
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Chapter 4

Relative entropy

4.1 Definition and basic properties

Let Ω be a finite set and P,Q ∈ P(Ω). If P ≪ Q, the relative entropy function of the pair (P,Q) is defined
for ω ∈ suppP by

cSP |Q(ω) = cSQ(ω)− cSP (ω) = c logP (ω)− c logQ(ω) = c log∆P |Q(ω),

where c > 0 is a constant that does not depend on Ω, P,Q. The relative entropy of P with respect to Q is

S(P |Q) = c

∫

suppP

SP |QdP = c
∑

ω∈suppP

P (ω) log
P (ω)

Q(ω)
. (4.1)

If P is not absolutely continuous with respect to Q (i.e., Q(ω) = 0 and P (ω) > 0 for some ω), we set

S(P |Q) = ∞.

The value of the constant c will play no role in the sequel, and we set c = 1. As in the case of entropy, the
constant c will reappear in the axiomatic characterizations of relative entropy (see Theorems 5.1 and 5.2).

Note that
S(P |Pch) = −S(P ) + log |Ω|.

Proposition 4.1 S(P |Q) ≥ 0 and S(P |Q) = 0 iff P = Q.

Proof. We need to consider only the case P ≪ Q. By Jensen’s inequality,

∑

ω∈suppP

P (ω) log
Q(ω)

P (ω)
≤ log




∑

ω∈suppP

Q(ω)


 ,

and so ∑

ω∈suppP

P (ω) log
Q(ω)

P (ω)
≤ 0

with equality iff P = Q. �

The next result refines the previous proposition. Recall that the variational distance dV (P,Q) is defined by
(3.2).

Theorem 4.2

S(P |Q) ≥ 1

2
dV (P,Q)2. (4.2)

The equality holds iff P = Q.

39
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Proof. We start with the elementary inequality

(1 + x) log(1 + x) − x ≥ 1

2

x2

1 + x
3

, x ≥ −1. (4.3)

This inequality obviously holds for x = −1, so we may assume that x > −1. Denote the l.h.s by F (x) and
the r.h.s. by G(x). One verifies that F (0) = F ′(0) = G(0) = G′(0) = 0, and that

F ′′(x) =
1

1 + x
, G′′(x) =

(
1 +

x

3

)−3

.

Obviously, F ′′(x) > G′′(x) for x > −1, x 6= 0. Integrating this inequality we derive that F ′(x) > G′(x)
for x > 0 and F ′(x) < G′(x) for x ∈]− 1, 0[. Integrating these inequalities we get F (x) ≥ G(x) and that
equality holds iff x = 0.

We now turn to the proof of the theorem. We need only to consider the case P ≪ Q. Set

X(ω) =
P (ω)

Q(ω)
− 1,

with the convention that 0/0 = 0. Note that
∫
Ω
XdQ = 0 and that

S(P |Q) =

∫

Ω

((X + 1) log(X + 1)−X) dQ.

The inequality (4.3) implies

S(P |Q) ≥ 1

2

∫

Ω

X2

1 + X
3

dQ, (4.4)

with the equality iff P = Q. Note that

∫

Ω

(
1 +

X

3

)
dQ = 1,

and that Cauchy-Schwarz inequality gives

∫

Ω

X2

1 + X
3

dQ =

(∫

Ω

(
1 +

X

3

)
dQ

)(∫

Ω

X2

1 + X
3

dQ

)
≥
(∫

Ω

|X |dQ
)2

= dV (P,Q)2. (4.5)

Combining (4.4) and (4.5) we derive the statement. �

Exercise 4.1. Prove that the estimate (4.2) is the best possible in the sense that

inf
P 6=Q

S(P |Q)

dV (P,Q)2
=

1

2
.

Set
A(Ω) = {(P,Q) |P,Q ∈ P(Ω), P ≪ Q}. (4.6)

One easily verifies that A(Ω) is a convex subset of P(Ω)× P(Ω). Obviously,

A(Ω) = {(P,Q) |S(P |Q) <∞}.

Note also that P(Ω)× Pf(Ω) is a dense subset of A(Ω).
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Proposition 4.3 The map

A(Ω) ∋ (P,Q) 7→ S(P |Q)

is continuous, and the map

P(Ω)× P(Ω) ∋ (P,Q) 7→ S(P |Q) (4.7)

is lower semicontinuous.

Exercise 4.2. Prove the above proposition. Show that if |Ω| > 1 and Q is a boundary point of P(Ω),
then there is a sequence Pn → Q such that limn→∞ S(Pn|Q) = ∞. Hence, the map (4.7) is not
continuous except in the trivial case |Ω| = 1.

Proposition 4.4 The relative entropy is jointly convex: for λ ∈]0, 1[ and P1, P2, Q1, Q2 ∈ P(Ω),

S(λP1 + (1 − λ)P2|λQ1 + (1− λ)Q2) ≤ λS(P1|Q1) + (1− λ)S(P2|Q2). (4.8)

Moreover, if the r.h.s. in (4.8) is finite, the equality holds iff for ω ∈ suppQ1 ∩ suppQ2 we have

P1(ω)/Q1(ω) = P2(ω)/Q2(ω).

Remark 4.1 In particular, if Q1 ⊥ Q2 and the r.h.s. in (4.8) is finite, then P1 ⊥ P2 and the equality holds
in (4.8). On the other hand, if Q1 = Q2 = Q and Q is faithful,

S(λP1 + (1− λ)P2|Q) ≤ λS(P1|Q) + (1− λ)S(P2|Q).

with the equality iff P1 = P2. An analogous statement holds if P1 = P2 = P and P is faithful.

Proof. We recall the following basic fact: if g :]0,∞[→ R is concave, then the function

G(x, y) = xg
( y
x

)
(4.9)

is jointly concave on ]0,∞[×]0,∞[. Indeed, for λ ∈]0, 1[,

G(λx1 + (1− λ)x2, λy1 + (1− λ)y2)

= (λx1 + (1 − λ)x2)g

(
λx1

λx1 + (1 − λ)x2

y1
x1

+
(1 − λ)x2

λx1 + (1− λ)x2

y2
x2

)

≥ λG(x1, y1) + (1− λ)G(x2, y2),

(4.10)

and if g is strictly concave, the inequality is strict unless y1

x1
= y2

x2
.

We now turn to the proof. Without loss of generality we may assume that P1 ≪ Q1 and P2 ≪ Q2. One
easily shows that then also λP1 + (1− λ)P2 ≪ λQ1 + (1− λ)Q2. For any ω ∈ Ω we have that

(λ1P1(ω) + (1− λ)P2(ω)) log
λ1P1(ω) + (1− λ)P2(ω)

λ1Q1(ω) + (1− λ)Q2(ω)

≤ λP1(ω) log
P1(ω)

Q1(ω)
+ (1− λ)P2(ω) log

P2(ω)

Q2(ω)
.

(4.11)

To establish this relation, note that if P1(ω) = P2(ω) = 0, then (4.11) holds with the equality. If P1(ω) = 0
and P2(ω) > 0, the inequality (4.11) is strict unless Q1(ω) = 0, and similarly in the case P1(ω) > 0,
P2(ω) = 0. If P1(ω) > 0 and P2(ω) > 0, then taking g(t) = log t in (4.9) and using the joint concavity of
G gives that (4.11) holds and that the inequality is strict unless P1(ω)/Q1(ω) = P2(ω)/Q2(ω). Summing
(4.11) over ω we derive the statement. The discussion of the cases where the equality holds in (4.8) is
simple and is left to the reader. �

The relative entropy is super-additive in the following sense:



42 CHAPTER 4. RELATIVE ENTROPY

Proposition 4.5 For any P and Q = Ql ⊗Qr in P(Ωl × Ωr),

S(Pl|Ql) + S(Pr|Qr) ≤ S(P |Q). (4.12)

Moreover, if the r.h.s. in (4.12) is finite, the equality holds iff P = Pl ⊗ Pr.

Proof. We may assume that P ≪ Q, in which case one easily verifies that Pl ≪ Ql and Pr ≪ Qr. One
computes

S(P |Q)− S(Pl|Ql)− S(Pr|Qr) = S(Pl) + S(Pr)− S(P ),

and the result follows from Proposition 3.2. �

In general, for P,Q ∈ P(Ωl×Ωr) it is not true that S(P |Q) ≥ S(Pl|Ql)+S(Pr|Qr) even if P = Pl⊗Pr.

Exercise 4.3. Find an example of faithful P = Pl ⊗ Pr, Q ∈ P(Ωl × Ωr) where |Ωl| = |Ωr| = 2
such that

S(P |Q) < S(Pl|Ql) + S(Pr|Qr).

LetΩ = (ω1, · · · , ωL), Ω̂ = {ω̂1, · · · , ω̂L̂} be two finite sets. A matrix of real numbers [Φ(ω, ω̂)](ω,ω̂)∈Ω×Ω̂

is called stochastic if Φ(ω, ω̂) ≥ 0 for all pairs (ω, ω̂) and
∑

ω̂∈Ω̂

Φ(ω, ω̂) = 1

for all ω ∈ Ω. A stochastic matrix induces a map Φ : P(Ω) → P(Ω̂) by

Φ(P )(ω̂) =
∑

ω∈Ω

P (ω)Φ(ω, ω̂).

We shall refer to Φ as the stochastic map induced by the stochastic matrix [Φ(ω, ω̂)]. One can interpret the
elements of Ω and Ω̂ as states of two stochastic systems and P (ω) as probability that the state ω is realized.
Φ(ω, ω̂) is interpreted as the transition probability, i.e. the probability that in a unit of time the system will
make a transition from the state ω to the state ω̂. With this interpretation, the probability that the state ω̂ is
realized after the transition has taken place is Φ(P )(ω̂).

Note that if [Φ(ω, ω̂)](ω,ω̂)∈Ω×Ω̂ and [Φ̂(ω̂, ˆ̂ω)]
(ω̂, ˆ̂ω)∈Ω̂×

̂̂
Ω

are stochastic matrices, then their product is also

stochastic matrix and that the induced stochastic map is Φ̂ ◦ Φ. Another elementary property of stochastic
maps is:

Proposition 4.6 dV (Φ(P ),Φ(Q)) ≤ dV (P,Q).

Exercise 4.4. Prove Proposition 4.6. When the equality holds?

The following result is deeper.

Proposition 4.7

S(Φ(P )|Φ(Q)) ≤ S(P |Q). (4.13)

Remark 4.2 In information theory, the inequality (4.13) is sometimes called the data processing inequal-

ity. We shall refer to it as the stochastic monotonicity. If the relative entropy is interpreted as a measure
of distinguishability of two probability measures, then the inequality asserts that probability measures are
less distinguishable after an application of a stochastic map.
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Proof. We start with the so called log-sum inequality: If aj , bj , j = 1, · · · ,M, are non-negative numbers,
then

M∑

j=1

aj log
aj
bj

≥
M∑

j=1

aj log

∑M
k=1 ak∑M
k=1 bk

, (4.14)

with the usual convention that 0 log 0/x = 0. If bj = 0 and aj > 0 for some j, then l.h.s is ∞ and there is
nothing to prove. If aj = 0 for all j again there is nothing to prove. Hence, without loss of generality we
may assume that

∑
j aj > 0,

∑
bj > 0, and bj = 0 ⇒ aj = 0. Set p = (p1, · · · , pM ), pk = ak/

∑
j aj ,

q = (q1, · · · , qM ), qk = bk/
∑

j bj . Then the inequality (4.14) is equivalent to

S(p|q) ≥ 0.

This observation and Proposition 4.1 prove (4.14).

We now turn to the proof. Clearly, we need only to consider the case P ≪ Q. Then

S(Φ(P )|Φ(Q)) =
∑

ω̂∈Ω̂

Φ(P )(ω̂) log
Φ(P )(ω̂)

Φ(Q)(ω̂)

=
∑

ω̂∈Ω̂

∑

ω∈Ω

P (ω)Φ(ω, ω̂) log

∑
ω′∈Ω P (ω

′)Φ(ω′, ω̂)∑
ω′∈ΩQ(ω′)Φ(ω′, ω̂)

≤
∑

ω̂∈Ω̂

∑

ω∈Ω

P (ω)Φ(ω, ω̂) log
P (ω)

Q(ω)

= S(P |Q),

where the third step follows from the log-sum inequality. � �

Exercise 4.5. A stochastic matrix [Φ(ω, ω̂)] is called doubly stochastic if

∑

ω∈Ω

Φ(ω, ω̂) =
|Ω|
|Ω̂|

for all ω̂ ∈ Ω̂. Prove that S(P ) ≤ S(Φ(P )) for all P ∈ P(Ω) iff [Φ(ω, ω̂)] is doubly stochastic.
Hint: Use that Φ(Pch) = P̂ch iff [Φ(ω, ω̂)] is doubly stochastic.

Exercise 4.6. Suppose that Ω = Ω̂. Let γ = min(ω1,ω2)Φ(ω1, ω2) and suppose that γ > 0.

1. Show that S(Φ(P )|Φ(Q)) = S(P |Q) iff P = Q.

2. Show that
dV (Φ(P ),Φ(Q)) ≤ (1− γ)dV (P,Q).

3. Using Part 2 show that there exists unique probability measure Q such that Φ(Q) = Q. Show that
Q is faithful and that for any P ∈ P(Ω),

dV (Φ
n(P ), Q) ≤ (1 − γ)ndV (P,Q),

where Φ2 = Φ ◦Φ, etc.
Hint: Follow the proof of the Banach fixed point theorem.
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Exercise 4.7. The stochastic monotonicity yields the following elegant proof of Theorem 4.2.

1. Let P,Q ∈ P(Ω) be given, where |Ω| ≥ 2. Let T = {ω : P (ω) ≥ Q(ω)} and

p = (p1, p2) = (P (T ), P (T c)), q = (q1, q2) = (Q(T ), Q(T c)),

be probability measures on Ω̂ = {1, 2}. Find a stochastic map Φ : P(Ω) → P(Ω̂) such that Φ(P ) =
p, Φ(Q) = q.

2. Since S(P |Q) ≥ S(p|q) and dV (P,Q) = dV (p, q), observe that to prove Theorem 4.2 it suffices
to show that for all p, q ∈ P(Ω̂),

S(p|q) ≥ 1

2
dV (p, q)

2. (4.15)

3. Show that (4.15) is equivalent to the inequality

x log
x

y
+ (1− x) log

1− x

1− y
≥ 2(x− y)2, (4.16)

where 0 ≤ y ≤ x ≤ 1. Complete the proof by establishing (4.16).
Hint: Fix x > 0 and consider the function

F (y) = x log
x

y
+ (1− x) log

1− x

1− y
− 2(x− y)2

on ]0, x]. Since F (x) = 0, it suffices to show that F ′(y) ≤ 0 for y ∈]0, x[. Direct computation gives
F ′(y) ≤ 0 ⇔ y(1− y) ≤ 1

4 and the statement follows.

The log-sum inequality used in the proof Proposition 4.7 leads to the following refinement of Proposition
4.4.

Proposition 4.8 Let P1, · · · , Pn, Q1, · · · , Qn ∈ P(Ω) and p = (p1, · · · , pn), q = (q1, · · · , qn) ∈ Pn.

Then

S(p1P1 + · · ·+ pnPn|q1Q1 + · · ·+ qnQn) ≤ p1S(P1|Q1) + · · ·+ pnS(Pn|Qn) + S(p|q). (4.17)

If the r.h.s. in (4.17) is finite, then the equality holds iff for all j, k such that qj > 0, qk > 0,

pjPj(ω)

qjQj(ω)
=
pkPk(ω)

qkQk(ω)

holds for all ω ∈ suppQk ∩ suppQj .

Exercise 4.8. Deduce Proposition 4.8 from the log-sum inequality.

4.2 Variational principles

The relative entropy is characterized by the following variational principle.

Proposition 4.9

S(P |Q) = sup
X:Ω→R

(∫

Ω

XdP − log

∫

suppP

eXdQ

)
. (4.18)
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If S(P |Q) <∞, then the supremum is achieved, and each maximizer is equal to SP |Q + const on suppP
and is arbitrary otherwise.

Proof. Suppose that Q(ω0) = 0 and P (ω0) > 0 for some ω0 ∈ Ω. Set Xn(ω) = n if ω = ω0 and zero
otherwise. Then ∫

Ω

XndP = nP (ω0),

∫

suppP

eXndQ = Q(suppP ).

Hence, if P is not absolutely continuous w.r.t. Q the relation (4.18) holds since both sides are equal to ∞.

Suppose now that P ≪ Q. For given X : Ω → R set

QX(ω) =
eX(ω)Q(ω)∑

ω′∈suppP eX(ω′)Q(ω′)

if ω ∈ suppP and zero otherwise. QX ∈ P(Ω) and

S(P |QX) = S(P |Q)−
(∫

Ω

XdP − log

∫

suppP

eXdQ

)
.

Hence,

S(P |Q) ≥
∫

Ω

XdP − log

∫

suppP

eXdQ

with equality iff P = QX . Obviously, P = QX iff X = SP |Q + const on suppP and is arbitrary
otherwise. �

Exercise 4.9. Show that

S(P |Q) = sup
X:Ω→R

(∫

Ω

XdP − log

∫

Ω

eXdQ

)
. (4.19)

When is the supremum achieved? Use (4.19) to prove that the map (P,Q) 7→ S(P |Q) is jointly
convex.

Proposition 4.10 The following dual variational principle holds: for X : Ω → R and Q ∈ P(Ω),

log

∫

Ω

eXdQ = max
P∈P(Ω)

(∫

Ω

XdP − S(P |Q)

)
.

The maximizer is unique and is given by

PX,Q(ω) =
eX(ω)Q(ω)∑

ω′∈Ω eX(ω′)Q(ω′)
.

Proof. For any P ≪ Q,

log

∫

Ω

eXdQ−
∫

Ω

XdP + S(P |Q) = S(P |PX,Q),

and the result follows from Proposition 4.1. �

Setting Q = Pch in Propositions 4.9 and 4.10, we derive the variational principle for entropy and the
respective dual variational principle.

Proposition 4.11 (1)

S(P ) = inf
X:Ω→R

(
log

(
∑

ω∈Ω

eX(ω)

)
−
∫

Ω

XdP

)
.

The infimum is achieved if P is faithful and X = −SP + const.
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(2) For any X : Ω → R,

log

(
∑

ω∈Ω

eX(ω)

)
= max

P∈P(Ω)

(∫

Ω

XdP + S(P )

)
.

The maximizer is unique and is given by

P (ω) =
eX(ω)

∑
ω′∈Ω eX(ω′)

.

4.3 Stein’s Lemma

Let P,Q ∈ P(Ω) and let PN , QN be the induced product probability measures on ΩN . For γ ∈]0, 1[ the
Stein exponents are defined by

sN (γ) = min
{
QN(T ) |T ⊂ ΩN , PN (T ) ≥ γ

}
. (4.20)

The following result is often called Stein’s Lemma.

Theorem 4.12

lim
N→∞

1

N
log sN (γ) = −S(P |Q).

Remark 4.3 If Q = Pch, then Stein’s Lemma reduces to Proposition 3.3. In fact, the proofs of the two
results are very similar.

Proof. We deal first with the case S(P |Q) <∞. Set SP |Q(ω) = 0 for ω 6∈ suppP and

SN (ω = (ω1, · · · , ωN)) =
N∑

j=1

SP |Q(ωj).

For given ǫ > 0 let

RN,ǫ =

{
ω ∈ ΩN

∣∣ SN (ω)

N
≥ S(P |Q)− ǫ

}
.

By the LLN,
lim

N→∞
PN (RN,ǫ) = 1,

and so for N large enough, PN (RN,ǫ) ≥ γ. We also have

QN(RN,ǫ) = QN

{
eSN (ω) ≥ eNS(P |Q)−Nǫ

}
≤ eNǫ−NS(P |Q)

EQN
(eSN ).

Since

EQN
(eSN ) =

(∫

Ω

∆P |QdQ

)N

= 1,

we derive

lim sup
N→∞

1

N
log sN (γ) ≤ −S(P |Q) + ǫ.

Since ǫ > 0 is arbitrary,

lim sup
N→∞

1

N
log sN (γ) ≤ −S(P |Q).

To prove the lower bound, let UN,γ be the set for which the minimum in (4.20) is achieved. Let ǫ > 0 be
given and let

DN,ǫ =

{
ω ∈ ΩN

∣∣ SN (ω)

N
≤ S(P |Q) + ǫ

}
.
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Again, by the LLN,

lim
N→∞

PN (DN,ǫ) = 1,

and so for N large enough, PN (DN,ǫ) ≥ γ. We then have

PN (UN,γ ∩DN,ǫ) =

∫

UN,γ∩DN,ǫ

∆PN |QN
dQN =

∫

UN,γ∩DN,ǫ

eSNdQN

≤ eNS(P |Q)+NǫQN (UN,γ ∩DN,ǫ)

≤ eNS(P |Q)+NǫQN (UN,γ).

Since

lim inf
N→∞

PN (UN,γ ∩DN,ǫ) ≥ γ,

we have

lim inf
N→∞

1

N
sN (γ) ≥ −S(P |Q)− ǫ.

Since ǫ > 0 is arbitrary,

lim inf
N→∞

1

N
sN (γ) ≥ −S(P |Q).

This proves Stein’s Lemma in the case S(P |Q) <∞.

We now deal with the case S(P |Q) = ∞. For 0 < δ < 1 set Qδ = (1 − δ)Q + δP . Obviously,
S(P |Qδ) <∞. Let sN,δ(γ) be the Stein exponent of the pair (P,Qδ). Then

sN,δ(γ) ≥ (1− δ)NsN (γ),

and

−S(P |Qδ) = lim
N→∞

1

N
log sN,δ(γ) ≥ log(1− δ) + lim inf

N→∞

1

N
log sN(γ).

The lower semicontinuity of relative entropy gives limδ→0 S(P |Qδ) = ∞, and so

lim
N→∞

1

N
log sN (γ) = ∞ = −S(P |Q).

�

Exercise 4.10. Prove the following variant of Stein’s Lemma. Let

s = inf
(TN )

{
lim inf
N→∞

1

N
QN (TN ) | lim

N→∞
PN (T c

N ) = 0

}
,

s = inf
(TN )

{
lim sup
N→∞

1

N
QN (TN ) | lim

N→∞
PN (T c

N ) = 0

}
,

where the infimum is taken over all sequences (TN )N≥1 of sets such that TN ⊂ ΩN for all N ≥ 1.
Then

s = s = −S(P |Q).



48 CHAPTER 4. RELATIVE ENTROPY

4.4 Fluctuation relation

Let Ω be a finite set and P ∈ Pf(Ω). Let Θ : Ω → Ω be a bijection such that

Θ2(ω) = Θ ◦Θ(ω) = ω (4.21)

for all ω. We set PΘ(ω) = P (Θ(ω)). Obviously, PΘ ∈ Pf(Ω). The relative entropy function

SP |PΘ
(ω) = log

P (ω)

PΘ(ω)

satisfies
SP |PΘ

(Θ(ω)) = −SP |PΘ
(ω), (4.22)

and so the set of values of SP |PΘ
is symmetric with respect to the origin. On the other hand,

S(P |PΘ) = EP (S(P |PΘ)) ≥ 0

with equality iff P = PΘ. Thus, the probability measure P "favours" positive values of SP |PΘ
. Proposition

4.13 below is a refinement of this observation.

Let Q be the probability distribution of the random variable S(P |PΘ) w.r.t. P . We recall that Q is defined
by

Q(s) = P
{
ω |SP |PΘ

(ω) = s
}
.

Obviously,Q(s) 6= 0 iff Q(−s) 6= 0.

The following result is known as the fluctuation relation.

Proposition 4.13 For all s,
Q(−s) = e−sQ(s).

Proof. For any α,

EP

(
e−αSP |PΘ

)
=
∑

ω∈Ω

[PΘ(ω)]
α[P (ω)]1−α

=
∑

ω∈Ω

[PΘ(Θ(ω))]α[P (Θ(ω))]1−α

=
∑

ω∈Ω

[P (ω)]α[PΘ(ω)]
1−α

= EP

(
e−(1−α)SP |PΘ

)
.

Hence, if S = {s |Q(s) 6= 0},
∑

s∈S

e−αsQ(s) =
∑

s∈S

e−(1−α)sQ(s) =
∑

s∈S

e(1−α)sQ(−s),

and so ∑

s∈S

e−αs(Q(s)− esQ(−s)) = 0. (4.23)

Since (4.23) holds for all real α, we must have that Q(s)− esQ(−s) = 0 for all s ∈ S, and the statement
follows. �

Remark 4.4 The assumption that P is faithful can be omitted if one assumes in addition that Θ preserves
suppP . If this is the case, one can replace Ω with suppP , and the above proof applies.
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Exercise 4.11. Prove that the fluctuation relation implies (4.22).

Exercise 4.12. This exercise is devoted to a generalization of the fluctuation relation which has also
found fundamental application in physics. Consider a family {PX}X∈Rn of probability measures on
Ω indexed by vectors X = (X1, · · · , Xn) ∈ R

n. Set

EX(ω) = log
PX(ω)

PX(ΘX(ω))
,

where ΘX satisfies (4.21). Suppose that E0 = 0 and consider a decomposition

EX =

n∑

k=1

XkFX,k, (4.24)

where the random variables FX,k satisfy

FX,k ◦ΘX = −FX,k. (4.25)

We denote by QX the probability distribution of the vector random variable (FX,1, · · · ,FX,n) with
respect to PX : for s = (s1, · · · , sn) ∈ Rn,

QX(s) = PX {ω ∈ Ω | FX,1 = s1, · · · ,FX,n = sn} .

We also denote S = {s ∈ Rn |QX(s) 6= 0} and, for Y = (Y1, · · · , Yn) ∈ Rn, set

G(X,Y ) =
∑

s∈S

e−
∑

k skYkQX(s).

1. Prove that a decomposition (4.24) satisfying (4.25) always exists and that, except in trivial cases, is
never unique.

2. Prove that QX(s) 6= 0 iff QX(−s) 6= 0.

3. Prove that
G(X,Y ) = G(X,X − Y ).

4. Prove that
QX(−s) = e−

∑
k skXkQX(s).

4.5 Jensen-Shannon entropy and metric

The Jensen-Shannon entropy of two probability measures P,Q ∈ P(Ω) is

SJS(P |Q) = S(M(P,Q))− 1

2
S(P )− 1

2
S(Q)

=
1

2
(S (P |M(P,Q)) + S (Q|M(P,Q))) ,
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where

M(P,Q) =
P +Q

2
.

The Jensen-Shannon entropy can be viewed as a measure of concavity of the entropy. Obviously,SJS(P |Q) ≥
0 with equality iff P = Q. In addition:

Proposition 4.14 (1)
SJS(P |Q) ≤ log 2,

with equality iff P ⊥ Q.

(2)
1

8
dV (P,Q)2 ≤ SJS(P |Q) ≤ dV (P,Q) log

√
2.

The first inequality is saturated iff P = Q and the second iff P = Q or P ⊥ Q.

Proof. Part (1) follows from

SJS(P |Q) =
1

2

∑

ω∈Ω

(
P (ω) log

(
2P (ω)

P (ω) +Q(ω)

)
+Q(ω) log

(
2Q(ω)

P (ω) +Q(ω)

))

≤ 1

2

∑

ω∈Ω

(P (ω) +Q(ω)) log 2

= log 2.

To prove (2), we start with the lower bound:

SJS(P |Q) =
1

2
S(P |M(P,Q)) +

1

2
S(Q|M(P |Q))

≥ 1

4
dV (P,M(P,Q))2 +

1

4
dV (Q,M(P,Q))2

=
1

8

(
∑

ω∈Ω

|P (ω)−Q(ω)|
)2

=
1

8
dV (P |Q)2,

where the inequality follows from Theorem 4.2.

To prove the upper bound, set S+ = {ω |P (ω) ≥ Q(ω)}, S− = {ω |P (ω) < Q(ω)}. Then

SJS(P |Q) =
1

2

∑

ω∈S+

(
P (ω) log

(
2P (ω)

P (ω) +Q(ω)

)
−Q(ω) log

(
P (ω) +Q(ω)

2Q(ω)

))

+
1

2

∑

ω∈S−

(
Q(ω) log

(
2Q(ω)

P (ω) +Q(ω)

)
− P (ω) log

(
P (ω) +Q(ω)

2P (ω)

))

≤ 1

2

∑

ω∈S+

(P (ω)−Q(ω)) log

(
2P (ω)

P (ω) +Q(ω)

)

+
1

2

∑

ω∈S−

(Q(ω)− P (ω)) log

(
2Q(ω)

P (ω) +Q(ω)

)

≤ 1

2

∑

ω∈S−

(P (ω)−Q(ω)) log 2 +
1

2

∑

ω∈S−

(Q(ω)− P (ω)) log 2

= dV (P,Q) log
√
2.
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In the first inequality we have used that for P (ω) 6= 0 and Q(ω) 6= 0,

P (ω) +Q(ω)

2P (ω)
≥ 2Q(ω)

P (ω) +Q(ω)
,

and the same inequality with P and Q interchanged.

The cases where equality holds in Parts (1) and (2) are easily identified from the above argument and we
leave the formal proof as an exercise for the reader. �

Set
dJS(P,Q) =

√
SJS(P,Q).

Theorem 4.15 dJS is a metric on P(Ω).

Remark 4.5 If |Ω| ≥ 2, then SJS is not a metric on P(Ω). To see that, pick ω1, ω2 ∈ Ω and define
P,Q,R ∈ P(Ω) by P (ω1) = 1, Q(ω2) = 1, R(ω1) = R(ω2) =

1
2 . Then

SJS(P |Q) = log 2 >
3

2
log

4

3
= SJS(P |R) + SJS(R|Q).

Remark 4.6 In the sequel we shall refer to dSJ as the Jensen-Shannon metric.

Proof. Note that only the triangle inequality needs to be proved. Set R+ =]0,∞[.

For p, q ∈ R+ let

L(p, q) = p log

(
2p

p+ q

)
+ q log

(
2q

p+ q

)
.

Since the function F (x) = x log x is strictly convex, writing

L(p, q) = (p+ q)

[
1

2
F

(
2p

p+ q

)
+

1

2
F

(
2q

p+ q

)]

and applying the Jensen inequality to the expression in the brackets, we derive that L(p, q) ≥ 0 with
equality iff p = q. Our goal is to prove that for all p, q, r ∈ R+,

L(p, q) ≤
√
L(p, r) +

√
L(r, q). (4.26)

This yields the triangle inequality for dJS as follows. If P,Q,R ∈ Pf(Ω), (4.26) and Minkowski’s in-
equality give

dJS(P,Q) =

(
∑

ω∈Ω

√
L(P (ω), Q(ω))

2

) 1
2

≤
(
∑

ω∈Ω

(√
L(P (ω), R(ω)) +

√
L(R(ω), Q(ω))

)2
) 1

2

≤
(
∑

ω∈Ω

√
L(P (ω), R(ω))

2

) 1
2

+

(
∑

ω∈Ω

√
L(R(ω), Q(ω))

2

) 1
2

= dJS(P,R) + dJS(R,Q).

This yields the triangle inequality on Pf(Ω). Since the map (P,Q) 7→ dJS(P,Q) is continuous, the triangle
inequality extends to P(Ω).
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1 3 5 7 9

−1

1

x

g(x)

The proof of (4.26) is an elaborate calculus exercise. The relation is obvious if p = q. Since L(p, q) =
L(q, p), it suffices to consider the case p < q. We fix such p and q and set

f(r) =
√
L(p, r) +

√
L(r, q).

Then

f ′(r) =
1

2
√
L(p, r)

log

(
2r

p+ r

)
+

1

2
√
L(r, q)

log

(
2r

r + q

)
.

Define g : R+ \ {1} → R by

g(x) =
1√

L(x, 1)
log

(
2

x+ 1

)
,

One easily verifies that

f ′(r) =
1

2
√
r

(
g
(p
r

)
+ g

(q
r

))
. (4.27)

We shall need the following basic properties of g, clearly displayed in the above graph:

(a) g > 0 on ]0, 1[, g < 0 on ]1,∞[.

(b) limx↑1 g(x) = 1, limx↓1 g(x) = −1. This follows from limx→1[g(x)]
2 = 1, which can be established

by applying l’Hopital’s rule twice.

(c) g′(x) > 0 for x ∈ R+ \ {1}. To prove this one computes

g′(x) = − h(x)

(x+ 1)L(x, 1)3/2
,

where

h(x) = 2x log

(
2x

x+ 1

)
+ 2 log

(
2

x+ 1

)
+ (x+ 1) log

(
2x

x+ 1

)
log

(
2

x+ 1

)
.

One further computes

h′(x) = log

(
2x

x+ 1

)
log

(
2

x+ 1

)
+ log

(
2x

x+ 1

)
+

1

x
log

(
2

x+ 1

)
,

h′′(x) = − 1

x+ 1
log

(
2x

x+ 1

)
− 1

x2(x+ 1)
log

(
2

x+ 1

)
.
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Note that h(1) = h′(1) = h′′(1) = 0. The inequality log t ≥ (t − 1)/t, which holds for all t > 0,
gives

h′′(x) ≤ − 1

x+ 1

(
1− x+ 1

2x

)
− 1

x2(x + 1)

(
1− x+ 1

2

)
= − (x− 1)2

2x2(x+ 1)
.

Hence h′′(x) < 0 for x ∈ R+ \ {1}, and the statement follows.

(d) Note that (a), (b) and (c) give that 0 < g(x) < 1 on ]0, 1[ and −1 < g(x) < 0 on ]1,∞[.

If follows from (a) that f ′(r) < 0 for r ∈]0, p[, f ′(r) > 0 for r > q, and so f(r) is decreasing on ]0, p[
and increasing on ]q,∞[. Hence, for r < p and r > q, f(r) > f(p), which qives (4.26) for those r’s.
To deal with the case p < r < q, set m(r) = g(p/r) + g(q/r). It follows from (b) that m′(r) < 0 for
p < r < q, while (b) and (d) givem(p+) = 1+g(q/p) > 0,m(q−) = −1+g(p/q) < 0. Hence f ′(r) has
precisely one zero rm in the interval ]p, q[. Since f ′(p+) > 0, f ′(q−) > 0, f(r) is increasing in [p, rm]
and decreasing on [rm, q]. On the first interval, f(r) ≥ f(p), and on the second interval f(r) ≥ f(q),
which gives that (4.26) also holds for p < r < q. �

The graph of r 7→ f(r) is plotted below for p = 1
10 and q = 2

3 . In this case rm ≈ 0.28.

0.28 0.5

0.5

0.6

f(0.279237) ≈ 0.495861

p = 1/10 q = 2/3
r

f(r)

4.6 Rényi’s relative entropy

Let Ω be a finite set and P,Q ∈ P(Ω). For α ∈]0, 1[ we set

Sα(P |Q) =
1

α− 1
log

(
∑

ω∈Ω

P (ω)αQ(ω)1−α

)
.

Sα(P |Q) is called Rényi’s relative entropy of P with respect to Q. Note that

Sα(P |Pch) = Sα(P ) + log |Ω|.

Proposition 4.16 (1) Sα(P |Q) ≥ 0.

(2) Sα(P |Q) = ∞ iff P ⊥ Q and Sα(P |Q) = 0 iff P = Q.

(3)

Sα(P |Q) =
α

1− α
S1−α(Q|P ).



54 CHAPTER 4. RELATIVE ENTROPY

(4)
lim
α↑1

Sα(P |Q) = S(P |Q).

(5) Suppose that P 6⊥ Q. Then the function ]0, 1[∋ α 7→ Sα(P |Q) is strictly increasing

(6) The map (P,Q) 7→ Sα(P |Q) ∈ [0,∞] is continuous and jointly convex.

(7) Let Φ : P(Ω) → P(Ω̂) be a stochastic map. Then for all P,Q ∈ P(Ω),

Sα(Φ(P )|Φ(Q)) ≤ Sα(P |Q).

(8) If S(P |Q) <∞, then α 7→ Sα(P |Q) extends to a real-analytic function on R.

Proof. Obviously, Sα(P |Q) = ∞ iff P ⊥ Q. In what follows, if P 6⊥ Q, we set

T = suppP ∩ suppQ.

An application of Jensen’s inequality gives

∑

ω∈Ω

P (ω)αQ(ω)1−α = Q(T )
∑

ω∈T

(
P (ω)

Q(ω)

)α
Q(ω)

Q(T )

≤ Q(T )

(
∑

ω∈T

P (ω)

Q(ω)

Q(ω)

Q(T )

)α

= Q(T )1−αP (T )α.

Hence,
∑

ω∈Ω P (ω)
αQ(ω)1−α ≤ 1 with the equality iff P = Q, and Parts (1), (2) follow.

Part (3) is obvious. To prove (4), note that

lim
α↑1

∑

ω

P (ω)αQ(ω)1−α = P (T ),

and that P (T ) = 1 iff P ≪ Q. Hence, if P is not absolutely continuous with respect to Q, then
limα↑1 Sα(P |Q) = ∞ = S(P |Q). If P ≪ Q, an application of L’Hopital rule gives limα↑1 Sα(P |Q) =
S(P |Q).

To prove (5), set

F (α) = log

(
∑

ω∈Ω

P (ω)αQ(ω)1−α

)
,

and note that R ∋ α 7→ F (α) is a real-analytic strictly convex function satisfying F (0) ≤ 0, F (1) ≤ 0.
We have

dSα(P |Q)

dα
=
F ′(α)(α − 1)− (F (α) − F (1))

(α− 1)2
− F (1)

(α − 1)2
.

By the mean-value theorem, F (α) − F (1) = (α − 1)F ′(ζα) for some ζα ∈]α, 1[. Since F ′ is strictly
increasing, F ′(α) < F ′(ζα) and

dSα(P |Q)

dα
> 0

for α ∈]0, 1[.
The continuity part of (6) are obvious. The proof of the joint convexity is the same as the proof of Propo-
sition 4.4 (one now takes g(t) = tα) and is left as an exercise for the reader.

We now turn to Part (7). First, we have

[Φ(P )(ω̂)]
α
[Φ(Q)(ω̂)]

1−α ≥
∑

ω

P (ω)αQ(ω)1−αΦ(ω, ω̂).
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This inequality is obvious if the r.h.s. is equal to zero. Otherwise, let

R = {ω |P (ω)Q(ω)Φ(ω, ω̂) > 0}.

Then

[Φ(P )(ω̂)]α [Φ(Q)(ω̂)]1−α ≥
(
∑

ω∈R

P (ω)Φ(ω, ω̂)

)α(∑

ω∈R

Q(ω)Φ(ω, ω̂)

)1−α

=

(∑
ω∈R P (ω)Φ(ω, ω̂)∑
ω∈RQ(ω)Φ(ω, ω̂)

)α ∑

ω∈R

Q(ω)Φ(ω, ω̂)

≥
∑

ω

P (ω)αQ(ω)1−αΦ(ω, ω̂),

where in the last step we have used the joint concavity of the function (x, y) 7→ x(y/x)α (recall proof of
Proposition 4.4). Hence,

∑

ω̂

[Φ(P )(ω̂)]
α
[Φ(Q)(ω̂)]

1−α ≥
∑

ω̂

∑

ω

P (ω)αQ(ω)1−αΦ(ω, ω̂) =
∑

ω

P (ω)αQ(ω)1−α,

and Part (7) follows.

It remains to prove Part (8). For α ∈ R \ {1} set

Sα(P |Q) =
1

α− 1
log

(
∑

ω∈T

P (ω)αQ(ω)1−α

)
.

Obviously, α 7→ Sα(P |Q) is real-analytic on R \ {1}. Since

lim
α↑1

Sα(P |Q) = lim
α↓1

Sα(P |Q) = S(P |Q),

α 7→ Sα(P |Q) extends to a real-analytic function on R with S1(P |Q) = S(P |Q). Finally, Part (8)
follows from the observation that Sα(P |Q) = Sα(P |Q) for α ∈]0, 1[.

�

Following on the discussion at the end of Section 3.6, we set

Ŝα(P |Q) = log

(
∑

ω∈T

P (ω)αQ(ω)1−α

)
, α ∈ R.

If P ≪ Q, then
Ŝα(P |Q) = logEQ(e

αSP |Q), (4.28)

and so Ŝα(P |Q) is the cumulant generating function for the relative entropy function SP |Q defined on the
probability space (T, P ). The discussion at the end of 3.6 can be now repeated verbatim (we will return
to this point in Section 5.1). Whenever there is no danger of the confusion, we shall also call Ŝα(P |Q)
Rényi’s relative entropy of the pair (P,Q). Note that

Ŝα(Pch|P ) = Ŝα(P )− α log |Ω|. (4.29)

Some care is needed in transposing the properties listed in Proposition 4.16 to Ŝα(P |Q). This point is
discussed in the Exercise 4.14.
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Exercise 4.13.

1. Describe the subset of P(Ω)× P(Ω) on which the function (P,Q) 7→ Sα(P |Q) is strictly convex.

2. Describe the subset of P(Ω)× P(Ω) on which Sα(Φ(P )|Φ(Q)) < Sα(P |Q).

3. Redo the Exercise 4.2 in Section 4.1 and reprove Proposition 4.7 following the proofs of Parts (7)
and (8) of Proposition 4.16. Describe the subset of P(Ω) on which

S(Φ(P )|Φ(Q)) < S(P |Q).

Exercise 4.14. Prove the following properties of Ŝα(P |Q).

1. Ŝα(P |Q) = −∞ iff P ⊥ Q.

In the remaining statements we shall suppose that P 6⊥ Q.

2. The function R ∋ α 7→ Ŝα(P |Q) is real-analytic and convex. This function is trivial (i.e., iden-
tically equal to zero) iff P = Q. If P/Q not constant on T = suppP ∩ suppQ, then the function
α 7→ Ŝα(P |Q) is strictly convex.

3. If Q≪ P , then
dŜα(P |Q)

dα

∣∣
α=0

= −S(Q|P ).

If P ≪ Q, then
dŜα(P |Q)

dα

∣∣
α=1

= S(P |Q).

4. If P and Q are mutually absolutely continuous, then Ŝ0(P |Q) = Ŝ1(P |Q) = 0, Ŝα(P |Q) ≤ 0 for
α ∈ [0, 1], and Ŝα(P |Q) ≥ 0 for α 6∈ [0, 1]. Moreover,

Ŝα(P |Q) ≥ max{−αS(Q|P ), (α− 1)S(P |Q)}.

5. For α ∈]0, 1[ the function (P,Q) 7→ Ŝα(P |Q) is continuous and jointly concave. Moreover, for
any stochastic matrix Φ,

Ŝα(Φ(P )|Φ(Q)) ≥ Ŝα(P |Q).

Exercise 4.15. Prove that the fluctuation relation of Section 4.4 is equivalent to the following state-
ment: for all α ∈ R,

Ŝα(P |PΘ) = Ŝ1−α(P |PΘ).

4.7 Hypothesis testing

Let Ω be a finite set and P,Q two distinct probability measures on Ω. We shall assume that P and Q are
faithful.
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Suppose that we know a priori that a probabilistic experiment is with probability p described by P and with
probability 1−p byQ. By performing an experiment we wish to decide with minimal error probability what
is the correct probability measure. For example, suppose that we are given two coins, one fair (P (Head) =
P (Tail) = 1/2) and one unfair (Q(Head) = s,Q(Tail) = 1 − s, s > 1/2). We pick coin randomly
(hence p = 1/2). The experiment is a coin toss. After tossing a coin we wish to decide with minimal error
probability whether we picked the fair or the unfair coin. The correct choice of obvious: if the outcome is
Head, pick Q, if the outcome is Tail, pick P.

The following procedure is known as hypothesis testing. A test T is a subset of Ω. On the basis of the
outcome of the experiment with respect to T one chooses between P or Q. More precisely, if the outcome
of the experiment is in T , one chooses Q (Hypothesis I: Q is correct) and if the outcome is not in T , one
chooses P (Hypothesis II: P is correct). P (T ) is the conditional error probability of accepting I if II is true
and Q(T c) is the conditional error probability of accepting II if I is true. The average error probability is

Dp(P,Q, T ) = pP (T ) + (1 − p)Q(T c),

and we are interested in minimizing Dp(P,Q, T ) w.r.t. T . Let

Dp(P,Q) = inf
T
Dp(P,Q, T ).

The Bayesian distinguishability problem is to identify tests T such that Dp(P,Q, T ) = Dp(P,Q). Let

Topt = {ω | pP (ω) ≤ (1 − p)Q(ω)}.

Proposition 4.17 (1) Topt is a minimizer of the function T 7→ Dp(P,Q, T ). If T is another minimizer,

then T ⊂ Topt and pP (ω) = (1− p)Q(ω) for ω ∈ Topt \ T .

(2)

Dp(P,Q) =

∫

Ω

min{1− p, p∆P |Q(ω)}dQ.

(3) For α ∈]0, 1[,
Dp(P,Q) ≤ pα(1− p)1−αeŜα(P |Q).

(4)

Dp(P,Q) ≥
∫

Ω

p∆P |Q

1 + p
1−p∆P |Q

dQ.

Remark 4.7 Part (1) of this proposition is called Neyman-Pearson lemma. Part (3) is called Chernoff
bound.

Proof.

Dp(P,Q, T ) = 1− p−
∑

ω∈T

((1− p)Q(ω)− pP (ω)) ≥ 1− p−
∑

ω∈Topt

((1− p)Q(ω)− pP (ω)) ,

and Part (1) follows. Part (2) is a straightforward computation. Part (3) follows from (2) and the bound
min{x, y} ≤ xαy1−α that holds for x, y ≥ 0 and α ∈]0, 1[. Part (4) follows from (2) and the obvious
estimate

min{1− p, p∆P |Q(ω)} ≥ p∆P |Q

1 + p
1−p∆P |Q

.

�

Obviously, the errors are smaller if the hypothesis testing is based on repeated experiments. Let PN and
QN be the respective product probability measures on ΩN .
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Theorem 4.18

lim
N→∞

1

N
logDp(PN , QN) = min

α∈[0,1]
Ŝα(P |Q).

Proof. By Part (2) of the last proposition, for any α ∈]0, 1[,

Dp(PN , QN ) ≤ pα(1− p)1−αeŜα(PN |QN ) = pα(1− p)1−αeNŜα(P |Q),

and so
1

N
logDp(PN , QN ) ≤ min

α∈[0,1]
Ŝα(P |Q).

This yields the upper bound:

lim sup
N→∞

1

N
logDp(PN |QN ) ≤ min

α∈[0,1]
Ŝα(P |Q).

To prove the lower bound we shall make use of the lower bound in Cramér’s theorem (Corollary 2.11).
Note first that the function

x 7→ px

1 + p
1−px

is increasing on R+. Let θ > 0 be given. By Part (4) of the last proposition,

Dp(PN , QN) ≥ peNθ

1 + p
1−pe

Nθ
QN

{
ω ∈ ΩN |∆PN |QN

(ω) ≥ eNθ
}
.

Hence,

lim inf
N→∞

1

N
logDp(PN |QN) ≥ lim inf

N→∞

1

N
logQN

{
ω ∈ ΩN | log∆PN |QN

(ω) ≥ Nθ
}
. (4.30)

LetX = log∆P |Q and SN (ω) =
∑N

k=1X(ωk). Note that SN = log∆PN |QN
. The cummulant generating

function of X w.r.t. Q is
logEQ(e

αX) = Ŝα(P |Q).

Since EQ(X) = −S(Q|P ) < 0 and θ > 0, it follows from Corollary 2.11 that

lim
N→∞

1

N
logQN

{
ω ∈ ΩN | log∆PN |QN

(ω) ≥ Nθ
}
≥ −I(θ) (4.31)

Since
dŜα

dα

∣∣
α=0

= −S(Q|P ) < 0,
dŜα

dα

∣∣
α=1

= S(P |Q) > 0,

the rate function I(θ) is continuous around zero, and it follows from (4.30) and (4.31) that

lim inf
N→∞

1

N
logDp(PN |QN) ≥ −I(0) = − sup

α∈R

(−Ŝα(P |Q)).

Since Ŝα(P |Q) ≤ 0 for α ∈ [0, 1] and Ŝα(P |Q) ≥ 0 for α 6∈ [0, 1],

− sup
α∈R

(−Ŝα(P |Q)) = min
α∈[0,1]

Ŝα(P |Q),

and the lower bound follows:

lim inf
N→∞

1

N
logDp(PN |QN ) ≥ min

α∈[0,1]
Ŝα(P |Q).

�
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4.8 Asymmetric hypothesis testing

We continue with the framework and notation of the previous section. The asymmetric hypothesis testing
concerns individual error probabilities PN (TN ) (type I-error) and QN (T c

N ) (type II-error). For γ ∈]0, 1[
the Stein error exponents are defined by

sN (γ) = min
{
P (TN )

∣∣TN ⊂ ΩN , Q(T c
N) ≤ γ

}
.

Theorem 4.12 gives

lim
N→∞

1

N
log sN (γ) = −S(Q|P ).

The Hoeffding error exponents are similar to Stein’s exponents, but with a tighter constraint on the family
(TN )N≥1 of tests which are required to ensure exponential decay of type-II errors with a minimal rate
s > 0. They are defined as

h(s) = inf
(TN )

{
lim sup
N→∞

1

N
logPN (TN )

∣∣∣∣ lim sup
N→∞

1

N
logQN (T c

N) ≤ −s
}
,

h(s) = inf
(TN )

{
lim inf
N→∞

1

N
logPN (TN )

∣∣∣∣ lim sup
N→∞

1

T
logQN (T c

N ) ≤ −s
}
,

h(s) = inf
(TN )

{
lim

N→∞

1

N
logPN (TN )

∣∣∣∣ lim sup
N→∞

1

N
logQN (T c

N ) ≤ −s
}
,

where in the last case the infimum is taken over all sequences of tests (TN )N≥1 for which the limit

lim
N→∞

1

N
logPN (TN )

exists. The analysis of these exponents is centred around the function

ψ(s) = inf
α∈[0,1[

sα+ Ŝα(Q|P )
1− α

, s ≥ 0.

We first describe some basic properties of ψ.

Proposition 4.19 (1) ψ is continuous on [0,∞[, ψ(0) = −S(Q|P ) and ψ(s) = 0 for s ≥ S(P |Q).

(2) ψ is strictly increasing and strictly concave on [0, S(P |Q)], and real analytic on ]0, S(P |Q)[.

(3)

lim
s↓0

ψ′(s) = ∞, lim
s↑S(P |Q)

ψ′(s) =
[
Ŝ′′
α(Q|P )

∣∣
α=0

]−1

.

(4) For θ ∈ R set

ϕ(θ) = sup
α∈[0,1]

(
θα− Ŝα(Q|P )

)
, ϕ̂(θ) = ϕ(θ) − θ.

Then for all s ≥ 0,

ψ(s) = −ϕ(ϕ̂−1(s)). (4.32)

Proof. Throughout the proof we shall often use Part 3 of the Exercise 4.14.

We shall prove Parts (1)-(3) simultaneously. Set

F (α) =
sα+ Ŝα(Q|P )

1− α
.
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Then

F ′(α) =
G(α)

(1 − α)2
,

whereG(α) = s+Ŝα(Q|P )+(1−α)Ŝ′
α(Q|P ). Futhermore,G′(α) = (1−α)Ŝ′′

α(Q|P ) and soG′(α) > 0
for α ∈ [0, 1[. Note that G(0) = s − S(P |Q) and G(1) = s. It follows that if s = 0, then G(α) < 0 for
α ∈ [0, 1[ and F (α) is decreasing on [0, 1[. Hence,

ψ(0) = lim
α→1

Ŝα(Q|P )
1− α

= −S(Q|P ).

On the other hand, if 0 < s < S(P |Q), then G(0) < 0, G(1) > 0, and so there exists unique α∗(s) ∈]0, 1[
such that

G(α∗(s)) = 0. (4.33)

In this case,

ψ(s) =
sα∗(s) + Ŝα∗(s)(Q|P )

1− α∗(s)
= −s− Ŝ′

α∗(s)
(Q|P ). (4.34)

If s ≥ S(P |Q), then G(α) ≥ 0 for α ∈ [0, 1[, and ψ(s) = F (0) = 0. The analytic implicit function
theorem yields that s 7→ α∗(s) is analytic on ]0, S(P |Q)[, and so ψ is real-analytic on ]0, S(P |Q)[. The
identity

0 = G(α∗(s)) = s+ Ŝα∗(s)(Q|P ) + (1 − α∗(s))Ŝ
′
α∗(s)

(Q|P ), (4.35)

which holds for s ∈ ]0, S(P |Q)[, gives that

α′
∗(s) = − 1

(1− α∗(s))G′(α∗(s))
, (4.36)

and so α′
∗(s) < 0 for s ∈]0, S(P |Q)[. One computes

ψ′(s) =
α∗(s)− sα′

∗(s)

(1 − α∗(s))2
, (4.37)

and so ψ is strictly increasing on ]0, S(P |Q)[ and hence on [0, S(P |Q)]. Since α∗(s) is strictly decreasing
on ]0, S(P |Q)[, the limits

lim
s↓0

α∗(s) = x, lim
s↑S(P |Q)

α∗(s) = y,

exist. Obviously, x, y ∈ [0, 1], x > y, and the definition of G and α∗ give that

Ŝx(Q|P ) + (1 − x)Ŝ′
x(Q|P ) = 0, S(P |Q) + Ŝy(Q|P ) + (1− y)Ŝ′

y(Q|P ) = 0. (4.38)

We proceed to show that x = 1 and y = 0. Suppose that x < 1. The mean value theorem gives that for
some z ∈ ]x, 1[

−Ŝx(Q|P ) = Ŝ1(Q|P )− Ŝx(Q|P ) = (1− x)Ŝ′
z(Q|P ) > (1− x)Ŝ′

z(Q|P ), (4.39)

where we used that α 7→ Ŝ′
α(Q|P ) is strictly increasing. Obviously, (4.39) contradicts the first equality in

(4.38), and so x = 1. Similarly, if y > 0,

S(P |Q) + Ŝy(Q|P ) + (1 − y)Ŝ′
y(Q|P ) > S(P |Q) + Ŝy(Q|P ) + (1− y)Ŝ′

0(Q|P )

= Ŝy(Q|P )− yŜ′
0(Q|P ) > 0,

contradicting the second equality in (4.38). Since x = 1 and y = 0, (4.36) and (4.37) yield Part (3).
Finally, to prove that ψ is strictly concave on [0, S(P |Q)] (in view of real analyticity of ψ on ]0, S(P |Q)[),
it suffices to show that ψ′ is not constant on ]0, S(P |Q)[. That follows from Part (3), and the proofs of
Parts (1)-(3) are complete.
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We now turn to Part (4). The following basic properties of the "restricted Legendre transform" ϕ are easily
proven following the arguments in Section 2.5 and we leave the details as an exercise for the reader: ϕ
is continuous, non-negative and convex on R, ϕ(θ) = 0 for θ ≤ −S(P |Q), ϕ is real analytic, strictly
increasing and strictly convex on ]− S(P |Q), S(Q|P )[, and ϕ(θ) = θ for θ ≥ S(Q|P ). The properties of
ϕ̂ are now deduced form those of ϕ and we mention the following: ϕ̂ is convex, continuous and decreasing,
ϕ̂(θ) = θ for θ ≤ −S(P |Q), and ϕ(θ) = 0 for θ ≥ S(Q|P ). Moreover, the map ϕ̂ :] −∞, S(Q|P )] →
[0,∞[ is a bijection, and we denote by ϕ̂−1 its inverse. For s ≥ S(P |Q), ϕ̂−1(s) = −s and ϕ(−s) = 0,
and so (4.32) holds for s ≥ S(P |Q). Since ϕ̂−1(0) = S(Q|P ) and ϕ(S(Q|P )) = S(Q|P ), (4.32) also
holds for s = 0.

It remains to consider the case s ∈ ]0, S(P |Q)[. The map ϕ̂ : ] − S(P |Q), S(Q|P )[→]0, S(P |Q)[ is a
strictly decreasing bijection. Since

−ϕ(ϕ̂−1(s)) = −s− ϕ̂−1(s),

it follows from (4.34) that it suffices to show that

ϕ̂−1(s) = Ŝ′
α∗(s)

(Q|P ),

or equivalently, that
ϕ(Ŝ′

α∗(s)
(Q|P )) = −s− Ŝ′

α∗(s)
(Q|P )). (4.40)

Since on ]−S(P |Q), S(Q|P )[ the functionϕ coincides with the Legendre transform of Ŝα(P |Q), it follows
from Part (1) of Proposition 2.5 that

ϕ(Ŝ′
α∗(s)

(Q|P )) = α∗(s)Ŝ
′
α∗(s)

(Q|P )− Ŝα∗(s)(Q|P ),

and (4.40) follows from (4.35). �

Exercise 4.16. Prove the properties of ϕ and ϕ̂ that were stated and used in the proof of Part (4) of
Proposition 4.19.

The next result sheds additional light on the function ψ. For α ∈ [0, 1] we define Rα ∈ P(Ω) by

Rα(ω) =
Q(ω)αP (ω)1−α

∑
ω′ Q(ω′)αP (ω′)1−α

.

Proposition 4.20 (1) For all s ≥ 0,

ψ(s) = − inf {S(R|P ) |R ∈ P(Ω), S(R|Q) ≤ s} . (4.41)

(2) For any s ∈ ]0, S(P |Q)[,

S(Rα∗(s)|Q) = s, S(Rα∗(s)|P ) = −ψ(s),

where α∗(s) is given by (4.33).

Proof. Denote by φ(s) the r.h.s. in (4.41). Obviously, φ(0) = −S(Q|P ) and φ(s) = 0 for s ≥ S(P |Q).
So we need to prove that ψ(s) = φ(s) for s ∈ ]0, S(P |Q)[.

For any R ∈ P(Ω) and α ∈ [0, 1],

S(R|Rα) = αS(R|Q) + (1 − α)S(R|P ) + Ŝα(Q|P ).
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If R is such that S(R|Q) ≤ s and α ∈ [0, 1[, then

S(R|Rα)

1− α
≤ αs+ Ŝα(Q|P )

1− α
+ S(R|P ).

Since S(R|Rα) ≥ 0,

inf
α∈[0,1[

αs+ Ŝα(Q|P )
1− α

+ S(R|P ) ≥ 0.

This gives that φ(s) ≤ ψ(s). If Part (2) holds, then also φ(s) ≥ ψ(s) for all s ∈ ]0, S(P |Q)[, and we have
the equality φ = ψ. To prove Part (2), a simple computation gives

S(Rα|Q) = −(1− α)Ŝ′
α(Q|P )− Ŝα(Q|P ), S(Rα|Q) = S(Rα|P ) + Ŝ′

α(Q|P ).

After setting α = α∗(s) in these equalities, Part (2) follows from (4.35) and (4.34). �

The main result of this section is

Theorem 4.21 For all s > 0,

h(s) = h(s) = h(s) = ψ(s). (4.42)

Proof. Note that the functions h, h, h are non-negative and increasing on ]0,∞[ and that

h(s) ≤ h(s) ≤ h(s) (4.43)

for all s > 0.

We shall prove that for all s ∈ ]0, S(P |Q)[,

h(s) ≤ ψ(s), h(s) ≥ ψ(s). (4.44)

In view of (4.43), that proves (4.42) for s ∈ ]0, S(P |Q)[. Assuming that (4.44) holds, the relations h(s) ≤
h(S(P |Q)) ≤ 0 for s ∈]0, S(P |Q)[ and

lim
s↑S(P |Q)

h(s) = lim
s↑S(P |Q)

ψ(s) = 0

give that h(S(P |Q)) = 0. Since h is increasing, h(s) = 0 for s ≥ S(P |Q) and so h(s) = ψ(s) for
s ≥ S(P |Q). In the same way one shows that h(s) = h(s) = ψ(s) for s ≥ S(P |Q).

We now prove the first inequality in (4.44). Recall that the map ϕ̂ : ]− S(P |Q), S(Q|P )[→]0, S(P |Q)[ is
a bijection. Fix s ∈ ]0, S(P |Q)[ and let θ ∈]− S(P |Q), S(Q|P [ be such that ϕ̂(θ) = s. Let

TN (θ) =
{
ω ∈ ΩN |QN (ω) ≥ eNθPN (ω)

}
. (4.45)

Then

PN (TN (θ)) = PN



ω = (ω1, · · · , ωN) ∈ ΩN | 1

N

N∑

j=1

SQ|P (ωj) ≥ θ



 .

Since the cumulant generating function for SQ|P with respect to P is Ŝα(Q|P ), and the rate function I for
SQ|P with respect to P coincides with ϕ on ]S(P |Q), S(Q|P )[, it follows from Part (1) of Corollary 2.11
that

lim
N→∞

1

N
logPN (TN (θ)) = −ϕ(θ). (4.46)

Similarly,

QN([TN (θ)]c) = QN



ω = (ω1, · · · , ωN ) ∈ ΩN | 1

N

N∑

j=1

SQ|P (ωj) < θ



 .
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The cumulant generating function for SQ|P with respect toQ is Ŝα+1(Q|P ), and the rate function for SQ|P

with respect to Q on ]S(P |Q), S(Q|P )[ is ϕ̂. Part (2) of Corollary 2.11 yields

lim
N→∞

1

N
logQN([TN (θ)]c) = −ϕ̂(θ). (4.47)

The relations (4.46) and (4.47) yield that h(ϕ̂(θ)) ≤ −ϕ(−θ). Since ϕ̂(θ) = s, the first inequality (4.44)
follows from Part (4) of Proposition 4.19.

We now turn to the second inequality in (4.44). For θ ∈ ]− S(P |Q), S(Q|P )[ and TN ⊂ ΩN we set

DN (TN , θ) = QN ([TN ]c) + eθNPN (TN ).

Arguing in the same way as in the proof of Parts (1)-(3) of Proposition 4.17, one shows that for any TN ,

DN(TN , θ) ≥ DN (TN (θ), θ).

The relations (4.46) and (4.47) yield

lim
N→∞

1

N
logDN (TN (θ), θ)) = −ϕ̂(θ).

Fix now s ∈ ]0, S(P |Q)[ and let θ ∈ ] − S(P |Q), S(Q|P )[ be such that ϕ̂(θ) = s. Let (TN )N≥1 be a
sequence of tests such that

lim sup
N→∞

1

N
logQN(T c

N ) ≤ −s.

Then, for any θ′ satisfying θ < θ′ < S(Q|P ) we have

−ϕ̂(θ′) = lim
N→∞

1

N
log
(
QN ([TN (θ′)]c) + eθ

′NPN (TN (θ′)
)

≤ lim inf
N→∞

1

N
log
(
QN (T c

N ) + eθ
′NPN (TN )

)

≤ max

(
lim inf
N→∞

1

N
logQN (T c

N), θ′ + lim inf
N→∞

1

N
logPN (TN)

)

≤ max

(
−ϕ̂(θ), θ′ + lim inf

N→∞

1

N
logPN (TN )

)
.

(4.48)

Since ϕ̂ is strictly decreasing on ]− S(P |Q), S(Q|P )[ we have that −ϕ̂(θ′) > −ϕ(θ), and (4.48) gives

lim inf
N→∞

1

N
logPN (TN) ≥ −θ′ − ϕ̂(θ′) = −ϕ(θ′).

Taking θ′ ↓ θ, we derive

lim inf
N→∞

1

N
logPN (TN ) ≥ −ϕ(θ) = −ϕ(ϕ̂−1(s)) = ψ(s),

and so h(s) ≥ ψ(s). �

Remark 4.8 Theorem 4.21 and its proof give the following. For any sequence of tests (TN )N≥1 such that

lim sup
N→∞

1

N
logQN (T c

N ) ≤ −s (4.49)

one has

lim inf
N→∞

1

N
logPN (TN ) ≥ ψ(s).

On the other hand, if s ∈]0, S(P |Q)[, ϕ̂(θ) = s, and TN (θ) is defined by (4.45), then

lim sup
N→∞

1

N
logQN([TN (θ)]c) = −s and lim

N→∞

1

N
logPN (TN (θ)) = ψ(s).
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Exercise 4.17. Set

h(0) = inf
(TN )

{
lim sup
N→∞

1

N
logPN (TN )

∣∣∣∣ lim sup
N→∞

1

N
logQN (T c

N ) < 0

}
,

h(0) = inf
(TN )

{
lim inf
N→∞

1

N
logPN (TN )

∣∣∣∣ lim sup
N→∞

1

N
logQN (T c

N ) < 0

}
,

h(0) = inf
(TN )

{
lim

N→∞

1

N
logPN (TN )

∣∣∣∣ lim sup
N→∞

1

N
logQN (T c

N ) < 0

}
,

where in the last case the infimum is taken over all sequences of tests (TN )N≥1 for which the limit

lim
N→∞

1

N
logPN (TN )

exists. Prove that
h(0) = h(0) = h(0) = −S(Q|P ).

Compare with Exercise 4.10.

4.9 Notes and references

The relative entropy S(P |Pch) already appeared in Shannon’s work [Sha]. The definition (4.1) is com-
monly attributed to Kullback and Leibler [KullLe], and the relative entropy is sometimes called the Kullback-
Leibler divergence. From a historical perspective, it is interesting to note that the symmetrized relative
entropy S(P |Q) + S(Q|P ) was introduced by Jeffreys in [Jeff] (see Equation (1)) in 1946.

The basic properties of the relative entropy described in Section 4.1 are so well-known that it is difficult
to trace the original sources. The statement of Proposition 4.1 is sometimes called Gibbs’s inequality and
sometimes Shannon’s inequality. For the references regarding Theorem 4.2 and Exercise 4.7 see Exercise
17 in Chapter 3 of [CsiKö] (note the typo regarding the value of the constant c).

The variational principles discussed in Section 4.2 are of fundamental importance in statistical mechanics
and we postpone their discussion to Part II of the lecture notes.

The attribution of Theorem 4.12 to statistician Charles Stein appears to be historically inaccurate; for a
hilarious account of the events that has led to this see the footnote on the page 85 of [John]. Theorem
4.12 was proven by Hermann Chernoff in [Che]. To avoid further confusion, we have used the usual
terminology. To the best of my knowledge, the Large Deviations arguments behind the proof of Stein’s
Lemma, which were implicit in the original work [Che], were brought to the surface for the first time in
[Ana, Sow], allowing for a substantial generalization of the original results.1 Our proof follows [Sow].

The Fluctuation Relation described in Section 4.4 is behind the spectacular developments in non-equilibrium
statistical mechanics mentioned in the Introduction. We will return to this topic in Part II of the lecture
notes.

The choice of the name for Jensen-Shannon entropy (or diveregence) and metric is unclear; see [Lin]. To
the best of my knowledge, Theorem 4.15 was first proven in [EndSc, ÖstVa]. Our proof follows closely
[EndSc]. For additional information see [FugTo].

The definition of the Rényi relative entropy is usually attributed to [Rén], although the "un-normalized"
Ŝα(P |Q) already appeared in the work of Chernoff [Che] in 1952.

The hypothesis testing is an essential procedure in statistics. Its relevance to modern developments in

1By this I mean that essentially the same argument yields the proof of Stein’s Lemma in a very general probabilistic setting.
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non-equilibrium statistical mechanics will be discussed in Part II of the lecture notes. Theorem 4.18 is
due to Chernoff [Che]. As in the case of Stein’s Lemma, the LDP based proof allows to considerably
generalize the original result. The Hoeffding error exponents were first introduced and studied in [Hoe]
and the previous remarks regarding the proof applies to them as well. For additional information about
hypothesis testing see [LeRo].
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Chapter 5

Why is the relative entropy natural?

5.1 Introduction

This chapter is a continuation of Section 3.4 and concerns naturalness of the relative entropy.

1. Operational interpretation. Following on Shannon’s quote in Section 3.7, Stein’s Lemma gives an
operational interpretation of the relative entropy S(P |Q). Chernoff and Hoeffding error exponents, Theo-
rems 4.18 and 4.21, give an operational interpretation of Rényi’s relative entropy Ŝα(P |Q) and, via formula
(4.29), of Rényi’s entropy Ŝα(P ) as well. Note that this operational interpretation of Rényi’s entropies is
rooted in the LDP’s for respective entropy functions which are behind the proofs of Theorems 4.18 and
4.21.

2. Axiomatic characterizations. Recall that A(Ω) = {(P,Q) ∈ P(Ω) |P ≪ Q}. Set A = ∪ΩA(Ω). The
axiomatic characterizations of relative entropy concern choice of a functionS : A → R that should qualify
as a measure of entropic distinguishability of a pair (P,Q) ∈ A. The goal is to show that intuitive natural
demands uniquely specify S up to a choice of units, namely that for some c > 0 and all (P,Q) ∈ A,
S(P,Q) = cS(P |Q).

We list basic properties that any candidate S for relative entropy should satisfy. The obvious ones are

S(P, P ) = 0, S(P,Q) ≥ 0, ∃ (P,Q) such that S(P,Q) > 0. (5.1)

Another obvious requirement is that if |Ω1| = |Ω2| and θ : Ω1 → Ω2 is a bijection, then for any (P,Q) ∈
A,

S(P,Q) = S(P ◦ θ,Q ◦ θ).
In other words. the distinguishability of a pair (P,Q) should not depend on the labeling of the elementary
events. This requirement gives that S is completely specified by its restriction S : ∪L≥1AL → [0,∞[,
where

AL = {((p1, · · · , pL), (q1, · · · , qL)) ∈ PL × PL | qk = 0 ⇒ pk = 0},
and that this restriction satisfies

S((p1, · · · , pL), (q1, · · · , qL))) = S((pπ(1), · · · , pπ(L)), (qπ(1), · · · qπ(L))) (5.2)

for any L ≥ 1 and any permutation π of {1, · · · , L}. In the proofs of Theorems 5.1 and 5.2 we shall
assume that (5.1) and (5.2) are satisfied.

Split additivity characterization. This axiomatic characterization is the relative entropy analog of Theorem
3.4, and has its roots in the identity (recall Proposition 4.8)

S(p1P1 + · · ·+ pnPn|q1Q1 + · · ·+ qnQn)

= p1S(P1|Q1) + · · ·+ pnS(Pn|Qn) + S((p1, · · · , pn)|(q1, · · · qn))

67
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which holds if (suppPj ∪ suppQj) ∩ (suppPk ∪ suppQk) = ∅ for all j 6= k.

Theorem 5.1 Let S : A → [0,∞[ be a function such that:

(a) S is continuous on A2.

(b) For any finite collection of disjoint sets Ωj , j = 1, · · · , n, any (Pj , Qj) ∈ A(Ωj), and any p =
(p1, · · · , pn), q = (q1, · · · , qn) ∈ Pn,

S

(
n⊕

k=1

pkPk,

n⊕

k=1

qkQk

)
=

n∑

k=1

pkS(Pk, Qk) +S(p|q). (5.3)

Then there exists c > 0 such that for all (P,Q) ∈ A,

S(P,Q) = cS(P |Q). (5.4)

Remark 5.1 If the positivity and non-triviality assumptions are dropped, then the proof gives that (5.4)
holds for some c ∈ R.

Exercise 5.1. Following on Remark 3.2, can you verbalize the split-additivity property (5.3)?

We shall prove Theorem 5.1 in Section 5.2. The vanishing assumption S(P, P ) = 0 for all P plays a very
important role in the argument. Note that

S(P,Q) = −
∑

ω

P (ω) logQ(ω)

satisfies (a) and (b) of Theorem 5.1 and assumptions (5.1) apart from S(P, P ) = 0.

Stochastic monotonicity + super additivity characterization. This characterization is related to Theorem
3.5, although its proof is both conceptually different and technically simpler. The characterization asserts
that two intuitive requirements, the stochastic monotonicity (Proposition 4.7) and super-additivity (Propo-
sition 4.12) uniquely specify relative entropy.

Theorem 5.2 Let S : A → [0,∞[ be a function such that:

(a) S is continuous on AL for all L ≥ 1.

(b) For any P,Q ∈ A(Ω) and any stochastic map Φ : P(Ω) → P(Ω̂) (note that (Φ(P ),Φ(Q)) ∈ A(Ω̂)),

S(Φ(P ),Φ(Q)) ≤ S(P,Q). (5.5)

(c) For any P and Q = Ql ⊗Qr in A(Ωl × Ωr),

S(Pl, Ql) +S(Pr , Qr) ≤ S(P,Q), (5.6)

with the equality iff P = Pl ⊗ Pr.

Then there exists c > 0 such that for all (P,Q) ∈ A,

S(P,Q) = cS(P |Q). (5.7)
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We shall prove Theorem 5.2 in Section 5.3. Note that neither assumptions (a) ∧ (b) nor (a) ∧ (c) are
sufficient to deduce (5.7): (a) and (b) hold for the Rényi relative entropy (P,Q) 7→ Sα(P,Q) if α ∈]0, 1[
((c) fails here), while (a) and (c) hold for the entropy (P,Q) 7→ S(P ) ((b) fails here, recall Exercise 4.5).

4. Sanov’s theorem. This result is a deep refinement of Crámer’s theorem and the basic indicator of the
central role the relative entropy plays in the theory of Large Deviations. We continue with our framework:
Ω is a finite set and P a given probability measure on Ω. We shall assume that P is faithful.

To avoid confusion, we shall occasionally denote the generic element of Ω with a letter a (and list the
elements of Ω as Ω = {a1, · · · , aL}). For ω ∈ Ω we denote by δω ∈ P(Ω) the pure probability measure
concentrated at ω: δω(a) = 1 if a = ω and zero otherwise. For ω = (ω1, · · · , ωN ) we set

δω =
1

N

N∑

k=1

δωk
.

Obviously, δω ∈ P(Ω) and

δω(a) =
the number of times a appears in the sequence ω = (ω1, · · · , ωN )

N
.

Sanov’s theorem concerns the statistics of the map ΩN ∋ ω 7→ δω ∈ P(Ω) w.r.t. the product probability
measure PN . The starting point is the corresponding law of large numbers.

Proposition 5.3 For any ǫ > 0,

lim
N→∞

PN

{
ω ∈ ΩN | dV (δω, P ) ≥ ǫ

}
= 0.

Sanov’s theorem concerns fluctuations in the above LLN, or more precisely, for a given Γ ⊂ P(Ω), it
estimates the probabilities

PN

{
ω ∈ ΩN | δω ∈ Γ

}

in the limit of large N .

Theorem 5.4 For any closed set Γ ⊂ P(Ω),

lim sup
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≤ − inf

Q∈Γ
S(Q|P ),

and for any open set Γ ⊂ P(Ω),

lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≥ − inf

Q∈Γ
S(Q|P ).

We shall prove Proposition 5.3 and Theorem 5.4 in Section 5.4 where the reader can also find additional
information about Sanov’s theorem.

5.2 Proof of Theorem 5.1

The function
F (t) = S((1, 0), (t, 1− t)), t ∈]0, 1],

will play an important role in the proof. Obviously, F is continuous on ]0, 1] and F (1) = 0.

We split the proof into five steps.
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Step 1. Let (P,Q) ∈ A(Ω), where Ω = {ω1, · · · , ωn}, and suppose that P (ωj) = 0 for j > k. Set
Ω1 = {ω1, · · · , ωk}, P1(ωj) = P (ωj), and

Q1(ωj) =
Q(ωj)

Q(ω1) + · · ·+Q(ωk)
.

It is obvious that (P1, Q1) ∈ A(Ω1). We then have

S(P,Q) = F (q1 + · · ·+ qk) +S(P1, Q1). (5.8)

Note that if k = n, then (5.8) follows from F (1) = 1. Otherwise, write Ω = Ω1 ⊕ Ω2, with Ω2 =
{ωk+1, · · · , ωn}. Take any P2 ∈ P(Ω2), write

(P,Q) = (1 · P1 ⊕ 0 · P2, tQ1 ⊕ (1− t)Q2),

where t = q1 + · · ·+ qk, Q2 is arbitrary if t = 1, and Q2(ωj) = Q(ωj)/(1− t) if t < 1, and observe that
the statement follows from (5.5).

Step 2. F (ts) = F (t) + F (s) for all s, t ∈]0, 1].
Consider S((1, 0, 0), (ts, t(1− s), 1− t)). Applying Step 1 with k = 1 we get

S((1, 0, 0), (ts, t(1− s), 1− t)) = F (ts) +S((1), (1)) = F (ts).

Applying Step 1 with k = 2 gives

S((1, 0, 0), (ts, t(1− s), 1− t)) = F (t) +S((1, 0), (s, 1− s)) = F (t) + F (s),

and the statement follows.

Step 3. For some c ∈ R, F (t) = −c log t for all t ∈]0, 1].
Set H(s) = F (e−s). Then H is continuous on [0,∞[ and satisfies H(s1 + s2) = H(s1) + H(s2). It is
now a standard exercise to show that H(s) = cs where c = H(1). Setting t = e−s gives F (t) = −c log t.
This is the only point where the regularity assumption (a) has been used (implying the continuity of F ),
and so obviously (a) can be relaxed.1 Note that (5.1) implies c ≥ 0.

Step 4. We now prove that for any n ≥ 2 and any pair (p, q) ∈ An of faithful probability measures,

S(p, q) = cS(p|q), (5.9)

where c is the constant from Step 3.

Let p = (p1, · · · , pn), q = (q1, · · · , qn), and choose t ∈]0, 1] such that qk − tpk ≥ 0 for all k. Set

K = S((p1, · · · , pn, 0, · · · , 0), (tp1, · · · , tpn, q1 − tp1, · · · , qn − tpn)).

It follows from Steps 1 and 3 that

K = F (t) +S(p, p) = −c log t. (5.10)

On the other hand, (5.2) and (5.3) yield

K = S((p1, 0, · · · , pn, 0), (tp1, q1 − tp1, · · · , tpn, qn − tpn))

= S

(
(p1(1, 0), · · · , pn(1, 0)),

(
q1

(
tp1
q1
, 1− tp1

q1

))
, · · · , qn

(
tpn
qn

, 1− tpn
qn

))

=

n∑

k=1

pkF

(
tpk
qk

)
+S(p, q),

1It suffices that F is Borel measurable.
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and it follows from Step 3 that

K = −c log t− cS(p|q) +S(p, q). (5.11)

Comparing (5.10) and (5.11) we derive (5.9).

Step 5. We now show that (5.9) also holds for non-faithful p’s and complete the proof of Theorem 5.1.
By (5.2) we may assume that pj > 0 for j ≤ k and pj = 0 for j > k, where k < n. Then, setting
s = q1 + · · · qk, Steps 1 and 3 yield

S(p, q) = −c log s+S((p1, · · · , pk), (q1/s, · · · , qk/s)),

and it follows from Step 4 that

S(p, q) = −c log s+ cS((p1, · · · , pk)|(q1/s, · · · , qk/s)).

On the other hand, a direct computation gives

S(p|q) = − log s+ S((p1, · · · , pk)|(q1/s, · · · , qk/s)),

and so S(p, q) = cS(p|q).
The non-triviality assumption that S is not vanishing on A gives that c > 0.

5.3 Proof of Theorem 5.2

We shall need the following preliminary result which is of independent interest and which we will prove
at the end of this section. Recall that if P is a probability measure on Ω, then PN = P ⊗ · · · ⊗ P is the
product probability measure on ΩN = Ω× · · · × Ω.

Proposition 5.5 Suppose that (P,Q) ∈ A(Ω) and (P̂ , Q̂) ∈ A(Ω̂) are such that S(P |Q) > S(P̂ |Q̂).

Then there exists a sequence of stochastic maps (ΦN )N≥1, ΦN : P(ΩN ) → P(Ω̂N ) such that ΦN (QN ) =

Q̂N for all N ≥ 1 and

lim
N→∞

dV (ΦN (PN ), P̂N ) = 0.

We now turn to the proof of Theorem 5.2. Recall our standing assumptions (5.1). Let (P (0), Q(0)) ∈ A be
such that S(P (0), Q(0)) > 0, and let c > 0 be such that

S(P (0), Q(0)) = cS(P (0)|Q(0)).

Let (P,Q) ∈ A, P 6= Q, be given and let L,M,L′,M ′ be positive integers such that

L′

M ′
S(P (0)|Q(0)) < S(P |Q) <

L

M
S(P (0)|Q(0)). (5.12)

We work first with the r.h.s. of this inequality which can be rewritten as

S(PM |QM ) < S(P
(0)
L |Q(0)

L ).

It follows from Proposition 5.5 that there exists a sequence of stochastic maps (ΦN )N≥1 such that ΦN (Q
(0)
LN) =

QMN and

lim
N→∞

dV (ΦN (P
(0)
L ), PMN ) = 0. (5.13)
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We now turn to S(P,Q) and note that

MS(P,Q) = S(PM , QM ) =
1

N
S(PMN , QMN )

=
1

N

[
S(PMN , QMN )−S(ΦN (P

(0)
L ), QMN )

]
+

1

N
S(ΦN (P

(0)
L ),ΦN (Q

(0)
LN ))

≤ 1

N

[
S(PMN , QMN )−S(ΦN (P

(0)
L ), QMN )

]
+

1

N
S(P

(0)
LN , Q

(0)
LN)

=
1

N

[
S(PMN , QMN )−S(ΦN (P

(0)
L ), QMN )

]
+ LS(P

(0)
L , Q(0)).

(5.14)

Write QMN = QM ⊗ · · · ⊗ QM and denote by Rk,N the marginal of ΦN (P
(0)
L ) with the respect to the

k-th component of this decomposition. Assumption (c) gives

1

N

[
S(PMN , QMN )−S(ΦN (P

(0)
L ), QMN )

]
≤ 1

N

N∑

k=1

[S(PM , QM )−S(Rk,N , QM )] . (5.15)

One easily shows that (5.13) implies that for any k,

lim
N→∞

dV (Rk,N , PM ) = 0. (5.16)

It then follows from (5.15) that

lim sup
N→∞

1

N

[
S(PMN , QMN )−S(ΦN (P

(0)
L ), QMN )

]
≤ 0. (5.17)

Returning to (5.14), (5.17) yields

S(P,Q) ≤ L

M
S(P (0), Q(0)) =

L

M
cS(P (0)|Q(0)). (5.18)

Since the only constraint regarding the choice of L and M is that (5.12) holds, we derive from (5.18) that

S(P,Q) ≤ cS(P |Q).

Starting with the l.h.s. of the inequality (5.12) and repeating the above argument one derives thatS(P,Q) ≥
cS(P |Q). Hence, S(P,Q) = cS(P |Q) for all (P,Q) ∈ A with P 6= Q. Since this relation holds trivially
for P = Q, the proof is complete. �

Exercise 5.2. Prove that (5.13) implies (5.16).

Proof of Proposition 5.5. The statement is trivial if P̂ = Q̂, so we assume that P̂ 6= Q̂ (hence S(P̂ |Q̂) >
0). Let t, t̂ be such that

S(P̂ |Q̂) < t̂ < t < S(P |Q).

It follows from Stein’s Lemma that one can find a sequence of sets (TN )N≥1, TN ⊂ ΩN , such that

lim
N→∞

PN (TN) = 1, QN(TN ) ≤ C1e
−Nt,

for some constant C1 > 0. Let ΨN : P(Ω) → P({0, 1}) be a stochastic map induced by the matrix

ΨN(ω, 0) = χTN
(ω), ΨN (ω, 1) = χT c

N
(ω),
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where χTN
and χT c

N
are the characteristic functions of TN and its complement T c

N . It follows that

ΨN (PN ) = (pN , pN ), Ψ(QN) = (qN , qN ),

where
pN = PN (TN ), qN = Q(TN).

Obviously pN = 1− pN , qN = 1− qN .

It follows again from Stein’s Lemma that one can find a sequence of sets (T̂N )N≥1, T̂N ⊂ Ω̂N , such that

lim
N→∞

P̂N (T̂N) = 1, QN(T̂ c
N ) > C2e

−Nt̂,

for some constant C2 > 0. We now construct a stochastic map Ψ̂N : P({0, 1}) → P(Ω̂) as follows. Let
δ0 = (1, 0), δ1 = (0, 1). We set first

Ψ̂N(δ0)(ω) =
P̂N (ω)

∑
ω′∈T̂N

P̂N (ω′)
if ω ∈ T̂N ,

Ψ̂N (δ0)(ω) = 0 otherwise, and observe that

dV (Ψ̂N(δ0), P̂N ) ≤ P̂N (T̂ c
N) +

1− P̂N (T̂N )

P̂N (T̂N )
.

Hence,
lim

N→∞
dV (Ψ̂N (δ0), P̂N ) = 0.

Let
DN (ω) = Q̂N(ω)− qNΦN (δ0)(ω).

If ω 6∈ T̂N , then obviouslyDN (ω) = Q̂N(ω) ≥ 0, and if ω ∈ T̂N ,

DN (ω) ≥ C−t̂N
2 − c1e

−tN .

Since 0 < t̂ < t, there is N0 such that for N ≥ N0 and all ω ∈ Ω̂, DN(ω) ≥ 0. From now on we assume
that N ≥ N0, set

Ψ̂N(δ1) =
1

qN
(QN − qNΦN (δ0)),

and define Ψ̂N : P({0, 1}) → P(Ω̂) by

Ψ̂N (p, q) = pΨ(δ0) + qΨ(δ1).

The map Ψ̂N is obviously stochastic and

Ψ̂N (qN , qN ) = Q̂N .

Moreover,

dV (Ψ̂N (pN , pN ), P̂N ) ≤ dV (Ψ̂N(pN , pN ), Ψ̂N (δ0)) + dV (Ψ̂N (δ0), P̂N )

≤ 2(1− pN ) + dV (Ψ̂N (δ0), P̂N ),

and so
lim

N→∞
dV (Ψ̂N (pN , pN ), P̂N ) = 0.

For N < N0 we take for ΦN an arbitrary stochastic map satisfying ΦN (QN ) = Q̂N and for N ≥ N0 we
set ΦN = Ψ̂N ◦ΨN . Then ΦN (QN ) = Q̂N for all N ≥ 1 and

lim
N→∞

dV (ΦN (PN ), P̂N ) = 0,

proving the proposition. �
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Exercise 5.3. Write down the stochastic matrix that induces Ψ̂N .

5.4 Sanov’s theorem

We start with

Proof of Proposition 5.3. Recall that L = |Ω|. We have

dV (δω , P ) =
∑

a∈Ω

∣∣∣∣∣

∑N
k=1 δωk

(a)

N
− P (a)

∣∣∣∣∣ ,

and
{
ω ∈ ΩN | dV (δω, P ) ≥ ǫ

}
⊂
⋃

a∈Ω

{
ω ∈ ΩN

∣∣
∣∣∣∣∣

∑N
k=1 δωk

(a)

N
− P (a)

∣∣∣∣∣ ≥
ǫ

L

}
.

Hence,

PN

{
ω ∈ ΩN | dV (δω , P ) ≥ ǫ

}
≤
∑

a∈Ω

PN

{
ω ∈ ΩN

∣∣
∣∣∣∣∣

∑N
k=1 δωk

(a)

N
− P (a)

∣∣∣∣∣ ≥
ǫ

L

}
. (5.19)

For given a ∈ Ω, consider a random variable X : Ω → R defined by X(ω) = δω(a). Obviously,
E(X) = P (a) and the LLN yields that

lim
N→∞

PN

{
ω ∈ ΩN

∣∣
∣∣∣∣∣

∑N
k=1 δωk

(a)

N
− P (a)

∣∣∣∣∣ ≥
ǫ

L

}
= 0.

The proposition follows by combining this observation with inequality (5.19). �

We now turn to the proof of Sanov’s theorem. Recall the assumption that P is faithful. We start with the
upper bound.

Proposition 5.6 Suppose that Γ ⊂ P(Ω) is a closed set. Then

lim sup
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≤ − inf

Q∈Γ
S(Q|P ).

Remark 5.2 Recall that the map P(Ω) ∋ Q 7→ S(Q|P ) ∈ [0,∞[ is continuous (P is faithful). Since Γ is
compact, there exists Qm ∈ P(Ω) such that

inf
Q∈Γ

S(Q|P ) = S(Qm|P ).

Proof. Let ǫ > 0 be given. Let Q ∈ Γ. By Exercise 4.9,

S(Q|P ) = sup
X:Ω→R

(∫

Ω

XdQ− log

∫

Ω

eXdP

)
.

Hence, we can find X such that

S(Q|P )− ǫ <

∫

Ω

XdQ− log

∫

Ω

eXdP.

Let

Uǫ(Q) =

{
Q′ ∈ P(Ω)

∣∣
∣∣∣∣
∫

Ω

XdQ−
∫

Ω

XdQ′

∣∣∣∣ < ǫ

}
.
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Since the map P(Ω) ∋ Q′ 7→
∫
ΩXdQ′ is continuous, Uǫ(Q) is an open subset of P(Ω). We now estimate

PN {δω ∈ Uǫ(Q)} = PN

{∣∣∣∣
∫

Ω

XdQ−
∫

Ω

Xdδω

∣∣∣∣ < ǫ

}

≤ PN

{∫

Ω

Xδω >

∫

Ω

XdQ− ǫ

}

= PN

{
N∑

k=1

X(ωk) > N

∫

Ω

XdQ−Nǫ

}

= PN

{
e
∑N

k=1 X(ωk) > eN
∫
Ω
XdQ−Nǫ

}

≤ e−N
∫
Ω
XdQ+Nǫ

E(eX)N

= e−N
∫
Ω
XdQ+N log

∫
Ω
eXdP+Nǫ

≤ e−NS(Q|P )+2Nǫ

Since Γ is compact, we can find Q1, · · · , QM ∈ Γ such that

Γ ⊂
M⋃

j=1

Uǫ(Qj).

Then

PN {δω ∈ Γ} ≤
M∑

j=1

PN {δω ∈ Uǫ(Qj)}

≤ e2Nǫ
M∑

j=1

e−NS(Qj|P )

≤ e2NǫMe−N infQ∈Γ S(Q|P ).

Hence

lim sup
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≤ − inf

Q∈Γ
S(Q|P ) + 2ǫ.

Since ǫ > 0 is arbitrary, the statement follows. �

We now turn to the lower bound.

Proposition 5.7 For any open set Γ ⊂ P(Ω),

lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≥ − inf

Q∈Γ
S(Q|P ).

Proof. Let Q ∈ Γ be faithful. Recall that SQ|P = log∆Q|P and

∫

Ω

SP |Qdδω =
SQ|P (ω1) + · · ·+ SQ|P (ωN )

N
.

Let ǫ > 0 and

RN,ǫ =

{
δω ∈ Γ

∣∣
∣∣∣∣
∫

Ω

SQ|Pdδω − S(Q|P )
∣∣∣∣ < ǫ

}
.
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Then

PN {δω ∈ Γ} ≥ PN (RN,ǫ) =

∫

RN,ǫ

∆PN |QN
dQN =

∫

RN,ǫ

∆−1
QN |PN

dQN

=

∫

RN,ǫ

e−
∑N

k=1 SQ|P (ωk)dQN

≥ e−NS(Q|P )−NǫQN(RN,ǫ).

Note that for ǫ small enough (Γ is open!)

RN,ǫ ⊃
{
ω ∈ ΩN | dV (Q, δω) < ǫ

}
∩
{
ω ∈ ΩN

∣∣
∣∣∣∣
SQ|P (ω1) + · · ·+ SQ|P (ωN )

N
− S(Q|P )

∣∣∣∣ < ǫ

}
.

By the LLN,
lim

N→∞
QN(RN,ǫ) = 1.

Hence, for any faithful Q ∈ Γ,

lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≥ −S(Q|P ). (5.20)

Since Γ is open and the map P(Ω) ∋ Q→ S(Q|P ) is continuous,

inf
Q∈Γ∩Pf (Ω)

S(Q|P ) = inf
Q∈Γ

S(Q|P ). (5.21)

The relations (5.20) and (5.21) imply

lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
≥ − inf

Q∈Γ
S(Q|P ).

�

Exercise 5.4. Prove the identity (5.21).

A set Γ ∈ P(Ω) is called Sanov-nice if

inf
Q∈int Γ

S(Q|P ) = inf
Q∈cl Γ

S(Q|P ),

where int/cl stand for the interior/closure. If Γ is Sanov-nice, then

lim
N→∞

1

N
logPN

{
ω ∈ ΩN | δω ∈ Γ

}
= − inf

Q∈Γ
S(Q|P ).

Exercise 5.5.

1. Prove that any open set Γ ⊂ P(Ω) is Sanov-nice.

2. Suppose that Γ ⊂ P(Ω) is convex and has non-empty interior. Prove that Γ is Sanov-nice.

We now show that Sanov’s theorem implies Cramér’s theorem. The argument we shall use is an example
of the powerful contraction principle in theory of Large Deviations.
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Suppose that in addition to Ω and P we are given a random variable X : Ω → R. C and I denote the
cumulant generating function and the rate function of X . Note that

SN (ω)

N
=
X(ω1) + · · ·+X(ωN)

N
=

∫

Ω

Xdδω.

Hence, for any S ⊂ R,
SN (ω)

N
∈ S ⇔ δω ∈ ΓS ,

where

ΓS =

{
Q ∈ P(Ω)

∣∣
∫

Ω

XdQ ∈ S

}
.

Exercise 5.6. Prove that
int ΓS = ΓintS , cl ΓS = ΓclS .

Sanov’s theorem and the last exercise yield

Proposition 5.8 For any S ⊂ R,

− inf
Q∈ΓintS

S(Q|P ) ≤ lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN

∣∣ SN (ω)

N
∈ S

}

≤ lim sup
N→∞

1

N
logPN

{
ω ∈ ΩN

∣∣ SN (ω)

N
∈ S

}
≤ − inf

Q∈ΓclS

S(Q|P ),

To relate this result to Cramér’s theorem we need:

Proposition 5.9 For any S ⊂ R,

inf
θ∈S

I(θ) = inf
Q∈ΓS

S(Q|P ). (5.22)

Proof. Let Q ∈ P(Ω). An application of Jensen’s inequality gives that for all α ∈ R,

C(α) = log

(
∑

ω∈Ω

eαX(ω)P (ω)

)

≥ log


 ∑

ω∈suppQ

eαX(ω)P (ω)

Q(ω)
Q(ω)




≥
∑

ω∈suppQ

Q(ω) log

[
eαX(ω)P (ω)

Q(ω)

]
.

Hence,

C(α) ≥ α

∫

Ω

XdQ− S(Q|P ). (5.23)

If Q is such that θ0 =
∫
Ω
XdQ ∈ S, then (5.23) gives

S(Q|P ) ≥ sup
α∈R

(αθ0 − C(α)) = I(θ0) ≥ inf
θ∈S

I(θ),
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and so

inf
Q∈ΓS

S(Q|P ) ≥ inf
θ∈S

I(θ). (5.24)

One the other hand, if θ ∈]m,M [, where m = minω∈ΩX(ω) and M = maxω∈ΩX(ω), and α = α(θ)
is such that C′(α(θ)) = θ, then, with Qα defined by (2.3) (recall also the proof of Cramer’s theorem),
θ =

∫
ΩXdQα and S(Qα|P ) = αθ − C(α) = I(θ). Hence, if S ⊂ ]m,M [, then for any θ0 ∈ S,

infQ∈ΓS
S(Q|P ) ≤ I(θ0), and so

inf
Q∈ΓS

S(Q|P ) ≤ inf
θ∈S

I(θ). (5.25)

It follows from (5.24) and (5.25) that (5.22) holds for S ⊂ ]m,M [. One checks directly that

I(m) = inf
Q:

∫
Ω
XdQ=m

S(Q|P ), I(M) = inf
Q:

∫
Ω
XdQ=M

S(Q|P ). (5.26)

If S ∩ [m,M ] = ∅, then both sides in (5.22) are ∞ (by definition, inf ∅ = ∞). Hence,

inf
θ∈S

I(θ) = inf
θ∈S∩[m,M ]

I(θ) = inf
Q∈ΓS∩[m,M]

S(Q|P ) = inf
Q∈ΓS

S(Q|P ),

and the statement follows. �

Exercise 5.7. Prove the identities (5.26).

Propositions 5.8 and 5.9 yield the following generalization of Cramér’s theorem:

Theorem 5.10 For any S ⊂ R,

− inf
θ∈intS

I(θ) ≤ lim inf
N→∞

1

N
logPN

{
ω ∈ ΩN

∣∣ SN (ω)

N
∈ S

}

≤ lim sup
N→∞

1

N
logPN

{
ω ∈ ΩN

∣∣ SN (ω)

N
∈ S

}
≤ − inf

θ∈clS
I(θ).

A set S is called Cramer-nice if

inf
θ∈intS

I(θ) = inf
θ∈clS

I(θ).

Obviously, if S is Cramer-nice, then

lim
N→∞

1

N
logPN

{
ω ∈ ΩN

∣∣ SN (ω)

N
∈ S

}
= − inf

θ∈S
I(θ).

Exercise 5.8.

1. Is it true that any open/closed interval is Cramér-nice?

2. Prove that any open set S ⊂]m,M [ is Cramér-nice.

3. Describe all open sets that are Cramér-nice.
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5.5 Notes and references

Theorem 5.1 goes back to the work of Hobson [Hob] in 1969. Following in Shannon’s step, Hobson has
proved Theorem 5.1 under the additional assumptions that S is continuous on AL for all L ≥ 1, and that
the function

(n, n0) 7→ S

((
1

n
, · · · , 1

n
, 0, · · · , 0

)
,

(
1

n0
, · · · , 1

n0

))
,

defined for n ≤ n0, is an increasing function of n0 and a decreasing function of n. Our proof of Theorem
5.1 follows closely [Lei] where the reader can find additional information about the history of this result.

The formulation and the proof of Theorem 5.2 are based on the recent works [Mat, WiGaEi].

For additional information about axiomatizations of relative entropy we refer the reader to Section 7.2 in
[AczDa].

Regarding Sanov’s theorem, for the original references and additional information we refer the reader to
[DeZe, CovTh]. In these monographs one can also find a purely combinatorial proof of Sanov’s theorem
and we urge the reader to study this alternative proof. As in the case of Cramér’s theorem, the proof
presented here has the advantage that it extends to a much more general setting that will be discussed in
the Part II of the lecture notes.
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Chapter 6

Fisher entropy

6.1 Definition and basic properties

Let Ω be a finite set and [a, b] a bounded closed interval in R. To avoid trivialities, we shall always assume
that |Ω| = L > 1. Let {Pθ}θ∈[a,b], Pθ ∈ Pf(Ω), be a family of faithful probability measures on Ω indexed
by points θ ∈ [a, b]. We shall assume that the functions [a, b] ∋ θ 7→ Pθ(ω) are C2 (twice continuously
differentiable) for all ω ∈ Ω. The expectation and variance with respect to Pθ are denoted by Eθ and Varθ.
The entropy function is denoted by Sθ = − logPθ . The derivatives w.r.t. θ are denoted as ḟ(θ) = ∂θf(θ),
f̈(θ) = ∂2θf(θ), etc. Note that

Ṡθ = − Ṗθ

Pθ
, S̈θ = − P̈θ

Pθ
+
Ṗ 2
θ

P 2
θ

, Eθ(Ṡθ) = 0.

The Fisher entropy of Pθ is defined by

I(θ) = Eθ([Ṡθ]
2) =

∑

ω∈Ω

[Ṗθ(ω)]
2

Pθ(ω)
.

Obviously,
I(θ) = Varθ(Ṡθ) = Eθ(S̈θ).

Example 6.1 Let X : Ω → R be a random variable and

Pθ(ω) =
eθX(ω)

∑
ω′ eθX(ω′)

.

Then
I(θ) = Varθ(X).

The Fisher entropy arises by considering local relative entropy distortion of Pθ. Fix θ ∈ I and set

L(ǫ) = S(Pθ+ǫ|Pθ), R(ǫ) = S(Pθ|Pθ+ǫ).

The functions ǫ 7→ L(ǫ) and ǫ 7→ R(ǫ) are well-defined in a neighbourhood of θ (relative to the interval
[a, b]). An elementary computation yields:

Proposition 6.1

lim
ǫ→0

1

ǫ2
L(ǫ) = lim

ǫ→0

1

ǫ2
R(ǫ) =

1

2
I(θ).

81
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In terms of the Jensen-Shannon entropy and metric we have

Proposition 6.2

lim
ǫ→0

1

ǫ2
SJS(Pθ+ǫ, Pθ) =

1

4
I(θ),

lim
ǫ→0

1

|ǫ|dJS(Pθ+ǫ, Pθ) =
1

2

√
I(θ).

Exercise 6.1. Prove Propositions 6.1 and 6.2.

Since the relative entropy is stochastically monotone, Proposition 6.1 implies that the Fisher entropy is also
stochastically monotone. More precisely, let [Φ(ω, ω̂)](ω,ω̂)∈Ω×Ω̂ be a stochastic matrix and Φ : P(Ω) →
P(Ω̂) the induced stochastic map. Set

P̂θ = Φ(Pθ),

and note that P̂θ is faithful. Let Î(θ) be the Fisher entropy of P̂θ . Then

Î(θ) = lim
ǫ→0

1

ǫ2
S(P̂θ+ǫ|P̂θ) ≤ lim

ǫ→0

1

ǫ2
S(Pθ+ǫ|Pθ) = I(θ).

The inequality Î(θ) ≤ I(θ) can be directly proven as follows. Since the function x 7→ x2 is convex, the
Jensen inequality yields

(
∑

ω

Φ(ω, ω̂)Ṗθ(ω)

)2

=

(
∑

ω

Φ(ω, ω̂)Pθ(ω)
Ṗθ(ω)

Pθ(ω)

)2

≤
(
∑

ω

Φ(ω, ω̂)
[Ṗθ(ω)]

2

Pθ(ω)

)(
∑

ω

Φ(ω, ω̂)Pθ(ω)

)
.

Hence,

Î(θ) =
∑

ω̂

(
∑

ω

Φ(ω, ω̂)Pθ(ω)

)−1(∑

ω

Φ(ω, ω̂)Ṗθ(ω)

)2

≤
∑

ω̂

∑

ω

Φ(ω, ω̂)Pθ(ω)
[Ṗθ(ω)]

2

Pθ(ω)

= I(θ).

6.2 Entropic geometry

We continue with the framework of the previous section. In this section we again identify Pf(Ω) with

PL,f =

{
(p1, · · · , pL) ∈ R

L | pk > 0,
∑

k

pk = 1

}
.

We view PL,f as a surface in R
L and write p = (p1, · · · , pL). The family {Pθ}θ∈[a,b] is viewed as a map

(we will also call it a path)
[a, b] ∋ θ 7→ pθ = (pθ1, · · · , pθL) ∈ PL,f ,
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where pθk = Pθ(ωk). For the purpose of this section it suffices to assume that all such path are C1 (that
is, continuously differentiable). The tangent vector ṗθ = (ṗθ1, · · · , ṗθL) satisfies

∑
k ṗθk = 0 and hence

belongs to the hyperplane

TL =

{
ζ = (ζ1, · · · , ζL) |

∑

k

ζk = 0

}
.

The tangent space of the surface PL,f is TL = PL,f × TL.

A Riemannian structure (abbreviated RS) on PL,f is a family gL = {gL,p(·, ·)}p∈PL
of real inner products

on TL such that for all ζ, η ∈ TL the map

PL ∋ p 7→ gL,p(ζ, η) (6.1)

is continuous. The geometric notions (angles, length of curves, curvature...) on PL are defined with
respect to the RS (to define some of them one needs additional regularity of the maps (6.1)). For example,
the energy of the path θ 7→ pθ is

E([pθ]) =
∫ b

a

gL,pθ
(ṗθ, ṗθ)dθ,

and its length is

L([pθ]) =
∫ b

a

√
gL,pθ

(ṗθ, ṗθ)dθ.

Jensen’s inequality for integrals (which is proven by applying Jensen’s inequality to Riemann sums) gives
that

L([pθ]) ≥ [(b − a)E([pθ])]1/2 . (6.2)

The Fisher Riemannian structure (abbreviated FRS) is defined by

gFp (ζ, η) =
∑

k

1

pk
ζkηk.

In this case,
gFp(θ)(ṗθ, ṗθ) = I(θ),

where I(θ) is the Fisher entropy of Pθ. Hence.

E([pθ]) =
∫ b

a

I(θ)dθ, L([pθ]) =
∫ b

a

√
I(θ)dθ.

We have the following general bounds:

Proposition 6.3

∫ b

a

I(θ)dθ ≥ 1

b − a
dV (pa, pb)

2,

∫ b

a

√
I(θ)dθ ≥ dV (pa, pb), (6.3)

where dV is the variational distance defined by (3.2).

Remark 6.1 The first inequality in (6.3) yields the "symetrized" version of Theorem 4.2. Let p, q ∈ PL,f

and consider the path pθ = θp+ (1− θ)q, θ ∈ [0, 1]. Then

∫ 1

0

I(θ)dθ = S(p|q) + S(q|p),

and the first inequality in (6.3) gives

S(p|q) + S(q|p) ≥ dV (p, q)
2.
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Proof. To prove the first inequality, note that Jensen’s inequality gives

I(θ) =
L∑

k=1

ṗ2θk
pθk

=

L∑

k=1

[
ṗθk
pθk

]2
pθk ≥

(
L∑

k=1

|ṗθk|
)2

. (6.4)

Hence,
∫ b

a

I(θ)dθ ≥
∫ b

a

(
L∑

k=1

|ṗθk|
)2

dθ ≥ 1

b− a

(
L∑

k=1

∫ b

a

|ṗθk|dθ
)2

,

where the second inequality follows from Jensen’s integral inequality. The last inequality and
∫ b

a

|ṗθk|dθ ≥
∣∣∣∣∣

∫ b

a

ṗθkdθ

∣∣∣∣∣ = |pbk − pak| (6.5)

yield the statement.

Note that the first inequality in (6.3) and (6.2) imply the second. Alternatively, the second inequality
follows immediately from (6.4) and (6.5). �

The geometry induced by the FRS can be easily understood in terms of the surface

SL = {s = (s1, · · · , sL) ∈ R
L | sk > 0,

∑

k

s2k = 1}.

The respective tangent space is SL × RL−1 which we equip with the Euclidian RS

es(ζ, η) =
∑

k

ζkηk.

Note that es(ζ, η) does not depend on s ∈ SL and we will drop the subscript s. Let now θ 7→ pθ =
(pθ1 , · · · , pθL) be a path connecting p = (p1, · · · , pL) and q = (q1, · · · , qL) in PL,f . Then,

θ 7→ sθ = (
√
pθ1 , · · · ,

√
pθL)

is a path in SL connecting s = (
√
p1, · · · ,√pL) and u = (

√
q1, · · · ,√qL). The map [pθ] 7→ [sθ]

is a bijective correspondences between all C1-paths in PL,f connecting p and q and all C1-paths in SL

connecting s and u. Since

e(ṡθ, ṡθ) =
1

4
gFp(θ)(ṗθ, ṗθ) =

1

4
I(θ),

the geometry on PL,f induced by the FRS is identified with the Euclidian geometry of SL via the map
[pθ] 7→ [sθ].

Exercise 6.2. The geodesic distance between p, q ∈ PL,f w.r.t. the FRS is defined by

γ(p, q) = inf

∫ b

a

√
gFp(θ)(ṗθ, ṗθ)dθ, (6.6)

where inf is taken over all C1-paths [a, b] ∋ θ 7→ pθ ∈ PL,f such that pa = p and pb = q. Prove that

γ(p, q) = arccos

(
L∑

k=1

√
pkqk

)
.

Show that the r.h.s. in (6.6) has a unique minimizer and identify this minimizer.

The obvious hint for a solution of this exercise is to use the correspondence between the Euclidian geometry
of the sphere and the FRS geometry of PL,f . We leave it to the interested reader familiar with basic notions
of differential geometry to explore this connection further. For example, can you compute the sectional
curvature of PL,f w.r.t. the FRS?
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6.3 Chentsov’s theorem

Let (gL)L≥2 be a sequence of RS, where gL is a RS on PL,f . The sequence (gL)L≥2 is called stochastically
monotone if for any L, L̂ ≥ 2 and any stochastic map Φ : PL,f → PL̂,f ,

gL̂,Φ(p)(Φ(ζ),Φ(ζ)) ≤ gL,p(ζ, ζ)

for all p ∈ PL,f and ζ ∈ TL. Here we used that, in the obvious way, Φ defines a linear map Φ : RL 7→ RL̂

which maps TL to TL̂.

Proposition 6.4 The sequence (gFL )L≥1 of the FRS is stochastically monotone.

Proof. The argument is a repetition of the direct proof of the inequality I(θ) ≤ Î(θ) given in Section 6.1.
The details are as follows.

Let [Φ(i, j)]1≤i≤L,1≤j≤L̂ be a stochastic matrix definingΦ : PL,f → PL̂,f , i.e., for any v = (v1, · · · , vL) ∈
RL, Φ(v) ∈ RL̂ is given by

(Φ(v))j =

L∑

i=1

Φ(i, j)vi.

For p ∈ PL and ζ ∈ TL the convexity gives

(
∑

i

Φ(i, j)ζi

)2

=

(
∑

i

Φ(i, j)pi
ζi
pi

)2

≤
(
∑

i

Φ(i, j)
ζ2i
pi

)(
∑

i

Φ(i, j)pi

)

=

(
∑

i

Φ(i, j)
ζ2i
pi

)
(Φ(p))j .

Hence,

gF
L̂
(Φ(ζ),Φ(ζ)) =

∑

j

1

(Φ(p))j

(
∑

i

Φ(i, j)ζi

)2

≤
∑

j

∑

i

Φ(i, j)
ζ2i
pi

=
∑

i

ζ2i
pi

= gFL,p(ζ, ζ).

�

The main result of this section is:

Theorem 6.5 Suppose that a sequence (gL)L≥2 is stochastically monotone. Then there exists a constant

c > 0 such that gL = cgFL for all L ≥ 2.

Proof. We start the proof by extending each gL,p to a bilinear map GL,p on RL × RL as follows. Set
νL = (1, · · · , 1) ∈ RL and note that any v ∈ RL can be uniquely written as v = aνL + ζ, where a ∈ R

and ζ ∈ TL. If v = aνL + ζ and w = a′νL + ζ′, we set

GL,p(v, w) = gL,p(ζ, ζ
′).

The mapGL,p is obviously bilinear, symmetric (GL,p(v, w) = GL,p(w, v)), and non-negative (GL,p(v, v) ≥
0). In particular, the polarization identity holds:

GL,p(v, w) =
1

4
(GL,p(v + w, v + w)−GL,p(v − w, v − w)) . (6.7)
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Note however that GL,p is not an inner product since GL,p(νL, νL) = 0.

In what follows pL,ch denotes the chaotic probability distribution in PL, i.e., pL,ch = (1/L, · · · , 1/L). A
basic observation is that if the stochastic map Φ : PL,f → PL̂,f is stochastically invertible (that is, there
exists a stochastic map Ψ : PL̂,f → PL,f such that Φ ◦ Ψ(p) = p for all p ∈ PL,f ) and Φ(pL,ch) = pL̂,ch,

then for all v, w ∈ R
L,

GL̂,p
L̂,ch

(Φ(v),Φ(w)) = GL,pL,ch
(v, w). (6.8)

To prove this, note that since Φ preserves the chaotic probability distribution, we have that Φ(νL) =
LL̂−1νL̂. Then, writing v = aνL + ζ, we have

GL,pL,ch
(v, v) = gL,pL,ch

(ζ, ζ) ≥ gL̂,p
L̂,ch

(Φ(ζ),Φ(ζ))

= GL̂,p
L̂,ch

(
aLL̂−1νL̂ +Φ(ζ), aLL̂−1νL̂ +Φ(ζ)

)

= GL̂,p
L̂,ch

(aΦ(νL) + Φ(ζ), aΦ(νL) + Φ(ζ))

= GL̂,p
L̂,ch

(Φ(v),Φ(v)).

(6.9)

If Ψ : PL̂,f → PL,f is the stochastic inverse of Φ, then Ψ(pL̂,ch) = pL,ch and so by repeating the above
argument we get

GL̂,p
L̂,ch

(Φ(v),Φ(v)) ≥ GL,pL,ch
(Ψ(Φ(v)),Ψ(Φ(v)) = GL,pL,ch

(v, v). (6.10)

The inequalities (6.9) and (6.10) yield (6.8) in the case v = w. The polarization identity (6.7) then yields
the statement for all vectors v and w.

We proceed to identify GL̂,p
L̂,ch

and gL̂,p
L̂,ch

. The identity (6.8) will play a central role in this part of the

argument. Let eL,k, k = 1, · · · , L, be the standard basis of RL. Let π be a permutation of {1, · · · , L}.
Then for all 1 ≤ j, k ≤ L,

GpL,ch
(eL,j, eL,k) = GpL,ch

(eL,π(j), eL,π(k)). (6.11)

To establish (6.11), we use (6.8) with Φ : PL,f → PL,f defined by

Φ((p1, · · · pL)) = (pπ(1), · · · , pπ(L)).

Note that Φ is stochastically invertible with the inverse

Ψ((p1, · · · pL)) = (pπ−1(1), · · · , pπ−1(L)),

and that Φ(pL,ch) = pL,ch. An immediate consequence of the (6.11) is that for all k, j,

GpL,ch
(eL,j , eL,j) = GpL,ch

(eL,k, eL,k), (6.12)

and that for all pairs (j, k), (j′, k′) with j 6= j′ and k 6= k′,

GpL,ch
(eL,j, eL,k) = GpL,ch

(eL,j′ , eL,k′). (6.13)

We introduce the constants

cL = GpL,ch
(eL,j , eL,j), bL = GpL,ch

(eL,j, eL,k),

where j 6= k. By (6.12) and (6.13), these constants do not depend on the choice of j, k. We now show that
there exist constants c, b ∈ R such that for all L ≥ 2, cL = cL+ b and bL = b. To prove this, let L,L′ ≥ 2
and consider the stochastic map Φ : PL,f → PLL′,f defined by

Φ((p1, · · · , pL)) =
(p1
L′
, · · · , p1

L′
, · · · , pL

L′
, · · · , pL

L′

)
,
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where each term pk/L
′ is repeated L′ times. This map is stochastically invertible with the inverse

Ψ
(
(p

(1)
1 , · · · , p(1)L′ , · · · , p(L)

1 , · · · , p(L)
L′ )

)
=




L′∑

k=1

p
(1)
k , · · · ,

L′∑

k=1

p
(L)
k


 .

Since Φ(pL,ch) = pLL′,ch, (6.8) holds. Combining (6.8) with the definition bL, we derive that

bL = bLL′ = bL′ .

Set b = bL. Then, for L,L′ ≥ 2, (6.8) and the definition of cL give

cL =
1

L′
cLL′ +

L′(L′ − 1)

(L′)2
bLL′ =

1

L′
cLL′ +

L′(L′ − 1)

(L′)2
,

and so

cL − b =
1

L′
(cLL′ − b).

Hence,
1

L
(cL − b) =

1

LL′
(cLL′ − b) =

1

L′
(cL′ − b),

and we conclude that
cL = cL+ b

for some c ∈ R. It follows that for v, w ∈ RL,

GpL,ch
(v, w) = cL

L∑

k=1

vkwk + b

(
L∑

k=1

vk

)(
L∑

k=1

wk

)
.

and that for ζ, η ∈ TL,

gpL,ch
(ζ, η) = cL

L∑

k=1

ζkηk. (6.14)

The last relation implies in particular that c > 0. Note that (6.14) can be written as gL,pL,ch
= cgFL,pch

,
proving the statement of the theorem for the special values p = pL,ch.

The rest of the argument is based on the relation (6.14). By essentially repeating the proof of the identity
(6.8) one easily shows that if Φ : PL,f → PL̂,f is stochastically invertible, then for all p ∈ PL,f and
ζ, η ∈ TL,

gL,Φ(p)(Φ(ζ),Φ(η)) = gL,p(ζ, η). (6.15)

Let now p = (p1, · · · , pL) ∈ PL,f be such that all pk’s are rational numbers. We can write

p =

(
ℓ1
L′
, · · · , ℓL

L′

)
.

where all ℓk’s are integers ≥ 1 and
∑

k ℓk = L′. Let Φ : PL,f → PL′,f be a stochastic map defined by

Φ((p1, · · · , pL)) =
(
p1
ℓ1
, · · · , p1

ℓ1
, · · · , pL

ℓL
, · · · , pL

ℓL

)
,

where each term pk/ℓk is repeated ℓk times. The map Φ is stochastically invertible and its inverse is

Ψ((p
(1)
1 , · · · , p(1)ℓ1

, · · · , p(ℓL)
1 , · · · , p(ℓL)

ℓL
)) =

(
ℓ1∑

k=1

pℓ1k , · · · ,
ℓL∑

k=1

p
(ℓL)
k

)
.
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Note that Φ(p) = pL′,ch, and so

gL,p(ζ, η) = gL′,pL′,ch
(Φ(ζ),Φ(η)) = c

L∑

k=1

L′

ℓk
ζkηk = cgFL,p(ζ, η). (6.16)

Since the set of all p’s in PL,f whose all components are rational is dense in PL,f and since the map
p 7→ gL,p(ζ, η) is continuous, it follows from (6.16) that for all L ≥ 2 and all p ∈ PL,f ,

gL,p = cgFL,p.

This completes the proof of Chentsov’s theorem. �

6.4 Notes and references

The Fisher entropy (also often called Fisher information) was introduced by Fisher in [Fis1] and plays
a fundamental role in statistics (this is the topic of the next chapter). Although Fisher’s work precedes
Shannon’s by twenty three years, it apparently played no role in the genesis of the information theory.
The first mentioning of the Fisher entropy in context of information theory goes back to [KullLe] where
Proposition 6.1 was stated.

The geometric interpretation of the Fisher entropy is basically built in its definition. We shall return to this
point in the Part II of the lecture notes where the reader can find references to the vast literature on this
topic.

Chentsov’s theorem goes back to [Cen]. Our proof is based on the elegant arguments of Campbel [Cam].



Chapter 7

Parameter estimation

7.1 Introduction

Let A be a set and {Pθ}θ∈A a family of probability measures on a finite set Ω. We shall refer to the elements
of A as parameters. Suppose that a probabilistic experiment is described by one unknown member of this
family. By performing a trial we wish to choose the unknown parameter θ such that Pθ is the most likely
description of the experiment. To predict θ one choses a function θ̂ : Ω → A which, in the present context,
is called an estimator. If the outcome of a trial is ω ∈ Ω, then the value θ = θ̂(ω) is the prediction of
the unknown parameter and the probability. Obviously, a reasonable estimator should satisfy a reasonable
requirements, and we will return to this point shortly.

The hypothesis testing, described in Section 4.7, is the simplest non-trivial example of the above setting
with A = {0, 1}, P0 = P and P1 = Q (we also assume that the priors are p = q = 1/2.) The estimators
are identified with characteristic functions θ̂ = χT , T ⊂ Ω. With an obvious change of vocabulary, the
mathematical theory described in Section 4.7 can be viewed as a theory of parameter estimation in the case
where A has two elements.

Here we shall assume that A is a bounded closed interval [a, b] and we shall explore the conceptual and
mathematical aspects the continuous set of parameters brings to the problem of estimation. The Fisher
entropy will play an important role in this development. We continue with the notation and assumptions
introduced in the beginning of Section 6.1, and start with some preliminaries.

A loss function is a map L : R× [a, b] → R+ such that L(x, θ) ≥ 0 and L(x, θ) = 0 iff x = θ. To a given
loss function and the estimator θ̂, one associates the risk function by

R(θ̂, θ) = Eθ(L(θ̂, θ)) =
∑

ω∈Ω

L(θ̂(ω), θ)Pθ(ω).

Once a choice of the loss function is made, the goal is to find an estimator that will minimize the risk
function subject to appropriate consistency requirements.

We shall work only with the quadratic loss function L(x, θ) = (x− θ)2. In this case, the risk function is

Eθ((θ̂ − θ)2) = Varθ(θ̂).

7.2 Basic facts

The following general estimate is known as the Cramér-Rao bound.

89
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Proposition 7.1 For any estimator θ̂ and all θ ∈ [a, b],

[Ėθ(θ̂)]
2

I(θ) ≤ Eθ((θ̂ − θ)2).

Proof.

Ėθ(θ̂) =
∑

ω∈Ω

θ̂(ω)Ṗθ(ω) =
∑

ω∈Ω

(θ̂(ω)− θ)Ṗθ(ω).

Writing Ṗθ(ω) = Ṗθ(ω)
√
Pθ(ω)/

√
Pθ(ω) and applying the Cauchy-Schwartz inequality one gets

|Ėθ(θ̂)| ≤
(
∑

ω∈Ω

(θ̂(ω)− θ)2Pθ(ω)

)1/2(∑

ω∈Ω

[Ṗθ(ω)]
2

Pθ(ω)

)1/2

=
(
Eθ((θ̂ − θ)2)

)1/2√
I(θ).

�

As in the case of hypothesis testing, multiple trials improve the errors in the parameter estimation. Passing
to the product space ΩN and the product probability measure PθN , and denoting by EθN the expectation
w.r.t. PθN , the Cramér-Rao bound takes the following form.

Proposition 7.2 For any estimator θ̂N : ΩN → [a, b] and all θ ∈ [a, b],

1

N

[ĖNθ(θ̂N )]2

I(θ) ≤ EθN((θ̂N − θ)2).

Proof.

ĖθN (θ̂N ) =
∑

ω=(ω1,··· ,ωN )∈ΩN

N∑

k=1

(θ̂N (ω)− θ)Pθ(ω1) · · · Ṗθ(ωk) · · ·Pθ(ωN )

=
∑

ω=(ω1,··· ,ωN )∈ΩN

(
N∑

k=1

Ṗθ(ωk)

Pθ(ωk)

)
(θ̂N (ω)− θ)PθN (ω).

Applying the Cauchy-Schwarz inequality

∫

ΩN

fgdPθN ≤
(∫

ΩN

f2dPθN

)1/2 (∫

ΩN

g2dPθN

)1/2

with

f(ω) =

N∑

k=1

Ṗθ(ωk)

Pθ(ωk)
, g(ω) = θ̂N (ω)− θ,

one gets

|ĖθN (θ̂)| ≤
(
∑

ω∈ΩN

(θ̂N (ω)− θ)2PθN(ω)

)1/2

 ∑

ω=(ω1,··· ,ωN )

N∑

k=1

[Ṗθ(ωk)]
2

[Pθ(ωk)]2
PθN(ω)




1/2

=
(
EθN ((θ̂N − θ)2)

)1/2√
NI(θ).

�
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We now describe the consistency requirement. In a nutshell, the consistency states that if the experiment is
described by Pθ , then the estimator should statistically return the value θ. An ideal consistency would be
EθN (θ̂N ) = θ for all θ ∈ [a, b]. However, it is clear that in our setting such estimator cannot exists. Indeed,
using that θ̂ takes values in [a, b], the relations EaN (θ̂N ) = a and EbN (θ̂N ) = b give that θ̂N (ω) = a and
θ̂N (ω) = b for all ω ∈ ΩN . Requiring EθN (θ̂N ) = θ only for θ ∈]a, b[ does not help, and the remaining
possibility is to formulate the consistency in an asymptotic setting.

Definition 7.3 A sequence of estimators θ̂N : ΩN → [a, b], N = 1, 2, · · · , is called consistent if

lim
N→∞

EθN (θ̂N ) = θ

for all θ ∈ [a, b], and uniformly consistent if

lim
N→∞

sup
θ∈[a,b]

EθN (|θ̂ − θ|) = 0.

Finally, we introduce the notion of efficiency.

Definition 7.4 Let θ̂N : ΩN → [a, b], N = 1, 2, · · · be a sequence of estimators. A continuous function

E : ]a, b[→ R+ is called the efficiency of (θ̂N )N≥1 if

lim
N→∞

NEθN

(
(θ̂ − θ)2

)
= E(θ) (7.1)

for all θ ∈ ]a, b[. The sequence (θ̂N )N≥1 is called uniformly efficient if in addition for any [a′, b′] ⊂ ]a, b[,

lim sup
N→∞

sup
θ∈[a′,b′]

∣∣∣NEθN

(
θ̂ − θ)2

)
− E(θ)

∣∣∣ = 0. (7.2)

To remain on a technically elementary level, we will work only with uniformly efficient estimators. The
reason for staying away from the boundary points a and b in the definition of efficiency is somewhat subtle
and we will elucidate it in Remark 7.2.

Proposition 7.5 Let (θ̂N )N≥1 be a uniformly efficient consistent sequence of estimators. Then its efficiency

E satisfies

E(θ) ≥ 1

I(θ)
for all θ ∈ ]a, b[.

Proof. Fix θ1, θ2 ∈ ]a, b[, θ1 < θ2. The consistency gives

θ2 − θ1 = lim
N→∞

[
Eθ2N (θ̂N )− Eθ1N (θ̂N )

]
. (7.3)

The Cramér-Rao bound yields the estimate

Eθ2N (θ̂N )− Eθ1N (θ̂N ) =

∫ θ2

θ1

ĖθN (θ̂N )dθ ≤
∫ θ2

θ1

|ĖθN (θ̂N )|dθ

≤
∫ θ2

θ1

[
NI(θ)EθN

(
(θ̂N − θ)2)

)]1/2
dθ.

(7.4)
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Finally, the uniform efficiency gives

lim
N→∞

∫ θ2

θ1

[
NI(θ)EθN

(
(θ̂N − θ)2)

)]1/2
dθ =

∫ θ2

θ1

lim
N→∞

[
NI(θ)EθN

(
(θ̂N − θ)2)

)]1/2
dθ

=

∫ θ2

θ1

√
I(θ)E(θ)dθ.

(7.5)

Combining (7.3), (7.4), and (7.5), we derive that

θ2 − θ1 ≤
∫ θ2

θ1

√
I(θ)E(θ)dθ

for all a ≤ θ1 < θ2 ≤ b. Hence,
√
I(θ)E(θ) ≥ 1 for all θ ∈ ]a, b[, and the statement follows. �

In Section 7.4 we shall construct a uniformly consistent and uniformly efficient sequence of estimators
whose efficiency is equal to 1/I(θ) for all θ ∈ ]a, b[. This sequence of estimators saturates the bound of
Proposition 7.5 and in that sense is the best possible one. In Remark 7.2 we shall also exhibit a concrete
example of such estimator sequence for which the limit (7.1) also exists for θ = a and satisfies E(a) <
1/I(a). This shows that Proposition 7.5 is an optimal result.

7.3 Two remarks

The first remark is that the existence of a consistent estimator sequence obviously implies that

θ1 6= θ2 ⇒ Pθ1 6= Pθ2 . (7.6)

In Section 7.4 we shall assume that (7.6) holds and refer to it as the identifiability property of our starting
family of probability measures {Pθ}θ∈[a,b].

The second remark concerns the LLN adapted to the parameter setting, which will play a central role in the
proofs of the next section. This variant of the LLN is of independent interest, and for this reason we state
it and prove it separately.

Proposition 7.6 Let Xθ : Ω → R, θ ∈ [a, b], be random variables such that the map [a, b] ∋ θ 7→ Xθ(ω)
is continuous for all ω ∈ Ω. Set

SθN (ω = (ω1, · · · , ωN )) =

N∑

k=1

Xθ(ωk).

Then for any ǫ > 0,

lim
N→∞

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N (ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ǫ

}
= 0. (7.7)

Moreover, (7.7) can be refined as follows. For any ǫ > 0 there are constants Cǫ > 0 and γǫ > 0 such that

for all N ≥ 1,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N (ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ǫ

}
≤ Cǫe

−γǫN . (7.8)

Remark 7.1 The point of this result is uniformity in θ and θ′. Note that

lim
N→∞

PθN

{
ω ∈ ΩN |

∣∣∣∣
Sθ′N (ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ǫ

}
= 0
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is the statement of the LLN, while

PθN

{
ω ∈ ΩN |

∣∣∣∣
Sθ′N (ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ǫ

}
≤ Cǫe

−γǫN ,

with Cǫ and γǫ depending on θ, θ′, is the statement of the strong LLN formulated in Exercise 2.4.

Proof. By uniform continuity, there exists δ > 0 such that for all u, v ∈ [a, b] satisfying |u − v| < δ one
has

sup
u′∈[a,b]

|Eu′ (Xu)− Eu′(Xv)| <
ǫ

4
and sup

ω∈Ω
|Xu(ω)−Xv(ω)| <

ǫ

4
.

Let a = θ′0 < θ′1 < · · · < θ′n = b be such that θ′k − θ′k−1 < δ. Then, for all θ ∈ [a, b],

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N (ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ǫ

}
⊂

n⋃

k=1

{
ω ∈ ΩN |

∣∣∣∣
Sθ′

k
N (ω)

N
− Eθ(Xθ′

k
)

∣∣∣∣ ≥
ǫ

2

}
.

(7.9)
It follows that (recall the proof of the LLN, Proposition 2.2)

PθN

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ǫ

}
≤

n∑

k=1

PθN

{
ω ∈ ΩN |

∣∣∣∣
Sθ′

k
N (ω)

N
− Eθ(Xθ′

k
)

∣∣∣∣ ≥
ǫ

2

}

≤ 4

ǫ2

n∑

k=1

EθN

(∣∣∣∣
Sθ′

k
N

N
− Eθ(Xθ′

k
)

∣∣∣∣
2
)

≤ 4

ǫ2
1

N

n∑

k=1

Eθ

(
|Xθ′

k
− Eθ(Xθ′

k
)|2
)
.

(7.10)

Setting
C = max

1≤k≤n
max

θ,θ′∈[a,b]
Eθ

(
|Xθ′ − Eθ(Xθ′)|2

)
,

we derive that

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N (ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ǫ

}
≤ 4

ǫ2
Cn

N
,

and (7.7) follows.

The proof of (7.8) also starts with (7.9) and follows the argument of Proposition 2.9 (recall the Exercise
2.4). The details are as follows. Let α > 0. Then for any θ and k,

PθN

{
ω ∈ ΩN |

Sθ′
k
N (ω)

N
− Eθ(Xθ′

k
) ≥ ǫ

2

}
= PθN

{
ω ∈ ΩN | Sθ′

k
N (ω) ≥ N

ǫ

2
+NEθ(Xθ′

k
)
}

= PθN

{
ω ∈ ΩN | eαSθ′

k
N (ω) ≥ eαNǫ/2e

αNEθ(Xθ′
k
)
}

≤ e−αNǫ/2e
−αNEθ(Xθ′

k
)
EθN

(
e
αSθ′

k
N

)

≤ e−αNǫ/2e
−αNEθ(Xθ′

k
)
eNC

(k)
θ

(α),

(7.11)

where
C

(k)
θ (α) = logEθ

(
e
αXθ′

k

)
.
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We write

C
(k)
θ (α) − αEθ(Xθ′

k
) =

∫ α

0

[(
C

(k)
θ

)′
(u)− Eθ(Xθ′

k
)

]
du,

and estimate

|C(k)
θ (α) − αEθ(Xθ′

k
)| ≤ α sup

u∈[0,α]

∣∣∣∣
(
C

(k)
θ

)′
(u)− Eθ(Xθ′

k
)

∣∣∣∣ .

Since
(
C

(k)
θ

)′
(0) = Eθ(Xθ′

k
), the uniform continuity gives

lim
α→0

sup
θ∈[a,b]

sup
u∈[0,α]

∣∣∣∣
(
C

(k)
θ

)′
(u)− Eθ(Xθ′

k
)

∣∣∣∣ = 0.

It follows that there exists α+
ǫ > 0 such that for all k = 1, · · · , n,

sup
θ∈[a,b]

∣∣∣C(k)
θ (α+

ǫ )− α+
ǫ Eθ(Xθ′

k
)
∣∣∣ ≤ ǫ

4
,

and (7.11) gives that for all k,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN |

Sθ′
k
N (ω)

N
− Eθ(Xθ′

k
) ≥ ǫ

2

}
≤ e−α+

ǫ Nǫ/4.

Going back to first inequality in (7.10), we conclude that

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | sup

θ′∈[a,b]

(
Sθ′N (ω)

N
− Eθ(Xθ′)

)
≥ ǫ

}
≤ ne−α+

ǫ Nǫ/4. (7.12)

By repeating the above argument (or by simply applying the final estimate (7.12) to the random variables
−Xθ), one derives

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | inf

θ′∈[a,b]

(
Sθ′N (ω)

N
− Eθ(Xθ′)

)
≤ −ǫ

}
≤ ne−α−

ǫ Nǫ/4 (7.13)

for a suitable α−
ǫ > 0. Finally, since

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N (ω)

N
− Eθ(Xθ′)

∣∣∣∣ ≥ ǫ

}
⊂
{
ω ∈ ΩN | sup

θ′∈[a,b]

(
Sθ′N (ω)

N
− Eθ(Xθ′)

)
≥ ǫ

}

∪
{
ω ∈ ΩN | inf

θ′∈[a,b]

(
Sθ′N (ω)

N
− Eθ(Xθ′)

)
≤ −ǫ

}
,

(7.8) follows from (7.12) and (7.13). �

Exercise 7.1. Prove the relation (7.9).

7.4 The maximum likelihood estimator

For each N and ω = (ω1, · · · , ωN) ∈ ΩN , consider the function

[a, b] ∋ θ 7→ PθN (ω1, · · · , ωN ) ∈]0, 1[. (7.14)

By continuity, this function achieves its global maximum on the interval [a, b]. We denote by θ̂ML,N (ω)
a point where this maximum is achieved (in the case where there are several such points, we select one
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arbitrarily but always choosing θ̂ML,N (ω) ∈ ]a, b[ whenever such possibility exists). This defines a random
variable

θ̂ML,N : ΩN → [a, b]

that is called the maximum likelihood estimator (abbreviated MLE) of order N . We shall also refer to the
sequence (θ̂ML,N )N≥1 as the MLE.

Note that maximizing (7.14) is equivalent to minimizing the entropy function

[a, b] ∋ θ 7→ SθN(ω) =
N∑

k=1

− logPθ(ωk).

Much of our analysis of the MLE will make use of this elementary observation and will be centred around
the entropy function SθN . We set

S(θ, θ′) = Eθ(Sθ′) = −
∑

ω∈Ω

Pθ(ω) logPθ′(ω).

Obviously, S(θ, θ) = S(Pθ) and

S(θ, θ′)− S(θ, θ) = S(Pθ|Pθ′). (7.15)

The last relation and the identifiability (7.6), which we assume throughout, give that

S(θ, θ′) > S(θ, θ) for θ 6= θ′. (7.16)

Applying Proposition 7.6 to Xθ = − logPθ , we derive

Proposition 7.7 For any ǫ > 0,

lim
N→∞

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N (ω)

N
− S(θ, θ′)

∣∣∣∣ ≥ ǫ

}
= 0.

Moreover, for any ǫ > 0 there is Cǫ > 0 and γǫ > 0 such that for all N ≥ 1,

sup
θ∈[a,b]

Pθ′N

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N (ω)

N
− S(θ, θ′)

∣∣∣∣ ≥ ǫ

}
≤ Cǫe

−γǫN .

The first result of this section is:

Theorem 7.8 For any ǫ > 0,

lim
N→∞

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | |θ̂ML,N(ω)− θ| ≥ ǫ

}
= 0.

Moreover, for any ǫ > 0 there exists Cǫ > 0 and γǫ > 0 such that for all N ≥ 1,

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | |θ̂ML,N (ω)− θ| ≥ ǫ

}
≤ Cǫe

−γǫN .

Proof. Let
Iǫ = {(u, v) ∈ [a, b]× [a, b] | |u− v| ≥ ǫ} .

It follows from (7.16) and continuity that

δ = sup
(u,v)∈Iǫ

[S(u, v)− S(u, u)] > 0. (7.17)
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Fix θ ∈ [a, b] and set Iǫ(θ) = {θ′ ∈ [a, b] | |θ − θ′| ≥ ǫ}. Let

A =

{
ω ∈ ΩN | sup

θ′∈Iǫ(θ)

∣∣∣∣
Sθ′N (ω)

N
− S(θ, θ′)

∣∣∣∣ <
δ

2

}
,

B =

{
ω ∈ ΩN | sup

θ′∈[a,b]\Iǫ(θ)

∣∣∣∣
Sθ′N (ω)

N
− S(θ, θ′)

∣∣∣∣ <
δ

2

}
.

For ω ∈ A and θ′ ∈ Iǫ(θ),
Sθ′N (ω)

N
< S(θ, θ′) +

δ

2
≤ S(θ, θ)− δ

2
. (7.18)

On the other hand, for ω ∈ B and θ ∈ [a, b] \ Iǫ(θ),

Sθ′N (ω)

N
> S(θ, θ′)− δ

2
≥ S(θ, θ)− δ

2
. (7.19)

Since θ̂ML,N (ω) minimizes the map [a, b] ∋ θ′ 7→ Sθ′N (ω),

ω ∈ A ∩B ⇒ |θ̂ML,N (ω)− θ| < ǫ.

It follows that

{
ω ∈ ΩN | |θ̂ML,N (ω)− θ| ≥ ǫ

}
⊂ Ac ∪Bc =

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N (ω)

N
− S(θ, θ′)

∣∣∣∣ ≥
δ

2

}
,

and so

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | |θ̂ML,N (ω)− θ| ≥ ǫ

}
≤ sup

θ∈[a,b]

PθN

{
ω ∈ ΩN | sup

θ′∈[a,b]

∣∣∣∣
Sθ′N (ω)

N
− S(θ, θ′)

∣∣∣∣ ≥
δ

2

}
.

Since δ depends only on the choice of ǫ (recall (7.17)), the last inequality and Proposition 7.7 yield the
statement. �

Theorem 7.8 gives that the MLE is consistent in a very strong sense, and in particular that is uniformly
consistent.

Corollary 7.9

lim
N→∞

sup
θ∈[a,b]

EθN(|θ̂ML,N − θ|) = 0.

Proof. Let ǫ > 0. Then

EθN (|θ̂ML,N − θ|) =
∫

ΩN

|θ̂ML,N − θ|dPθN

=

∫

|θ̂ML,N−θ|<ǫ

|θ̂ML,N − θ|dPθN +

∫

|θ̂ML,N−θ|≥ǫ

|θ̂ML,N − θ|dPθN

≤ ǫ+ (b− a)PθN

{
ω ∈ ΩN | |θ̂ML,N (ω)− θ| ≥ ǫ

}
.

Hence,

sup
θ∈[a,b]

EθN (|θ̂ML,N − θ|) ≤ ǫ + (b− a) sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | |θ̂ML,N (ω)− θ| ≥ ǫ

}
,

and the result follows from Proposition 7.8. �
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We note that so far all results of this section hold under the sole assumptions that the maps [a, b] ∋ θ 7→
Pθ(ω) are continuous for all ω ∈ Ω and that the identifiability condition (7.6) is satisfied.

We now turn to study of the efficiency of the MLN and prove the second main result of this section. We
strengthen our standing assumptions and assume that the maps [a, b] ∋ θ 7→ Pθ(ω) are C3 for all ω ∈ Ω.

Theorem 7.10 Suppose that [a′, b′] ⊂ ]a, b[. Then

lim
N→∞

sup
θ∈[a′,b′]

∣∣∣∣NEθN (|θ̂ML,N − θ|2)− 1

I(θ)

∣∣∣∣ = 0.

Proof. Recall that

[a, b] ∋ θ 7→ SθN(ω = (ω1, · · · , ωN )) = −
N∑

k=1

logPθ(ωk)

achieves its minimum at θ̂ML,N (ω) and that θ̂ML,N (ω) ∈ ]a, b[ unless a strict minimum is achieved at
either a or b. Let

BN (a) =
{
ω ∈ ΩN | θ̂ML,N (ω) = a

}
, BN (b) =

{
ω ∈ ΩN | θ̂ML,N(ω) = b

}
,

and

ζ = min

(
inf

θ∈[a′,b′]
S(Pθ|Pa), inf

θ∈[a′,b′]
S(Pθ|Pb)

)
.

Since the maps θ 7→ S(Pθ|Pa), θ 7→ S(Pθ|Pb) are continuous, the identifiability (7.6) yields that ζ > 0.
Then, for θ ∈ [a′, b′],

PθN(BN (a)) ≤ PθN

{
ω ∈ ΩN | 1

N

N∑

k=1

log
Pθ(ωk)

Pa(ωk)
< 0

}

≤ PθN

{
ω ∈ ΩN | 1

N

N∑

k=1

log
Pθ(ωk)

Pa(ωk)
− S(Pθ|Pa) ≤ −ζ

}
,

and similarly,

PθN (BN (b)) ≤ PθN

{
ω ∈ ΩN | 1

N

N∑

k=1

log
Pθ(ωk)

Pb(ωk)
− S(Pθ|Pb) ≤ −ζ

}
.

Proposition 7.7 now yields that for some constants Kζ > 0 and kζ > 0,

sup
θ∈[a′,b′]

PθN (BN (a) ∪BN (b)) ≤ Kζe
−kζN

for all N ≥ 1. A simple but important observation is that if ω 6∈ BN (a) ∪BN (b), then θ̂ML,N (ω) ∈]a, b[
and so

Ṡθ̂ML,N(ω)N (ω) = 0. (7.20)

The Taylor expansion gives that for any ω ∈ ΩN and θ ∈ [a, b] there is θ′(ω) between θ̂ML,N (ω) and θ
such that

Ṡθ̂ML,N(ω)N (ω)− ṠθN (ω) = (θ̂ML,N (ω)− θ)

[
S̈θN +

1

2
(θ̂ML,N (ω)− θ)

...
Sθ′(ω)N

]
. (7.21)

Write

EθN

((
Ṡθ̂ML,N(ω)N (ω)− ṠθN(ω)

)2)
= LN(θ) + EθN

([
ṠθN

]2)
,
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where

LN(θ) = EθN

([
Ṡθ̂ML,N(ω)N

]2)
+ 2EθN

(
Ṡθ̂ML,N (ω)N ṠθN

)
. (7.22)

It follows from (7.20) that in (7.22) EθN reduces to integration over BN (a) ∪BN(b), and we arrive at the
estimate

sup
θ∈[a′,b′]

|LN (θ)| ≤ KN2 sup
θ∈[a′,b′]

PθN (BN (a) ∪BN (b)) ≤ KN2Kζe
−kζN (7.23)

for some uniform constant K > 0, where by uniform we mean that K does not depend on N . It is easy to
see that one can take

K = 3 sup
θ∈[a,b],ω∈Ω

(
Ṗθ(ω)

Pθ(ω)

)2

.

In Exercise 7.2 the reader is asked to estimate other uniforms constant that will appear in the proof.

Squaring both sides in (7.21), taking the expectation, and dividing both sides with N2, we derive the
identity

1

N2
LN (θ)+

1

N2
EθN

([
ṠθN

]2)
= EθN


(θ̂ML,N − θ)2

[
S̈θN

N
+

1

2N
(θ̂ML,N − θ)

...
Sθ′N

]2
 . (7.24)

An easy computation gives
1

N2
EθN

([
ṠθN

]2)
=

1

N
I(θ).

Regarding the right hand side in (7.24), we write it as

EθN


(θ̂ML,N − θ)2

[
S̈θN

N

]2
+RN (θ),

where the remainderRN (θ) can be estimated as

|RN (θ)| ≤ C1EθN

(
|θ̂ML,N − θ|3

)
(7.25)

for some uniform constant C1 > 0.

With these simplifications, an algebraic manipulation of the identity (7.24) gives

NEθN

(
(θ̂ML,N − θ)2

)
− 1

I(θ) = −DN(θ)− NRN (θ)

I(θ)2 +
1

N

LN(θ)

I(θ)2 , (7.26)

where

DN (θ) = NEθN


(θ̂ML − θ)2



[
S̈θN

N

]2
1

I(θ)2 − 1




 . (7.27)

Writing [
S̈θN

N

]2
1

I(θ)2 − 1 =
1

I(θ)2

(
S̈θN

N
+ I(θ)

)(
S̈θN

N
− I(θ)

)

and using that I(θ) is continuous and strictly positive on [a, b], we derive the estimate

|DN (θ)| ≤ C2NEθN

(
(θ̂ML − θ)2

∣∣∣∣∣
S̈θN

N
− I(θ)

∣∣∣∣∣

)
(7.28)

for some uniform constant C2 > 0.
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Fix ǫ > 0, and choose Cǫ > 0 and γǫ > 0 such that

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN | |θ̂ML,N (ω)− θ| ≥ ǫ

}
≤ Cǫe

−γǫN , (7.29)

sup
θ∈[a,b]

PθN

{
ω ∈ ΩN |

∣∣∣∣∣
S̈θN

N
− I(θ)

∣∣∣∣∣ ≥ ǫ

}
≤ Cǫe

−γǫN . (7.30)

Here, (7.29) follows from Theorem 7.8, while (7.30) follows from Proposition 7.7 applied to Xθ =

− d2

dθ2 logPθ (recall that Eθ(Xθ) = I(θ)).
Let δ = infu∈[a,b] I(u). Then, for all θ ∈ [a, b],

N |RN (θ)|
I(θ)2 ≤ C1N

δ2

∫

ΩN

|θ̂ML,N − θ|3dPθN

=
C1N

δ2

∫

|θ̂ML,N−θ|<ǫ

|θ̂ML,N − θ|3dPθN +
C1N

δ2

∫

|θ̂ML,N−θ|≥ǫ

|θ̂ML,N − θ|3dPθN

≤ ǫ
C1

δ2
NEθN

(
(θ̂ML,N − θ)2

)
+
C1(b− a)3N

δ2
Cǫe

−γǫN .

(7.31)

Similarly, splitting the integral (that is, EθN ) on the r.h.s. of (7.28) into the sum of integrals over the sets
∣∣∣∣∣
S̈θN

N
− I(θ)

∣∣∣∣∣ < ǫ,

∣∣∣∣∣
S̈θN

N
− I(θ)

∣∣∣∣∣ ≥ ǫ,

we derive that for all θ ∈ [a, b],

|DN(θ)| ≤ ǫC2NEθN

(
(θ̂ML,N − θ)2

)
+ C2C3NCǫe

−γǫN , (7.32)

where C3 > 0 is a uniform constant. Returning to (7.26) and taking ǫ = ǫ0 such that

ǫ0
C1

δ2
<

1

4
, ǫ0C2 <

1

4
,

the estimates (7.23), (7.31), and (7.32) give that for all θ ∈ [a′, b′],

NEθN

(
(θ̂ML,N − θ)2

)
≤ 2

I(θ) + C′
ǫ0Ne−γǫ0N +

2K

δ2
Kζe

−kζN ,

where C′
ǫ0 > 0 is a uniform constant (that of course depends on ǫ0). It follows that

C′ = sup
N≥1

sup
θ∈[a′,b′]

NEθN

(
(θ̂ML,N − θ)2

)
<∞. (7.33)

Returning to (7.31), (7.32), we then have that for any ǫ > 0,

sup
θ∈[a′,b′]

N |RN (θ)|
I(θ)2 ≤ ǫ

C1

δ2
C′ +

C1(b− a)3N

δ2
Cǫe

−γǫN , (7.34)

sup
θ∈[a′,b′]

|DN (θ)| ≤ ǫC2C
′ + C2C3NCǫ.e

−γǫN . (7.35)

Finally, returning once again to (7.26), we derive that for any ǫ > 0,

sup
θ∈[a′,b′]

∣∣∣∣NEθN

(
(θ̂ML,N − θ)2

)
− 1

I(θ)

∣∣∣∣ ≤ sup
θ∈[a′,b′]

|DN (θ)|+ sup
θ∈[a′,b′]

N |RN (θ)|
I(θ)2 + sup

θ∈[a′,b′]

|LN(θ)|
NI(θ)2

≤ ǫC′′ + C′′
ǫ Ne−γǫN +KKζe

−kζN ,
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where C′′ > 0 is a uniform constant and C′′
ǫ > 0 depends only on ǫ. Hence,

lim sup
N→∞

sup
θ∈[a′,b′]

∣∣∣∣NEθN

(
(θ̂ML,N − θ)2

)
− 1

I(θ)

∣∣∣∣ ≤ ǫC′′.

Since ǫ > 0 is arbitrary, the result follows. �

Exercise 7.2. Write an explicit estimate for all uniform constants that have appeared in the above
proof.

Remark 7.2 The proof of Theorem 7.10 hints at the special role the boundary points a and b of the chosen
parameter interval may play in study of the efficiency. The MLE is selected with respect to the [a, b]

and θ̂ML,N(ω) may take value a or b without the derivative Ṡθ̂ML,N(ω)N (ω) vanishing. That forces the
estimation of the probability of the set BN (a) ∪ BN (b) and the argument requires that θ stays away from
the boundary points. If the parameter interval is replaced by a circle, there would be no boundary points
and the above proof then gives that the uniform efficiency of the MLE holds with respect to the entire
parameter set. One may wonder whether a different type of argument may yield the same result in the case
of [a, b]. The following example shows that this is not the case.

Let Ω = {0, 1} and let Pθ(0) = 1− θ, Pθ(1) = θ, where θ ∈ ]0, 1[. One computes I(θ) = (θ − θ2)−1. If
[a, b] ⊂ ]0, 1[ is selected as the estimation interval, the MLE θML,N takes the following form:

θ̂ML,N (ω1, · · · , ωN) =
ω1 + · · ·+ ωN

N
if

ω1 + · · ·+ ωN

N
∈ [a, b],

θ̂ML,N(ω1, · · · , ωN ) = a if
ω1 + · · ·+ ωN

N
< a,

θ̂ML,N (ω1, · · · , ωN ) = b if
ω1 + · · ·+ ωN

N
> b.

We shall indicate the dependence of θ̂ML,N on [a, b] by θ̂[a,b]ML,N . It follows from Theorem 7.10 that

lim
N→∞

NE(θ=1/2)N

((
θ̂
[ 13 ,

2
3 ]

ML,N − 1

2

)2
)

=

[
I
(
1

2

)]−1

=
1

4
.

On the other hand, a moment’s reflection shows that

1

2
E(θ=1/2)N

((
θ̂
[ 13 ,

2
3 ]

ML,N − 1

2

)2
)

= E(θ=1/2)N

((
θ̂
[ 12 ,

2
3 ]

ML,N − 1

2

)2
)
,

and so

lim
N→∞

NE(θ=1/2)N

((
θ̂
[ 12 ,

2
3 ]

ML,N − 1

2

)2
)

=
1

8
.

Thus, in this case even the bound of Proposition 7.5 fails at the boundary point 1/2 at which the MLE
becomes "superefficient". In general, such artificial boundary effects are difficult to quantify and we feel
it is best that they are excluded from the theory. These observations hopefully elucidate our definition of
efficiency which excludes the boundary points of the interval of parameters.

7.5 Notes and references

For additional information and references about parameter estimation the reader may consult [LeCa, Vaa].
For additional information about the Cramér-Rao bound and its history we refer the reader to the respective
Wikipedia and Scholarpedia articles.
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The modern theory of the MLE started with the seminal work of Fisher [Fis1]; for the fascinating history of
the subject see [Sti]. Our analysis of the MLE follows the standard route, but I have followed no particular
reference. In particular, I am not aware whether Theorem 7.10 as formulated have appeared previously in
the literature.
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