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INTRODUCTION

This course is a sketch of certain aspects of the research pro-
gram ”Beyond Gibbsianity” currently developed by A. Shirikyan
(Paris), C-A. Pillet (Toulon/Luminy), and V.J. (Montreal/Milan).

The aspects we will discuss are at the interface between infor-
mation theory and statistical mechanics.

Part I: ENTROPY

Part II: RELATIVE ENTROPY

Unfortunately, there is no time for discussion of Renyi entropies,
which play a central role in the research program, or non-equilibrium
statistical mechanics in the Hamiltonian setting.
The quantum aspects of the program also will not be discussed.

1



Lecture notes are available:

I. Lectures on Entropy. https://arxiv.org/pdf/1806.07249 Based
on undergraduate course taught at McGill. Absolutely minimal
first year mathematical background is assumed.

II. Entropic Information Theory. 60+12 hours graduate course
taught at McGill the Fall 2020. Link to the dropbox directory is
available (videos and pdf files of lectures, tutorials, and addi-
tional material).

III. Entropy in Toulouse. Unfinished lecture notes of the course
taught in the Winter 2024 school in Toulouse. Hopefully useful.

IV. Additional references available upon request (see also my
McGill web site).
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PART I: ENTROPY

God picking out the special (low-entropy) initial conditions of our universe.

Penrose (1999).
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NOTATION

A = {a1, · · · , al} finite alphabet (often A = {0,1}N ).

P(A)–the set of all probability measures on A
P (a) ≥ 0,

∑
a∈A P (a) = 1.

The support of P is {a : P (a) > 0} and we will often implicitly
assume that it is equal to A.
P is pure if P (a) = 1 for some a. P is chaotic (uniform) if
P (a) = 1/|A| for all a (denoted Pch).

If A = A1 ×A2 ({0,1}N+M = {0,1}N × {0,1}M ,
P1, P2 denote the respective marginals of P ∈ P(A),

P1(a) =
∑
b∈A2

P (a, b).
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ENTROPY

In thermodynamics it goes back to 1850 and work of Clau-
sius (Entropie=transformation). Clausius was motivated by Sadi
Carnot’s work on efficency of thermal engines.

Entropy is the measure of a system’s thermal energy per unit
temperature that is unavailable for doing useful work (EB).

Its statistical interpretation is due to Boltzmann, Gibbs, and Maxwell.
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In information theory it goes back to Shannon and his funda-
mental 1948 paper ”A Mathematical Theory of Communication”

Arguably one of the most used (and abused) scientific notions...

In popular culture... ”Entropy”– a song about Discord and in-
strumental vocals by AwkwardMarina... In literature
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We will take Shannon’s road
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Reprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379–423, 623–656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages havemeaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we will in all cases use an
essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we in-
tuitively measures entities by linear comparison with common standards. One feels, for example, that
two punched cards should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits, or more briefly bits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of
information. N such devices can storeN bits, since the total number of possible states is 2N and log2 2N N.
If the base 10 is used the units may be called decimal digits. Since

log2M log10M log10 2
3 32log10M

1Nyquist, H., “Certain Factors Affecting Telegraph Speed,” Bell System Technical Journal, April 1924, p. 324; “Certain Topics in
Telegraph Transmission Theory,” A.I.E.E. Trans., v. 47, April 1928, p. 617.

2Hartley, R. V. L., “Transmission of Information,” Bell System Technical Journal, July 1928, p. 535.
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The entropy of P ∈ P(A) is the non-negative number

S(P ) := −
∑
a∈A

P (a) logP (a)

Base of the logarithm=choice of units (shannons= 2, nats = e,
hartleys = 10).

Entropy = the measure of ”randomness” of the stochastic exper-
iment described by P .

Entropy = the measure of ”informational content” of the stochas-
tic experiment described by P .

9



Probabilistic experiment: tossing a coin. Outcome: H(ead) or T(ail)
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Fair coin, P (H) = P (T ) = 1/2.

S(P ) = log2 2 = 1.

Unfair coin with two heads: P (H) = 1, P (T ) = 0,

S(P ) = 0.

Biased coin, P (H) = 1/3, P (T ) = 2/3,

S(P ) = −
1

3
log2

1

3
−

2

3
log2

2

3
= 0.917...
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P (H) = p, P (T ) = 1− p, plot of S(p) = −p log2 p− (1− p) log2(1− p).
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BASIC PROPERTIES

1. 0 ≤ S(P ) ≤ log |A|. S(P ) = 0 iff P is pure and
S(P ) = log |A| iff P is chaotic.

2. The entropy map P 7→ S(P ) is continuous.

3. The entropy map is concave:

S(p1P1 + · · ·+ pnPn) ≥ p1S(P1) + · · ·+ pnS(Pn),

for any n, pk ≥ 0,
∑n
k=1 pk = 1.
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4. The entropy map is ”almost convex”:

S(p1P1+· · ·+pnPn) ≤ p1S(P1)+· · ·+pnS(Pn)+S(p1, · · · , pn).

The equality holds if the supports of Pj ’s are disjoint:

entropy of mixture= mixtures of entropies

5. The entropy map is subadditive: if A = A1 ×A2, then

S(P ) ≤ S(P1 × P2) = S(P1) + S(P2)

with equality iff P = P1 × P2.

These properties are fundamental and easy to prove; see Shan-
non (1948)
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BUT WHY THE FORMULA S(P ) = −
∑
P (a) logP (a)?
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UNIVERSALITY I: AXIOMATIZATION

The axiomatization idea is that the formula S(P ) = −
∑
P (a) logP (a)

is forced by a few basic intuitive properties that any ”entropy”
function should have. It is due to Shannon (1948).

Let P = ∪AP(A) and let S : P → [0,∞) be a putative en-
tropy function. We assume the obvious:

Requirement 1. S(P ) does not depend on the enumeration of
the alphabet A.

Requirement 2. If A′ = A∪{b} and P ′(a) = P (a), P ′(b) = 0,
then S(P ′) = S(P ).

Requirement 3. The map P 7→ S(P ) is continuous.
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FIRST AXIOMATIZATION

Theorem Suppose that the function S satisfies

S(p1P1+· · · pnPN) = p1S(P1)+· · ·+pnS(Pn)+S(p1, · · · , pn)

whenever the support of Pj ’s are disjoint. Then, up to the choice
of the base of the logarithm, for all P ∈ P,

S(P ) = S(P )

This axiomatization is (essentially) due to Shannon (1948), with
further contributions from Fadeev, Khinchine...The proof is not
hard.

entropy of mixture= mixture of entropies

fixes uniquely the entropy function.
17



SECOND AXIOMATIZATION

Theorem Suppose that the function S is subadditive:
If A = A1 ×A2, then for any P ∈ P(A),

S(P ) ≤ S(P1) +S(P2)

with equality iff P = P1 × P2. Then for all P ∈ P,

S(P ) = S(P )

This result is due to Aczél, Forte, and Ng (1973). The proof is
deep.

Book: J. Aczél and Z. Daróczy.: On Measures of Information
and Their Characterizations. Academic Press, 1975.
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SHANNON’S COMMENT ON AXIOMATIZATION
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This theorem [axiomatization], and the assumptions re-
quired for its proof, are in no way necessary for the
present theory. It is given chiefly to lend a certain plau-
sibility to some of our later definitions. The real justifi-
cation of these definitions, however, will reside in their
implications.

Revolutionary implication: the universal optimal bound on the
compression of the information.

The main point at issue is the effect of statistical knowl-
edge about the source in reducing the required capac-
ity of the channel, by the use of proper encoding of the
information.
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FURTHER NOTATION

An = A× · · · × A.
xn1 := (x1, x2, · · · , xn) ≡ x1x2 · · ·xn.
Ω = AN = {x = (xk)k≥1 |xk ∈ A}.
x = x1x2 · · ·xnxn+1 · · · .
φ : Ω → Ω the shift map,

x1x2x3 · · · 7→ x2x3 · · ·

Dynamical system (Ω, φ).
Ergodic discrete time statistical sources with values in A are
described by ergodic probability measures P on (Ω, φ).
Such P is uniquely determined by the sequence (Pn)n≥1 of its
An-marginals.
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NOTE ON ERGODICITY

P is shift-invariant (or stationary) if P (φ−1(E)) = P (E).

A shift-invariant P is ergodic if φ−1(E) = E⇒ P (E) ∈ {0,1}.

A shift-invariant P is ergodic iff for any continuous F : Ω → R,

lim
N→∞

1

N

N−1∑
j=0

F (φj(x)) =
∫
Ω
FdP

for P -a.e. x.
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SPECIFIC ENTROPY

Let P ∼ (Pn)n≥1 be an ergodic source. The stationarity gives

S(Pn+m) ≤ S(Pn) + S(Pm),

and so

s(P ) := lim
n→∞

1

n
S(Pn) = inf

n≥1

1

n
S(Pn).

s(P )-specific entropy of the source P .

For any P , 0 ≤ s(P ) ≤ log |A|.

The specific entropy is the basic notion in information theory,
dynamical systems theory, probability, statistical mechanics...
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FIRST SHANNON’S THEOREM

The ergodic source P ∼ (Pn)n≥1 is given.The compression
alphabet is {0,1}. Let 0 < ϵ < 1 be fixed ”allowed coding
error”. Let N,M ≥ 1.

Coding pair (CN , DN). Coder CN : AN → {0,1}M . Decoder
DN : {0,1}M → AN .
Compression coefficient = M/N .

The error probability of the coding pair (CN , DN) is

PN
{
xN1 ∈ AN |DN ◦ CN(xN1 ) ̸= xN1

}
.

If this probability is < ϵ, the pair (N,M) is called ϵ-good.
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For given N , let M(N) be smallest number such that the pair
(N,M(N)) is ϵ-good.

M(N)/N is the best possible compression subject to the al-
lowed ϵ-error probability.

Shannon Source Coding Theorem
For any 0 < ϵ < 1,

lim
N→∞

M(N)

N
= s(P ).

The specific entropy = universal optimal asymptotic bound on
the compression of information.

The deep link with Hypothesis Testing will be discussed in the
Lecture II.
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SHANNON-MCMILLAN-BREIMAN THEOREM

Information functions In : Ω → [0,∞],

In(x) = In(x
n
1) = − logPn(x

n
1).

S(Pn) =
∫
Ω
In(x)dP.

lim
n→∞

1

n
S(Pn) = lim

n→∞
1

n

∫
Ω
− logPn(x

n
1)dP

= s(P ).
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Theorem.

lim
n→∞−

1

n
logPn(x

n
1) = s(P )

P -a.s and in L1(Ω, dP ).

Central to Shannon’s theory.

Three classical proofs:
Martingale proof.
Derreniec subadditivity proof (Kingman subadditive ergodic the-
orem)
Ornstein-Weiss covering intervals argument.

All three proofs are available in the ”Entropic Information The-
ory” course dropbox directory together with the background ma-
terial.
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SECOND SHANNON’S THEOREM

Lossless variable length coding of the ergodic source P ∼ (Pn)n≥1.

{0,1}∗ =
⋃
M≥1{0,1}M = the set of all finite length words

with letters from the compression alphabet {0,1}:

{0,1}∗ = {0,1,00,01,10,11,000,001, · · · }
A code sequence (CN)N≥1 is the collection of one-one maps

CN : AN → {0,1}∗.

Length function LN(xN1 )–the length of the code word CN(xN1 ).
The expected length is

⟨LN⟩ =
∑

xN1 ∈AN

LN(xN1 )PN(xN1 ).
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Compression is measured by the ratios ⟨LN⟩/N or LN/N .
Theorem.

lim inf
N→∞

⟨LN⟩/N ≥ s(P )

and there are optimal codes for which

lim
N→∞

⟨LN⟩/N = s(P )

This result is essentially proven in Lecture II.
Theorem.

lim inf
N→∞

LN(xN1 )/N ≥ s(P ),

P -a.s. and there are optimal codes for which

lim
N→∞

LN(xN1 )/N = s(P )

P -a.s.
The interest turns to the optimal codes...
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One naturally expects that the construction of optimal codes (ex-
amples are Shannon’s, Huffman...) depends on P .

The main point at issue is the effect of statistical knowl-
edge about the source in reducing the required capac-
ity of the channel, by the use of proper encoding of the
information.

But what if have have no statistical knowledge of the source?

30



UNIVERSALITY II: COMPRESSION OPTIMALITY

Do there exist deterministic universally optimal code sequences
(CN)N≥1 such that for any ergodic source P ,

lim
N→∞

⟨LN⟩/N = s(P )

lim
N→∞

LN(xN1 )/N = s(P ) P − a.s.

Astonishing!?
31



LEMPEL-ZIV UNIVERSALITY

For historical account see the recent article N. Merhav ”On Jacob Ziv’s Individual-

Sequence Approach to Information Theory” Arxiv https://arxiv.org/pdf/2406.02904.
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Lempel-Ziv universal codes (1977, 1978)—based on LZ pars-
ing.
xN1 = x1x2 · · ·xN is parsed so that every new word is the
shortest word not seen before.
Example. N = 11,

10110001001

1|0|11|00|01|001

P(xN1 ) is the number of parsed words in xN1 . In the above ex-
ample,

P(10110001001) = 6.

The LZ parsing algorithm is completely deterministic.
LZ-code builds on the LZ-parsing algorithm.
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Theorem. For any ergodic source P ,

lim
N→∞

P(xN1 ) logN

N
= s(P )

P -a.s. and in L1(Ω,dP ).

Apart from its important practical applications, this is mathemat-
ically a deep foundational result!

It gives the universal optimality of the resulting LZ code se-
quences.

The studies of the LZ parsing have lead to further deep and
unexpected universal characterizations of the specific entropy.
We will discuss two of them.
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RETURN TIMES CHARACTERIZATION

Due to Wyner and Ziv (1989), Ornstein and Weiss (1993).
x = x1x2 · · · ∈ Ω, xmk = xkxk+1 · · ·xm.
The recurrence time function is

Rn(x) := inf{k ≥ 1 : x2n+k−1
n+k = xn1}

The first time the string xn1 reappears in x.
Example:

x = 0100110101001101001110100100101001010 . . .

The first time the string x41 = 0100 reappears in x:

x = 010011010︸ ︷︷ ︸
5

1001101001110100100101001010 . . .

R4(x) = 5.
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Theorem. For any ergodic source P ,

lim
N→∞

1

N
logRN(x) = s(P )

P -a.s. and in L1(Ω, dP ).

Again, a mathematically deep foundational result.

Simpler proof with completely novel strategy: Kontoyiannis’ 1998
PhD thesis.
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WAITING TIMES CHARACTERIZATION

Wyner and Ziv (1989), Morton and Shields (1995), Kontoyiannis
(1998).

The waiting times functions are defined in terms of a pair (x, y)
of elements of Ω. For n ∈ N and (x, y) ∈ Ω×Ω

Wn(x, y) = inf{k ≥ 1 : yk+n−1
k = xn1}.

Wn(x, y) is the first time the string xn1 of x appears in y.
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x = 0100110101001101001110100100101001010 . . . ,

y = 1101010001001010011010100100101010100 . . .

W4(x, y) = the first time the string x41 = 0100 appears in y

x = 0100110101001101001110100100101001010 . . . ,

y = 11010︸ ︷︷ ︸
5

10001001010011010100100101010100 . . .

W4(x, y) = 5
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Theorem. Under suitable (mixing) regularity assumptions on P ,

lim
N→∞

1

N
logWN(x, y) = s(P )

for P × P -almost all (x, y).

The technically best result (β-mixing) is due to Morton and Shields.
The proof is hard. An elegant simple argument in the case of ψ-
mixing is due to Kontoyiannis.

Important: This is the first result that is not completely universal
and some regularity is required (counterexample due to Shields
(1993)). There are some important open questions in this re-
spect.
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RESEARCH PROGRAM

The fundamental entropic laws of large numbers (P -a.s. sure
convergence) we discussed are:

lim
N→∞

−
1

N
logPN(xN1 ) = s(P )

lim
N→∞

P(xN1 ) logN

N
= s(P )

lim
N→∞

1

N
logRN(x) = s(P )

lim
N→∞

1

N
logWN(x, y) = s(P )
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Beyond the laws of large numbers:

1. Study of fluctuations–Large Deviation Principle.

2. Study of the fractal dimensions of entropic level sets.

3. Other entropies: Renyi, relative entropies.

4. Applications to non-equilibrium statistical mechanics, linguis-
tics, and biology.

5. Long term research program with involvement of students
and postdocs. A small but important part of the general ”Beyond
Gibbsianity” program.
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First results:

1. Cuneo N., VJ., Pillet C-A, Shirikyan A.: Large deviations and
fluctuation theorem for selectively decoupled measures on shift
spaces, Rev. Math. Phys. 31 (2019).

2. Cristadoro G., Degli Esposti M., JV, Raquépas R.: Recur-
rence times, waiting times and universal entropy production es-
timators, Lett. Math. Phys., 113 (2023)

3. Cristadoro G., Degli Esposti M., JV, Raquépas R.: On a
waiting-time result of Kontoyiannis: mixing or decoupling?, Stoch.
Process. their Appl., 166 (2023)

4. Cuneo N., Raquépas R.: Large deviations of return times
and related entropy estimators on shift spaces. Commun. Math.
Phys. 405: Article 135 (2024)
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The works of students and postdocs on Merhav-Ziv universal
cross-entropy estimators.

1.Barnfield N., Grondin R., Pozzoli G., Raquépas R.: On the
Ziv–Merhav theorem beyond Markovianity I. To appear in Cana-
dian Journal of Mathematics.

2. Barnfield N., Grondin R., Pozzoli G., Raquépas R.: On the
Ziv–Merhav theorem beyond Markovianity II. Submitted, on Arxiv.
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