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1 Prologue

Throughout this section A denotes a finite set. In information theory, the elements of A are signals from
an underlying information source. In statistical mechanics, A is the set of configurations of the physical
system under consideration. To uniformise the terminology, we will refer to A as the alphabet of the
system. The set of probability measures on A is denoted by P(A). In information theory the source
statistics is described by elements of P(A). In statistical mechanics the Gibbs ensemble statistics of the
system is described by elements of P(A).

P ∈ P(A) is called faithful if P (a) > 0 for all a ∈ A. The chaotic (or uniform) probability measure on
A is Pch(a) = 1/|A|, where |A| is the number of elements of A.

Throughout the notes we adopt the convention 0 log 0 = 0, and 00 = 1

1.1 Boltzmann’s entropy

Write |A| = L and enumerate the elements of A as A = {a1, · · · , aL}. The elements of A correspond
to physical configurations of a "gas molecule". An example is A = {0, 1} (see (b) below), where 0
corresponds to the configuration where the "gas molecule" is absent, and 1 corresponds to the configu-
ration where the "gas molecule" is present. The elements of AN correspond to physical configurations
of a "gas of N molecules". Each "microstate" ω = (ω1, · · · , ωN ) ∈ AN is identified with the word
ω = ω1 · · ·ωN of length N with letters ωj from alphabet A. Let ka1 , · · · , kaL be non-negative integers
such that ka1 + · · ·+ kaL = N . Then

TN (ka1 , · · · , kaL) =
N !

ka1 ! · · · kaL !
(1.1)

is the number of words in AN in which the letter aj appears kaj times. We write kj for kaj .

Suppose that for 1 ≤ j ≤ L natural numbers kj = kj(N) are chosen so that for some pj ≥ 0

lim
N→∞

kj(N)

N
= pj . (1.2)

Obviously,
∑L

j=1 pj = 1.

Proposition 1.1

lim
N→∞

1

N
loge TN (k1(N), · · · , kL(N)) = −

L∑
j=1

pj loge pj .
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Proof. The Stirling’s approximation
√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n. (1.3)

gives that

lim
N→∞

1

N
loge

NN

N !
= 1 and lim

N→∞

1

N
loge

kj(N)kj(N)

kj(N)!
= pj .

Since
∑L

j=1 pj = 1, it follows that

lim
N→∞

1

N
loge TN (k1(N), · · · , kL(N)) = lim

N→∞

1

N
loge

NN

k1(N)k1(N) · · · kL(N)kL(N)
,

assuming that the limit on the right-hand side exists. Since

1

N
loge

NN

k1(N)k1(N) · · · kL(N)kL(N)
=

L∑
j=1

1

N
loge

Nkj(N)

kj(N)kj(N)

=
L∑

j=1

kj(N)

N
loge

[
kj(N)

N

]−1

,

(1.2) gives

lim
N→∞

1

N
loge

NN

k1(N)k1(N) · · · kL(N)kL(N)
= −

L∑
j=1

pj loge pj ,

and the result follows. 2

For P ∈ P(A) we set
SB(P ) := −

∑
a∈A

P (a) loge P (a)

and call SB(P ) the Boltzmann entropy of P .

We now go a bit further following the same line of thought. Let P ∈ P(A) be faithful. Denote by kj(ω)
the number of times the letter aj appears in ω = ω1 · · ·ωN . For small ϵ > 0 set

TN (ϵ) =

{
ω ∈ AN |P (aj)− ϵ ≤ kj(ω)

N
≤ P (aj) + ϵ for 1 ≤ j ≤ L

}
.

Then

Proposition 1.2

lim
ϵ↓0

lim sup
N→∞

1

N
loge |TN (ϵ)| = lim

ϵ↓0
lim inf
N→∞

1

N
loge |TN (ϵ)| = SB(P ), (1.4)

where |TN (ϵ)| denotes the number of the elements of the set TN (ϵ).
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Proof. Let k1(N), · · · , kL(N) be non-negative integers such that

k1(N) + · · ·+ kL(N) = N (1.5)

and

lim
N→∞

kj(N)

N
= P (aj).

Then, for any ϵ > 0 we have that for N large enough,

|TN (ϵ)| ≥ TN (k1(N), · · · , kL(N)).

This gives

lim
ϵ↓0

lim inf
N→∞

1

N
loge |TN (ϵ)| ≥ lim

N→∞

1

N
loge TN (k1(N), · · · , kL(N)) = SB(P ).

We now turn to the upper bound. A sequence (k1(N), · · · , kL(N)) of non-negative integers satisfying
(1.5) is called (N, ϵ)-admissible if for 1 ≤ j ≤ L,

P (aj)− ϵ ≤ kj(N)

N
≤ P (aj) + ϵ.

Denote by A(N, ϵ)) the set of all N -admissible sequences. Obviously, |A(N, ϵ)| ≤ NL. The proof of
Proposition 1.1 gives that

lim sup
N→∞

1

N
sup

(k1(N),··· ,kL(N))∈A(N,ϵ)
loge TN (k1(N), · · · , kL(N))

≤ Lϵ+
∑
a∈A

(P (a) + ϵ) loge
1

P (a)− ϵ
.

(1.6)

We have

|TN (ϵ)| =
∑

(k1(N),··· ,kL(N))∈A(N,ϵ)

TN (k1(N), · · · , kL(N))

≤ NL sup
(k1(N),··· ,kL(N))∈A(N,ϵ)

TN (k1(N), · · · , kL(N)).

This inequality and (1.2) give that

lim
ϵ↓0

lim sup
N→∞

1

N
loge |TN (ϵ)| ≤ SB(P ).

2

Exercise 1. Write detailed proof of (1.6).

The conclusion of Proposition 1.2 can be reformulated as follows. The variational metric dvar on P(A)
is given by

dvar(P,Q) =
∑
a∈A

|P (a)−Q(a)|.
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To a microstate ω = ω1 · · ·ωN we associate the empirical probability measure Pω ∈ P(A) by

Pω(aj) =
kj(ω)

N
. (1.7)

Then (1.4) is equivalent to

lim
ϵ↓0

lim sup
N→∞

1

N
loge

∣∣{ω ∈ AN | dvar(P, Pω) ≤ ϵ
}∣∣

= lim
ϵ↓0

lim inf
N→∞

1

N
loge

∣∣{ω ∈ AN | dvar(P, Pω) ≤ ϵ
}∣∣ = SB(P ).

(1.8)

Exercise 2. Prove that (1.4) ⇔ (1.8).

The above discussion leads to the following points that will be all discussed latter in the notes.

(a) SB(Pch) = loge |A|. For any P ∈ P(A),

SB(P ) ≤ SB(Pch)

with equality iff P = Pch. This result follows from the concavity of the logarithm and the
Jensen inequality.

(b) Let A = {0, 1} and suppose that 0 corresponds to the configuration where the "gas
molecule" is absent, and 1 corresponds to the configuration where the "gas molecule" is
present. Let 0 < ρ < 1. Then k1(ω) corresponds to the number of "gas molecules" present
in the "microstate" ω = ω1 · · ·ωN . It follows from Proposition 1.6 that

lim
ϵ↓0

lim sup
N→∞

1

N
loge

∣∣∣∣{ω ∈ AN | ρ− ϵ ≤ k1(ω)

N
≤ ρ+ ϵ

}∣∣∣∣
= lim

ϵ↓0
lim inf
N→∞

1

N
loge

∣∣∣∣{ω ∈ AN | ρ− ϵ ≤ k1(ω)

N
≤ ρ+ ϵ

}∣∣∣∣
= −ρ loge ρ− (1− ρ) loge(1− ρ).

(1.9)

The number ρ is the "macrostate" of our "ideal gas" associated to its density per unit volume.
The Boltzmann entropy of the "macrostate" ρ is given by (1.9),

SB(ρ) := −ρ loge ρ− (1− ρ) loge(1− ρ).

Obviously, SB(ρ) = SB(P ) where P is the probability measure on A = {0, 1} given by
P (0) = 1− ρ, P (1) = ρ.
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(c) Returning to the general finite A, let H : A → R be a function.1 The value H(aj) = ej
is interpreted as the energy of the configuration aj . The energy of microstate ω = ω1 · · ·ωN

is
HN (ω) := H(ω1) + · · ·+H(ωN ).

Note that

HN (ω) =
L∑

j=1

ejkj(ω).

Set
e = min

j
ej , e = max

j
ej .

Obviously, HN (ω)/N ∈ [e, e]. We will prove latter in the notes that Proposition 1.2 gives
that for any e ∈ [e, e],

lim
ϵ↓0

lim sup
N→∞

1

N
loge

∣∣∣∣{ω ∈ AN |e− ϵ ≤ HN (ω)

N
≤ e+ ϵ

}∣∣∣∣
= lim

ϵ↓0
lim inf
N→∞

1

N
loge

∣∣∣∣{ω ∈ AN | e− ϵ ≤ HN (ω)

N
≤ e+ ϵ

}∣∣∣∣ .
(1.10)

The number e is interpreted as the "macrostate" of our "ideal gas" associated to its "energy"
per unit volume, and ∣∣∣∣{ω ∈ AN |e− ϵ ≤ HN (ω)

N
≤ e+ ϵ

}∣∣∣∣
is the number of "microstates" of the N -molecules ideal gas within ϵ-tolerance correspond-
ing to e. The common value of the limits (1.10) is denoted by SB(e) and is called the
Boltzmann entropy of the the macrostate e. Set

PH,e =

{
P ∈ P(A) |

∫
A
HdP = e

}
(1.11)

One further shows that
SB(e) = sup

P∈PH,e

SB(P ), (1.12)

and that there exists unique Pe ∈ PH,e such that

SB(e) = S(Pe). (1.13)

To elaborate further connection with physics, we now describe Pe.

In the boundary cases e = e and e = e, the identification of Pe follows from the fact that

SB(e) = − loge |Ae|. SB(e) = − loge |Ae|,
1To avoid trivialities we will assume that H is not a constant function.
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where
Ae = {a |H(a) = e}, Ae = {a |H(a) = e}.

It follows that

Pe(a) =

{
1/|Ae| if a ∈ Ae

0 otherwise
, Pe(a) =

{
1/|Ae| if a ∈ Ae

0 otherwise
.

We now turn to the case e = (e, e).

For β ∈ (−∞,∞) set

PG
β (a) =

e−βH(a)∑
b e

−βH(b)
.

We will refer to PG
β as the Gibbs canonical ensemble at the inverse temperature β and to

P(β) = loge

[∑
a∈A

e−βH(a)

]

as the pressure. The identification of β as the inverse temperature of our ideal gas will
follow from the discussion below. Denote for a moment ⟨F ⟩β =

∫
A FdPG

β . The function
β 7→ ⟨7→ ⟨H⟩β is obviously real analytic and 2

d

dβ
⟨H⟩β = −⟨(H − ⟨H⟩β)2⟩β < 0.

It follows that the function β 7→ ⟨H⟩β is strictly decreasing, and we denote by e 7→ β(e) its
inverse. Obviously, β(e) ∈ (−∞,∞) is uniquely specified by

e =

∫
A
HdPG

β(e), (1.14)

and the map e 7→ β(e) is real-analytic and strictly decreasing. The Gibbs variational princi-
ple, see Theorem 2.1 (6) and the discussion after this theorem, gives that

Pe = PG
β(e).

Note that lime↑e Pe = Pe, lime↓e Pe = Pe The relation

SB(e) = S(Pβ(e)) (1.15)

gives that for e ∈ (e, e),

SB(e) = eβ(e) + P(β(e)),

dSB(e)

de
= β(e).

(1.16)

2Recall our standing assumption that H is not a constant function.
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This leads to the identification of β with the inverse temperature. (1.16) are the fundamental
thermodynamical relation between energy, entropy, temperature, and pressure.

The second relation in (1.16) gives that the function e 7→ SB(e) is strictly concave. Note
that

β(e0) = 0 ⇐⇒ e0 =
1

N

∑
a∈A

H(a),

and that the function e 7→ SB(e) is strictly increasing on (e, e0] and strictly decreasing on
[e0, e). The second law of thermodynamics postulates that entropy increases with energy
and hence selects the energy interval (e, e0] and positive values of β as physically relevant.

1.2 Shannon’s entropy

Suppose that P ∈ P(A) is faithful. The entropy function of P is the map SP : A → R defined by

SP (a) = − loge P (a).

Obviously, ∫
A
SPdP =

∑
a∈A

SP (a)P (a) = SB(P ).

We denote by PN = P × · · · × P the product probability measure on AN . For a given ϵ > 0 let

TN (ϵ) =

{
ω = ω1 · · ·ωN ∈ AN

∣∣ ∣∣∣∣SP (ω1) + · · ·SP (ωN )

N
− SB(P )

∣∣∣∣ < ϵ

}

=

{
ω ∈ AN

∣∣ ∣∣∣∣− loge PN (ω)

N
− SB(P )

∣∣∣∣ < ϵ

}
=
{
ω ∈ AN

∣∣ e−N(SB(P )+ϵ) < PN (ω) < e−N(SB(P )−ϵ)
}
.

The Law of Large Numbers (LLN) gives

lim
N→∞

PN (TN (ϵ)) = 1.

We also have the following obvious bounds on the cardinality of TN (ϵ):

PN (TN (ϵ))eN(SB(P )−ϵ) < |TN (ϵ)| < eN(SB(P )+ϵ) (1.17)

Since |AN | = |A|N = eN loge SB(Pch), (1.18) can be written as

PN (TN (ϵ))eN(SB(P )−SB(Pch)−ϵ) <
|TN (ϵ)|
|A|N

< eN(SB(P )−SB(Pch)+ϵ), (1.18)

which in particular gives

SB(P )− SB(Pch)− ϵ ≤ lim inf
N→∞

1

N
log

|TN (ϵ)|
|A|N

≤ lim sup
N→∞

1

N
log

|TN (ϵ)|
|A|N

≤ SB(P )− SB(Pch) + ϵ.
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It follows that if P ̸= Pch, then, as N → ∞, the measure PN is "concentrated" and "equipartioned" on
the set TN (ϵ) whose size is "exponentially small" with respect to the size of AN .

Let γ ∈]0, 1[ be fixed. The (N, γ) covering exponent is defined by

cN (γ) = min
{
|A| |A ⊂ AN , PN (A) ≥ γ

}
. (1.19)

One can find cN (γ) according to the following algorithm:

(a) List the words ω = ω1 · · ·ωN in order of decreasing probabilities.

(b) Count the listed words until the first time the total probability is ≥ γ.

Proposition 1.3 For all γ ∈]0, 1[,

lim
N→∞

1

N
loge cN (γ) = SB(P ).

Proof. Fix ϵ > 0 and recall the definition of TN (ϵ). For N large enough, PN (TN (ϵ)) ≥ γ, and so for
such N ’s,

cN (γ) ≤ |TN (ϵ)| ≤ eN(SB(P )+ϵ).

It follows that
lim sup
N→∞

1

N
log cN (γ) ≤ SB(P ).

To prove the lower bound, let AN,γ be a set for which the minimum in (1.19) is achieved. Let ϵ > 0.
Note that

lim inf
N→∞

PN (TN (ϵ) ∩AN,γ) ≥ γ. (1.20)

Since PN (ω) ≤ e−N(SB(P )−ϵ) for ω ∈ TN (ϵ),

PN (TN (ϵ) ∩AN,γ) =
∑

ω∈TN (ϵ)∩AN,γ

PN (ω) ≤ e−N(SB(P )−ϵ)|TN (ϵ) ∩AN,γ |.

Hence,
|AN,γ | ≥ eN(SB(P )−ϵ)PN (TN (ϵ) ∩AN,γ),

and it follows from (1.20) that

lim inf
N→∞

1

N
loge cN (γ) ≥ SB(P )− ϵ.

Since ϵ > 0 is arbitrary,

lim inf
N→∞

1

N
loge cN (γ) ≥ SB(P ),

and the proposition is proven. 2
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We now turn to the result known as the Shannon’s source coding theorem. Given a pair of positive
integers N,M , the encoder is a map

FN : AN → {0, 1}M .

The decoder is a map
GN : {0, 1}M → AN .

The error probability of the coding pair (FN , GN ) is

PN {GN ◦ FN (ω) ̸= ω} .

If this probability is less than some prescribed 1 > ϵ > 0, we shall say that the coding pair is ϵ-good.
Note that to any ϵ-good coding pair one can associate the set

A = {ω |GN ◦ FN (ω) = ω}

which satisfies
PN (A) ≥ 1− ϵ, |A| ≤ 2M . (1.21)

On the other hand, if A ⊂ AN satisfies (1.21), we can associate to it an ϵ-good pair (FN , GN ) by setting
FN to be one-one on A (and arbitrary otherwise), and GN = F−1

N on FN (A) (and arbitrary otherwise).

In the source coding we wish to find M that minimizes the compression coefficients M/N subject to an
allowed ϵ-error probability. Clearly, the optimal M is

MN = ⌊log2min
{
|A| |A ⊂ AN , PN (A) ≥ 1− ϵ

}
⌋.

Shannon’s source coding theorem now follows from Proposition 1.3: the limiting optimal compression
coefficient is

lim
N→∞

MN

N
=

1

log 2
SB(P ) = −

∑
a∈A

P (a) log2 P (a).

The Shannon entropy of P ∈ P(A) is defined by

SSh(P ) = −
∑
a∈A

P (a) log2 P (a).

1.3 Notes

2 Entropies on finite sets

2.1 Notation

We continue with finite alphabet A. We equip P(A) with variational metric dvar. The support of P ∈
P(A) is the set suppP = {a : P (a) > 0}. P is called pure if for some suppP = {a} for some
a, that is, if P (a) = 1 for some a. P is absolutely continuous with respect to Q, denoted P ≪ Q, if
suppP ⊂ suppQ, or equivalently, if Q(a) = 0 ⇒ P (a) = 0.

10



If A = A1 ×A2 and P ∈ P(A1 ×A2), the marginals of P are

P1(a) =
∑
b∈A2

P (a, b), P2(b) =
∑
a∈A1

P (a, b).

Obviously, P1 ∈ P(A1), P2 ∈ P(A2).

Continuing with the product case A1 × A2, a |A1| × |A2| matrix [M(a, b)]aA1,b∈A2 with non-negative
entries is called stochastic if for all a ∈ A1,∑

b∈A2

M(a, b) = 1.

A stochastic matrix induces a map3 M : P(A1) → P(A2) by

(MP )(b) =
∑
a∈A1

P (a)M(a, b).

In the sequel log denotes the logarithm function with an unspecified but fixed base b > 1. In information
theory the common choice is b = 2. In statistical mechanics one takes b = e.

Pn denotes the set of all probability vectors (p1, · · · , pn).4

2.2 Entropies

The Boltzmann-Gibbs-Shannon (BGS) entropy of P ∈ P(A) is

S(P ) = −
∑
a∈A

P (a) logP (a).

In what follows we will often simply refer to S(P ) as the entropy of P .

The cross entropy of a pair (P,Q) ∈ P(A)× P(A) is

Scross(P |Q) = −
∑
a∈A

P (a) logQ(a).

The cross entropy is finite if P ≪ Q, otherwise it takes value ∞.

The relative entropy of a pair (P,Q) is

S(P |Q) = Scross(P |Q)− S(P )

=
∑
a∈A

P (a)(logP (a)− logQ(a)).

3Called a stochastic transformation.
4pk ≥ 0,

∑
pk = 1.
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The α-Renyi entropy of P , α ∈ R, is

Sα(P ) = log

 ∑
a∈suppP

P (a)α

 .

The α-relative Renyi entropy, α ∈ R, of a pair (P,Q) with suppP = suppQ is

Sα(P |Q) = log

 ∑
a∈suppP

P (a)αQ(a)1−α

 .

The above definitions of Renyi’s entropies are somewhat uncommon due to missing normalizations and
the fact that they are defined for all α ∈ R. We will comment in more details on those points latter in the
notes.

The basic relations between the entropies are

d

dα
Sα(P )

∣∣
α=1

= −S(P ),

Sα(P |Q) = S1−α(Q|P ),

d

dα
Sα(P |Q)

∣∣
α=0

= −S(Q|P ),
d

dα
Sα(P |Q)

∣∣
α=1

= S(P |Q),

S(P |Pch) = log |A| − S(P ), Sα(P |Pch) = Sα(P )− (1− α) log |A|.

Obviously, S0(P ) = log |suppP |, S1(P ) = 0, and S0(P |Q) = S1(P |Q) = 0. S0(P ) is sometimes
called the Hartley entropy and is denoted by SH(P ).

2.3 Proprerties of BGS entropy

Theorem 2.1 (1) S(P ) ≥ 0 and S(P ) = 0 iff P is pure.

(2) S(P ) ≤ log |A| and S(P ) = log |A| iff P = Pch.

(3) The map P(Ω) ∋ P 7→ S(P ) is continuous and strictly concave.

(4) The entropy map is "almost convex" in the following sense: For any probability vector (p1, · · · , pn)
with pk > 0,

S(p1P1 + · · ·+ pnPn) ≤ p1S(P1) + · · ·+ pnS(Pn) + S(p1, · · · , pn),

with equality iff suppPk ∩ suppPj = ∅ for k ̸= j.
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(5) The entropy is strictly subadditive: if P ∈ P(A1 ×A2), then

S(P ) ≤ S(P1) + S(P2)

with equality iff P = P1 × P2.

(6)

S(P ) = inf
X:A→R

(
log

(∑
a∈A

eX(a)

)
−
∫
A
XdP

)
.

The infimum is achieved if P is faithful and X(a) = − logP (a) + const.

(7) For any X : A → R,

log

(∑
a∈A

eX(a)

)
= max

P∈P(A)

(∫
A
XdP + S(P )

)
.

The maximizer is unique and is given by

P (a) =
eX(a)∑
b∈A eX(b)

. (2.1)

Parts (6) and (7) are known as the Gibbs variational principle. Going back to (1.11)-(1.12), Part (3) gives
that there exists unique Pe ∈ PH,e such that

sup
P∈PH,e

SB(Pe).

That Pe = PG
β(e) and another uniqueness argument follow from the Gibbs variational principle (7): for

any P ∈ PH,e,

SB(P ) = SP (P )− β(e)

∫
A
HdP + β(e)e ≤ max

Q∈P(A)

(
SP (P )− β(e)

∫
A
HdP

)
+ β(e)e

= P(β(e)) + β(e)e = SB(P
G
β(e))

with equality iff P = PG
β(e).

It is a fundamental fact that either "almost convexity" or strict subadditivity uniquely characterize Boltzmann-
Gibbs-Shannon entropy up to a choice of the base of logarithm. We proceed to describe this aspect of
entropy.

Set P = ∪AP(A) and consider functions S : P → R that satisfy properties that correspond intuitively
to those of entropy as a measure of randomness of probability measures. We wish to show that those
intuitive natural demands uniquely specify S up to a choice of units (base of logarithm) and that and that
for some choice of this base and for all P ∈ P , S(P ) = S(P ).

We describe first three basic properties that any candidate for S should satisfy. The first is the positivity
and non-triviality requirement: S(P ) ≥ 0 and this inequality is strict for at least one P ∈ P . The second
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is that if |A1| = |A2| and θ : A1 → A2 is a bijection, then for any P ∈ P(A1), S(P ) = S(P ◦ θ). In
other words, the entropy of P should not depend on the labeling of the letters.

In the rest of this section we assume that the above three properties hold.

If A1,A2 are two disjoint sets, we denote by A1 ⊕ A2 their union (the symbol ⊕ is used to emphasize
the fact that the sets are disjoint). If µj : Aj → R, j = 1, 2, then µ := µ1 ⊕ µ2 : A1 ⊕ A1 → R is
defined by µ(a) = µ1(a) if a ∈ A1 and µ(b) = µ2(b) if b ∈ A2.

The axiomatic characterization of entropy based on Theorem 2.1 (4) is:

Theorem 2.2 Let S : P → [0,∞[ be a function such that:

(a) S is continuous on P2.

(b) For any finite collection of disjoint sets Aj , j = 1, · · · , n,

S

(
n⊕

k=1

pkPk

)
=

n∑
k=1

pkS(Pk) +S(p1, · · · , pn). (2.2)

where Pj ∈ Aj and (p1, · · · , pn) ∈ Pn.

Then for some base of the logarithm and all P ∈ P ,

S(P ) = S(P ). (2.3)

Remark 2.1 If the positivity is dropped, then the proof gives for some base of the logarithm either
S(P ) = S(P ) for all P , or S(P ) = −S(P ) for all P .

Remark 2.2 The property (2.2) is sometimes called the chain rule for entropy. It can be verbalized
as follows: if the initial choices (1, · · · , n), realized with probabilities (p1, · · · , pn), are split into sub-
choices described by probability spaces (Ak, Pk), k = 1, · · · , n, then the new entropy is the sum of the
initial entropy and the entropies of sub-choices weighted by their probabilities.

The axiomatic characterization of the entropy based on strict subadditivity is:

Theorem 2.3 Let S : P → R be a strictly sub-additive map, namely if A = A1 × A2 and P ∈
P(A1 ×A2), then

S(P ) ≤ S(P1) +S(P2)

with equality iff P = P1 ⊗ P2. Then for some base of the logarithm and all P ∈ P ,

S(P ) = S(P ) (2.4)

Remark 2.3 The strict subadditivity assumption ensures that S is positive and non-trivial.
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2.4 Properties of relative entropy

Theorem 2.4 (1) S(P |Q) ≥ 0 with equality iff P = Q.

(2)

S(P |Q) ≥ 1

2
dvar(P,Q)2

with the equality iff P = Q.

(3) The map
(P,Q) 7→ S(P |Q)

is lower-semicontinuous. This restriction of this map to the convex set {(P,Q) |P ≪ Q} is contin-
uous.

(4) The relative entropy is jointly convex: for λ ∈]0, 1[ and P1, P2, Q1, Q2 ∈ P(A),

S(λP1 + (1− λ)P2|λQ1 + (1− λ)Q2) ≤ λS(P1|Q1) + (1− λ)S(P2|Q2). (2.5)

(5) Part (4) has the following generalization. Let P1, · · · , Pn, Q1, · · · , Qn ∈ P(Ω) and p = (p1, · · · , pn), q =
(q1, · · · , qn) ∈ Pn. Then

S(p1P1 + · · ·+ pnPn|q1Q1 + · · ·+ qnQn) ≤ p1S(P1|Q1) + · · ·+ pnS(Pn|Qn) + S(p|q). (2.6)

If the r.h.s. in (2.6) is finite, then the equality holds iff for all j, k such that qj > 0, qk > 0,

pjPj(ω)

qjQj(ω)
=

pkPk(ω)

qkQk(ω)

holds for all ω ∈ suppQk ∩ suppQj .

(6) Relative entropy is stochastically monotone, that is, for any stochastic transformation M : P(A1) →
P(A2),

S(M(P )|M(Q) ≤ S(P |Q).

(7)

S(P |Q) = sup
X:A→R

(∫
A
XdP − log

∫
suppP

eXdQ

)
. (2.7)

If S(P |Q) < ∞, then the supremum is achieved, and each maximizer is equal to log P (a)
Q(a + const

for a ∈ suppP and is arbitrary otherwise

(8) For X : A → R and Q ∈ P(A),

log

∫
A
eXdQ = max

P∈P(A)

(∫
A
XdP − S(P |Q)

)
.

The maximizer is unique and is given by

PX,Q(a) =
eX(a)Q(a)∑
b∈A eX(b)Q(b)

.
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The Gibbs variational principle part of Theorem 2.1 follows from (7) and (8) by setting Q = Pch. It is
important to note that Theorem 2.1 (7) follows from the most basic property of relative entropy stated in
(1) above. Indeed, denoting by Pmax the probability measure (2.1), we have

S(P |Pmax) = −S(P )−
∫
A
XdP + log

(∑
a

eX(a)

)
≥ 0,

with equality iff P = Pmax.

We now turn to the Boltzmann-Sanov Large Deviation Principle that generalizes and sheds light on the
results of Section 1.1. Recall the definition (1.7) of empirical probability measures. We fix faithful
P ∈ P(A). By the LLN, for any ϵ > 0,

lim
N→∞

PN

{
ω ∈ AN | dvar(Pω, P ) ≥ ϵ

}
= 0. (2.8)

The Boltzmann-Sanov theorem is a deep refinement of the limit (2.8).

Theorem 2.5 For any Γ ⊂ P(Ω),

− inf
Q∈int(Γ)

S(Q|P ) lim inf
N→∞

1

N
logPN

{
ω ∈ AN |Pω ∈ Γ

}
lim sup
N→∞

1

N
logPN

{
ω ∈ AN |Pω ∈ Γ

}
≤ − inf

Q∈cl(Γ)
S(Q|P ),

where int/cl stands for the interior/closure.

Remark 2.4 If Γ is an open subset of P(A) or a convex subset with non-empty interior, then

inf
Q∈int(Γ)

S(Q|P ) = inf
Q∈cl(Γ)

S(Q|P ).

In this case
lim

N→∞

1

N
logPN

{
ω ∈ AN |Pω ∈ Γ

}
= − inf

Q∈Γ
S(Q|P ).

Remark 2.5 Taking P = Pch and Γ = {Q : dvar(Pch, Q) ≤ ϵ}, Theorem 2.5 reduces to Proposition
1.4. Moreover, by the previous remark, lim sup and lim inf in Proposition 1.4 can be replaced with lim.

Boltzmann-Sanov theorem has many important consequences, one of which is Cramer’s theorem5 We
proceed to describe Cramer’s theorem and contraction principle that allows to deduce it from the Boltzmann-
Sanov theorem.

Let X : A → R6 and let m = minaX(a), M = maxaX(s). We assume m < M . The cumulant
generating function of X is

C(α) = log

∫
A
eαXdP, α ∈ R.

5Of course, Cramer’s theorem can be also proven by independent means.
6To avoid trivialities we assume that X is not a constant function to avoid trivialities.
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The so called rate function of the random variable X is the Legendre transform of C,

I(θ) = sup(αθ − C(α)).

The function I is real-analytic on (m,M)

I(m) = log |{a : X(a) = m}|, I(M) = log |{a : X(a) = M}|,

and I(θ) = ∞ for θ ̸∈ [m,M ]. The function I is strictly convex on [m,M ] and I(θ) = 0 iff θ =∫
AXdP .

For ω = ω1 · · ·ωN ∈ AN we set

SN (ω) =
N∑
k=1

X(ωk).

Note that
SN (ω)

N
=

∫
A
XdPω.

For any S ⊂ R,
SN (ω)

N
∈ S ⇔ Pω ∈ ΓS ,

where

ΓS =

{
Q ∈ P(A)

∣∣ ∫
A
XdQ ∈ S

}
.

One has
int(ΓS) = Γint(S), cl (ΓS) = Γcl(S).

We now have:

Theorem 2.6 Let S ⊂ R,

(1)

− inf
Q∈Γint(S)

S(Q|P ) ≤ lim inf
N→∞

1

N
logPN

{
ω ∈ AN

∣∣ SN (ω)

N
∈ S

}

≤ lim sup
N→∞

1

N
logPN

{
ω ∈ AN

∣∣ SN (ω)

N
∈ S

}
≤ − inf

Q∈Γcl(S)

S(Q|P ).

(2)
inf
θ∈S

I(θ) = inf
Q∈ΓS

S(Q|P )

(3)

− inf
θ∈int(S)

I(θ) ≤ lim inf
N→∞

1

N
logPN

{
ω ∈ AN

∣∣ SN (ω)

N
∈ S

}

≤ lim sup
N→∞

1

N
logPN

{
ω ∈ AN

∣∣ SN (ω)

N
∈ S

}
≤ − inf

θ∈cl(S)
I(θ).
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Remark 2.6 Part (1) follows from the Boltzmann-Sanov theorem. Part (2) is the contraction principle.
Part (3) follows from (1) ∧ (2).

We will not discuss in these lecture notes the axiomatizations of relative entropy; see [LONE19, Chapter
5].

2.5 Back to Boltzmann entropy

Going back to the discussion of Boltzmann’s entropy in Section 1.1 (c) and taking P = Pch, one derives
from Part (3) that (1.10) holds with

SB(e) = loge |A| − I(e).

Part (2) with S = {e} gives (1.12).

2.6 Back to covering exponents

2.7 Prefix-free coding

To set the stage, we denote by {0, 1}∗ the set of all finite length words from the alphabet {0, 1}. If
w = w1 · · ·wn and u = u1 · · ·um are two words in {0, 1}∗. their concatenation is the word

wu = w1 · · ·wnu1 · · ·um.

The length of a word is defined in the obvious sense, if w = w1 · · ·wn, then ℓ(w) = n. Let F be a finite
set. Latter in this section we will take F = AN , but at the moment it is natural to keep F general. A
(binary) code on F is a map

C : F → {0, 1}∗.

C(a) ∈ {0, 1}∗ is call the codeword of a ∈ F and the image set C(F ) is called the codebook. If
P ∈ P(F ) is the source statistics, the expected length of the code C wrt P is

⟨C⟩P =
∑
a∈F

ℓ(C(a))P (a).

Given P and reasonable regularity assumption on C, the goal is to minimize the expected code length
⟨C⟩P . To each code C we associate the Kraft-MacMillan pressure

PKM = log2

(∑
a∈F

2−ℓ(C(a))

)
,

and the Kraft-McMillan probability distribution

PKM(a) =
2−ℓ(C(a)∑

a∈F 2−ℓ(C(a))
.
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We will be only interested in the codes that are one-one; such codes are called faithful. In fact we
will consider stringer requirement then faithfulness, namely we will focus on a special class of faithful
codes that are called prefix-free codes.We shall see latter that regarding relevant asymptotic properties of
codes, there is no difference between faithful and prefix-free codes. However, in finite setting prefix-free
codes have some special properties that simplify their analysis. They are also of considerable practical
importance and we will comment further on this point in Section 2.14.

A word u ∈ {0, 1}∗ is a prefix of a word w ∈ {0, 1}∗ if w = uv for some u ∈ {0, 1}∗. A set W ∈ {0, 1}∗
is called prefix-free if no element of W is a prefix of some other element of W . From perspective of
coding, the fundamental property of prefix-free sets is:

Proposition 2.7 Let W = {w1, · · · , wn} be a prefix-free subset of {0, 1}∗. Then

n∑
j=1

2−ℓ(wj) ≤ 1. (2.9)

We will refer to (2.9) as the Kraft-McMillan inequality.

Proof. The result can be proven in a several different ways, each proof shedding a different light on the
inequality (2.9). We present one proof, two others are outlined in exercises.

Let WN be set of concatenations wi1 · · ·wiN of the N words chosen from the set W . The prefix-free
assumption gives that

wi1 · · ·wiN = wj1 · · ·wjN ⇒ wik = wjk for all k. (2.10)

It follows that  n∑
j=1

2−ℓ(wj)

N

=
∑

u∈WN

2−ℓ(u).

Now, if lmax = maxj lj , and, for 1 ≤ m ≤ Nlmax,

a(m) = |{u ∈ WN | ℓ(u) = m}|,

we have ∑
u∈WN

e−ℓ(u) =

Nlmax∑
m=1

a(m)2−m.

Obviously, a(m) ≤ 2m and so
∑

u∈WN
e−ℓ(u) ≤ Nlmax. This gives that for all N ≥ 1,

n∑
j=1

2−ℓ(wj) ≤ (Nlmax)
1/N , (2.11)

The Kraft-McMillan inequality follows by taking N → ∞ in the inequality (2.11). 2

Proposition (2.7) has a converse.
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Proposition 2.8 If 1 ≤ l1 ≤ · · · ≤ ln is a sequence of integers satisfying

n∑
j=1

2−lj ≤ 1,

then there exists a prefix-free set W = {w1, · · · , wn} in {0, 1}∗ such that ℓ(wj) = lj .

Proof. Again, one can argue in a several different ways. A perhaps shortest proof goes as follows. We
start with w1 which is the the word of l1 zeros,

w1 = 0 · · · 0︸ ︷︷ ︸
length l1

.

After that, take for wj the first lj digits of
∑j−1

k=1 2
−lk written in the binary form.7A moment’s thought

leads to the conclusion that the set {w1, · · · , wn} is prefix-free.2

A faithful code C is called prefix-free if its codebook C(F ) is a prefix free subset of {0, 1}∗. Proposi-
tion 2.7 and 2.8 then yield the following. First, the Kraft-McMillan pressure of C satisfies PKM ≤ 0.
Seecond, to each faithful P ∈ P(F ) we can associate a prefix-free code in the following way. Set

l(a) = −⌈log2 P (a)⌉.

Then l(a) ≥ 1 and ∑
a∈F

2−l(a) ≤
∑
a∈F

P (a) = 1,

and so that there exists prefix-free code C such that

ℓ(C(a)) = −⌈log2 P (a))⌉.

A code with these properties is not unique and any such code is called a Shannon’s code for P . Note that
for any Shannon code C,

⟨C⟩P ≤ SSh(P ) + 1.

A basic result of the prefix-free coding is:

Theorem 2.9 Let P ∈ P(F ).

(1) The expected length of any prefix-free code C : F 7→ {0, 1}∗ satisfies

⟨C⟩P ≥ SSh(P ).

(2) There exists a prefix-free code C : F 7→ {0, 1}∗ such that

⟨C⟩P ≤ SSh(P ) + 2.

If P is faithful, 2 in the above inequality can be replaced with 1.
7For example, 1

2
+ 1

8
= 101000 · · · .
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Proof. (1) Let C : F 7→ {0, 1}∗ be a prefix-free code. Let PKraft ∈ P(F ) defined by

PKraft(a) =
2−ℓ(C(a))∑
b∈F 2−ℓ(C(b))

.

Taking logarithm in the base 2,

S(P |PKraft) =
∑
a∈F

ℓ(C(a))P (a)− Ssh(P )− log2

(∑
a∈F

2−ℓ(C(a))

)
≥ 0,

which gives ∑
a∈F

ℓ(C(a))P (a) ≥ SSh(P ) + log2

(∑
a∈F

2−ℓ(C(a))

)
≥ SSh(P ),

where we have used the Kraft inequality.

(2) If P is faithful, one can take for C any Shannon code for P . If P is not faithful, for a ∈ suppP set

Ĉ(a) = −⌈P (a)⌉

and extend Ĉ to F by setting it to be any prefix-free free code on F \ suppP . The code Ĉ may not be
prefix-free or faithful. Let now C : F → {0, 1}∗ be defined by

C(a) =

{
0Ĉ(a) if a ∈ suppP

1Ĉ(a) if a ̸∈ suppP .

Then C is a prefix-free code and

⟨C⟩P =
∑

a∈suppP
(−⌈log2 P (a)⌉+ 1)P (a) ≤ SSh(P ) + 2.

2

To re-iterate, the proof of Theorem 2.9 stems from the identity

⟨C⟩P − SSh(P ) = S(P |PKM)− PKM . (2.12)

The inequality ⟨C⟩P − SSh(P ) ≥ 0 then follows from the sign of the relative entropy and the Kraft-
McMillan inequality. The identity (2.12) gives much more and indicates the mechanism that leads to
saturation of the Shannon bound ⟨C⟩P ≥ SSh(P ) in the asymptotic setting, to which we turn now,

For each N ≥ 1 let CN : AN → {0, 1}∗ be a prefix-free code. Its Kraft-McMillan pressure and
probability distribution are

PN,KM = log2

 ∑
ω∈AN

2−ℓ(CN (ω))

 ,

PN,KM(ω) =
2−ℓ(C(ω)∑

ω∈A 2−ℓ(CN (ω)))
.
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The equality (2.12) turns to

⟨CN ⟩PN
−NSSh(P ) = S(PN |PN,KM)− PN,KM. (2.13)

This gives the asymptotic result

lim inf
N→∞

1

N
⟨CN ⟩PN

≥ SSh(P )

and that
lim

N→∞

1

N
⟨CN ⟩PN

= SSh(P ) (2.14)

iff
lim

N→∞

1

N
S(PN |PN,KM) = 0 and lim

N→∞

1

N
PN,KM = 0. (2.15)

A code sequence (CN )N≥1 is called Shannon-optimal if (2.14) holds. An example is a Shannon sequence
where each CN is a Shannon code. The relations (2.14) give characterization of Shannon-optimality to
which we will return latter in the notes.

2.8 Lempel-Ziv parsing/coding and entropy

A parsing of ω = ω1 · · ·ωN ∈ AN is an ordered set of words

{w1(ω), · · · , wk(ω)}

such that
ω = w1(ω) · · ·wk(ω). (2.16)

We denote by F(ω) the number of parsing words. If wi(ω) ̸= wj(ω) for i ̸= j, we say that (2.16) is
parsing into distinct words (abbreviated PDW). When the meaning is clear within the context, we write
wj for wj(ω).

Proposition 2.10 There exists a sequence (ϵN )N≥1 in (0, 1) with limN→∞ ϵN = 0, such that for any
N ≥ 1, ω ∈ AN , and any PDW of ω,

F(ω) ≤ 1

1− ϵN

N

logeN
loge |A|.

There are several different version of Lempel-Ziv (LZ) parsing. We will deal only with the perhaps
best known one in which the next word is the shortest new word. More precisely, for ω = ω1 · · ·ωN ,
w1 = ω1, and if w1, · · · , wk are chosen, wk+1 is the shortest word such that wk+1 is different from the
previous words and

w1 · · ·wkwk+1

is either prefix of ω or is equal to ω. If such wk+1 does not exist, then the last word of the parsing is u
such that

ω = w1 · · ·wku.
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Note that in the second case u = wj for some j ≤ k. We also remark if j is such that ℓ(wj) > 1, then
wj = wia for some j < i and a ∈ A. Finally, if the ending word u is non-empty, then ℓ(u) ≤

√
2n. To

see that, let j be such that u = wj .

Exercise 1. Prove that ℓ(wj) ≤
√
2N for all j.

Hint. Obviously, ℓ(wj) ≤ j. If ℓ(wj) = j, then ℓ(wi) = i for i < j, and the statement follows from
ℓ(w1) + · · ·+ ℓ(wj) ≤ N .

The Lempel-Ziv code sequence (CN )N≥1 is based on the Lempel-Ziv parsing. First choose one-one
functions

F : {1, · · · , N} → {0, 1}⌈log2 N⌉, G : A → {0, 1}⌈log2 |A|⌉.

Let
ω = w1 · · ·wku

be the LZ-parsing of ω ∈ AN . Then

CN (ω) = w1 · · ·wku

where wj , u ∈ {0, 1}∗ are defined as follows:

(1) If ℓ(wj) = 1, wj = 0G(wj).

(2) If ℓ(wj) > 1 and i is the smallest integer such that wj = wia for some a ∈ A, then

wj = 1F (i)0G(a).

(3) u is empty word if u is empty word. Otherwise, if i is the smallest integer such that u = wi,
u = 1F (i).

Exercise 2. Verify that the code CN is prefix-free. Show that

ℓ(CN (ω)) ≤ (F(ω) + 1) log2N +K1F(ω) +K2,

where K0,K1 are constants that depend only on |A|.

Theorem 2.11 Let P ∈ P(A).

(1)

lim
N→∞

∫
AN

1

N
F(ω) log2F(ω)dPN (ω) = SSh(P ).

(2)

lim
N→∞

1

N
⟨CN ⟩PN

= SSh(P ).

The stunning aspect of this result is that the Lempel-Ziv code sequence is universal in a sense that that it
is Shannon-optimal for any P . A far reaching generalization will be presented later in the notes.

Proof. Since the code sequence (CN )
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2.9 Merhav-Ziv parsing and relative entropy

2.10 Properties of Renyi entropy

2.11 Renyi entropy and prefix-free coding

G In [Cam65] Campbell introduced a family of exponential cost functions

L(α)
µ (C) =

1

α
log2

(∑
b

2αℓ(C(b))µ(b)

)
, α > 0.

The function α 7→ L(α)
µ is increasing and is strictly increasing unless all the code words C(b) have the

same length. Moreover,

lim
α↓0

L(α)
µ (C) = Lµ(C), lim

α→∞
L(α)
µ (C) = max

b
ℓ(C(b)).

Concavity of the logarithm gives L(α)
µ (C) ≥ αLµ(C). Campbell proves

Proposition 2.12 For α > 0,

L(α)
µ (C) ≥ α+ 1

α
S 1

α+1
(µ). (2.17)

Proof. Set xb = [µ(b)]1/α, yb = [µ(b)]−1/α2−ℓ(C(b)), p = α
α+1 , q = −α. By the Kraft inequality and

the reverse Hölder inequality8

1 ≥
∑
b

2−ℓ(C(b)) =
∑
b

xbyb ≥

(∑
b

2αℓ(C(b))

)−1/α(∑
b

[µ(b)]
1

α+1

)α+1
α

,

and so (∑
b

2αℓ(C(b))

)1/α

≥

(∑
b

[µ(b)]
1

α+1

)α+1
α

.

Taking log2 of both sides yields the statement. 2

The inequality (2.17) yields the Shannon bound (??) since

Lµ(C) = lim
α↓0

1

α
L(α)
µ (C) ≥ lim

α↓0

α+ 1

α
S 1

α+1
(µ) = S(µ).

8This inequality states the following. Let x1, · · · , xn, y1, · · · , yn be strictly positive real numbers. Let p, q be real numbers
such that p−1 + q−1 = 1 and suppose that p < 1. Then

n∑
i=1

xiyi ≥

(
n∑

i=1

xp
i

)1/p(∑
i=1

yq
i

)1/q

.
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Regarding the saturation of (2.17), set

lb :=

⌈
− 1

α+ 1
log2 µ(b) + S 1

α+1
(µ)

⌉
. (2.18)

Since ∑
b

2−lb ≤ 2
1

α+1
log2 µ(b)−S 1

α+1
(µ)

= 1, (2.19)

there exist a prefix-free code C such that ℓ(C(b)) = lb. For this code we have

∑
b

2αℓ(C(b))µ(b) ≤ 2α
∑
b

2
1

α+1
log2 µ(b)+αS 1

α+1
(µ)

= 2α2
(α+1)S 1

α+1
(µ)

,

which gives

L(α)
µ (C) ≤ 1 +

α+ 1

α
S 1

α+1
(µ). (2.20)

In the limit α ↓ 0 this inequality reduces to (??).

For later purposes we introduce a family of functionals

Qµ(α) = log2

(∑
b

2αℓ(C(b))µ(b)

)
, α ∈ R,

where, unlike in the Campbell cost function L(α)
µ (C), our emphasis will be on the α dependence. The

function α 7→ Qµ(α) is real-analytic, increasing and convex.9 Obviously, Qµ(0) = 0 and

lim
α→∞

Qµ(α)

α
= max

b
ℓ(C(b)), lim

α→−∞

Qµ(α)

α
= min

b
ℓ(C(b)).

Proposition 2.13 (1) For α < −1,

Qµ(α) ≥ (α+ 1)S 1
α+1

(µ)− α log2

(∑
b

2−ℓ(C(b))

)
.

(2) For −1 < α < 0,
Qµ(α) ≤ (α+ 1)S 1

α+1
(µ).

(3) For α ≥ 0,
Qµ(α) ≥ (α+ 1)S 1

α+1
(µ).

9This function is strictly convex unless all the code words have the same length.
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Proof. Part (3) follows from Proposition 2.12, and the same proof yields Part (2). To prove Part (1), let
xb, yb, p, q, be as in the proof of Proposition 2.12. The Hölder inequality

n∑
b

xbyb ≤

(
n∑
b

xpb

)1/p(∑
b

yqb

)1/q

gives that ∑
b

2−ℓ(C(b)) ≤

(∑
b

[µ(b)]
1

α+1

)α+1
α
(∑

b

eαℓ(C(b))µ(b)

)− 1
α

.

Rearranging, we get(∑
b

eαℓ(C(b))µ(b)

) 1
α

≤

(∑
b

2−ℓ(C(b))

)−1(∑
b

[µ(b)]
1

α+1

)α+1
α

Taking log2 gives

Qµ(α) ≥ (α+ 1)S 1
α+1

(µ)− α log2

(∑
b

e−ℓ(C(b))

)
,

and Part (1) follows. 2

Turning to the optimality of Proposition 2.13, (2.18) is defined for α ̸= −1 and the inequality (2.19)
remains valid. Let C is a prefix-free code satisfying ℓ(C(b)) = lb. The inequality (2.20) gives that for
α ≥ 0,

Qµ(α) ≤ α+ (α+ 1)S 1
α+1

(µ).

The computation that gives (2.20) also yields that α < 0, α ̸= −1,

Qµ(α) ≥ α+ (α+ 1)S 1
α+1

(µ).

The last bound (compare with Part (1) of Proposition 2.13) is not effective in the regime α < −1. For
α < −1 we estimate∑

b

2αℓ(C(b))µ(b) ≤
∑
b

2
1

α+1
log2 µ(b)+αS 1

α+1
(µ)

= 2
(α+1)S 1

α+1
(µ)

,

which leads to
Qµ(α) ≤ (α+ 1)S 1

α+1
(µ).

The above discussion singles out the function

F (α) = (α+ 1)S 1
α+1

(µ),

defined for α ̸= −1. If µ is the uniform measure, µ(b) = 1/|B| for all b ∈ B, and F (α) = α log2 |B|.
Since

lim
α↓−1

F (α) = max
b

log2 µ(b), lim
α↑−1

F (α) = min
b

log2 µ(b),
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F is discontinuous at −1 unless µ is the uniform measure. F is an increasing function, concave on
(−∞,−1) and convex on (−1,∞). Moreover, if µ is not the uniform measure, F is strictly concave on
(−∞,−1) and is strictly convex on (−1,∞). To see this, one computes

F ′′(α) =
1

(α+ 1)3 ln 2

∑
b∈B

µ(b)
1

α+1∑
b∈B µ(b)

1
α+1

[lnµ(b)]2 −

(∑
b∈B

µ(b)
1

α+1∑
b∈B µ(b)

1
α+1

lnµ(b)

)2


and observes that by Jensen’s inequality for f(x) = x2,

∑
b∈B

µ(b)
1

α+1∑
b∈B µ(b)

1
α+1

[lnµ(b)]2 −

(∑
b∈B

µ(b)
1

α+1∑
b∈B µ(b)

1
α+1

lnµ(b)

)2

≥ 0,

with equality iff µ is the uniform measure.

2.12 Properties of relative Renyi entropy

2.13 First rumination

2.14 Notes

3 One-sided shift
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