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PART II: RELATIVE ENTROPY
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SETTING

A = {a1, · · · , al} finite alphabet (often A = {0,1}N ).

P(A)–the set of all probability measures on A.

The entropy of P ∈ P(A) is

S(P ) =
∑

−P (a) logP (a).

This lecture is dedicated to relative entropy which involves pairs
(P,Q) ∈ P(A)× P(A).
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RELATIVE ENTROPY

S(P,Q) =
∑
a∈A

P (a) log
P (a)

Q(a)

0/0 = 0. Kullback-Leibler divergence (1951).

If Q = Pch, Pch(a) = 1/|A|,

S(P, Pch) = S(Pch)− S(P ) = log |A| − S(P ) ≥ 0

with equality iff P = Pch.

Relative entropy = ”information distance”. It is not a metric.
(P,Q) 7→ S(P,Q) is not symmetric and the triangle inequality
fails.
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BASIC PROPERTIES

(1) S(P,Q) ≥ 0 with equality iff P = Q.

(2) Pinker inequality:

S(P,Q) ≥
1

2

(∑
|P (a)−Q(a)|

)2
with equality iff P = Q.

(3) The map (P,Q) 7→ S(P,Q) is jointly convex:

S(λP1+(1−λ)P2, λQ1+(1−λ)Q2) ≤ λS(P1, Q1)+(1−λ)S(P2, Q2).

(4) For further properties and axiomatic characterizations see
the Lecture Notes.
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STOCHASTIC MONOTONICITY

A1,A2 two finite alphabets.

M = [M(a, b)](a,b)∈A×B stochastic matrix: M(a, b) ≥ 0,∑
b

M(a, b) = 1.

M(a, b)= transition probability a → b.

Induced map M : P(A1) → P(A2),

M(P )(b) =
∑

a∈A1

P (a)M(a, b).

Stochastic montotonicity

S(M(P ),M(Q)) ≤ S(P,Q).
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FIRST APPLICATION: SHANNON THEOREM

{0,1}∗= the set of all finite length words with letters from {0,1}.

Code: one-one map

C : A → {0,1}∗.

C(a) codeword, C(A) = {C(a)} the codebook.

If P ∈ P(A) is the source statistics, the expected code length
is

⟨C⟩P =
∑
a∈F

ℓ(C(a))P (a).

The goal is to minimize ⟨C⟩P .
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Prefix-free coding.

A word u ∈ {0,1}∗ is a prefix of a word w ∈ {0,1}∗ if w = uv

for some u ∈ {0,1}∗. A set W ⊂ {0,1}∗ is called prefix-free if
no element of W is a prefix of some other element of W .

Kraft-McMillan inequality: If W = {w1, · · · , wn} is prefix-free,
then

n∑
j=1

2−ℓ(wj) ≤ 1.

The converse also holds: if 1 ≤ l1 ≤ · · · ≤ ln is a sequence of
integers satisfying

n∑
j=1

2−lj ≤ 1,
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then there exists a prefix-free set W = {w1, · · · , wn} in {0,1}∗

such that ℓ(wj) = lj.

A code C is called prefix-free if its codebook C(A) is a prefix
free subset of {0,1}∗.

To each P ∈ P(A) we can associate a prefix-free code by tak-
ing

l(a) = −⌈log2 P (a)⌉.

Then l(a) ≥ 1 and∑
a∈A

2−l(a) ≤
∑
a∈A

P (a) = 1,



and so there exists prefix-free code C such that

ℓ(C(a)) = −⌈log2 P (a)⌉.

A code with these properties is not unique and any such code is
called a Shannon’s code for P . Note that for any Shannon code

⟨C⟩P ≤ S(P ) + 1.

A basic result of the prefix-free coding is:

The expected length of any prefix-free code C : A 7→ {0,1}∗
satisfies

⟨C⟩P ≥ S(P ).

The basic asymptotic result discussed in the first lecture is an
easy consequence of these results and asymptotic irrelevance
of the prefix-free assumption. Quick reminder.
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A code sequence (CN)N≥1 is the collection of one-one maps

CN : AN → {0,1}∗.
(PN) sequence of marginals of an ergodic P on one-sided shift.

⟨CN⟩PN
=

∑
xN1 ∈AN

ℓ(CN(xN1 ))PN(xN1 ).

Theorem.

lim inf
N→∞

⟨CN⟩PN

N
≥ s(P )

and there are optimal codes for which

lim
N→∞

⟨CN⟩PN

N
= s(P )

Proof: Apply previous discussion to AN instead of A and then
use Elias construction (transforming a code to prefix-free one
without affecting the asymptotic).
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Proof of the relation ⟨C⟩P ≥ S(P ).

We introduce the Kraft-MacMillan pressure

PKM = log2

 ∑
a∈A

2−ℓ(C(a))

 ≤ 0,

and the Kraft-McMillan probability distribution

PKM(a) =
2−ℓ(C(a)∑

b∈A 2−ℓ(C(b))
.

Then (with logarithms in the base 2),

S(P, PKM) = ⟨C⟩P − S(P ) + PKM,
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which can be written as

⟨C⟩P − S(P ) = S(P, PKM)− PKM.

Hence

⟨C⟩P ≥ S(P )

follows from the sign of the relative entropy and the Kraft-McMillan
inequality.

The identity gives much more and indicates the mechanism that
leads to saturation of the Shannon bound in the asymptotic set-
tings.
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More preciaely, the Shannon bound is saturated,

lim
N→∞

⟨CN⟩PN

N
= s(P ),

iff

lim
N→∞

1

N
S(PN , PKM,N) = 0

and

lim
N→∞

1

N
PKM,N = 0.

Particularly interesting if the code is universal!
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SECOND APPLICATION: GIBBS VARIATIONAL PRINCIPLE

A= set of configurations of a physical system under considera-
tion.

Example: Gas of molecules on lattice {1, · · · , N}.

A = {(ω1, · · · , ωN) |ωj ∈ {0,1}}
Molecule is present/absent at lattice site j corresponds to ωj =
1/0. Configurations: words of length N .

Hamiltonian (energy) map H : A → R. H(a)= energy of the
configuration a.

Physical states = elements of P(A).

⟨H⟩P =
∑
a

H(a)P (a)

the expected value of energy in a state P .
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A state of thermal equilibrium at inverse temperature β is de-
scribed by the Gibbs Cannonical Ensemble

Pβ(a) = e−βH(a)/Z(β)

Z(β) =
∑
b∈A

e−βH(b).

Pressure P(β) = logZ(β).

Gibbs Variational Principle:

P(β) = max
P∈P(A)

(S(P )− β⟨H⟩P )

with unique maximizer P = Pβ.

Starting point of equilibrium statistical mechanics.

14



Proof. :

S(P, Pβ) = β⟨H⟩P − S(P ) + P(β).

The result follows from S(P, Pβ) ≥ 0 which gives

P(β) ≥ S(P )− β⟨H⟩P
with equality iff P = Pβ.
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PARALLELS AND ORTHOGONALITY

Information theory (IT): the code length map a 7→ ℓ(C(a)).

Statistical mechanics (SM): Hamiltonian map a 7→ H(a).

In both cases one considers the expectation values ⟨C⟩P and
⟨H⟩P .

Kraft-McMillan probability distribution parallels Gibbs Canonical
Ensemble. Same for the respective pressures.
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PKM(a) =
2−ℓ(C(a))∑

b∈A 2−ℓ(C(b))

Pβ(a) =
e−βH(a)∑

b∈A e−βH(b)
.

The starting points of both theories (Shannon theorem and the
Gibbs variational principle) follow from the parallel relative en-
tropy balance equations

S(P, PKM) = ⟨C⟩P − S(P ) + PKM,

S(P, Pβ) = β⟨H⟩P − S(P ) + P(β).
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Now to orthogonality:

In IT P is given, it is the statistics of the source. In SM one
searches for P describing physical state of thermal equilibrium.

In SM Hamiltonian H is given. In IT one searches for codes that
minimize the cost function ⟨C⟩P .

SM comes with conservation of energy and one looks for ther-
mal states such that

⟨H⟩Pβ
= e.

This defines e 7→ β(e) and the Gibbs Variational Principle gives
that Pβ(e) is the unique maximizer or

{S(P ) | ⟨H⟩P = e}.
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Setting

s(e) = S(Pβ(e)), p(e) = P(β(e))

one arrives at the basic thermodynamical equations

s(e) = eβ(e) + p(e),
ds(e)

de
= β(e).

In IT one minimizes the code cost while it is the pressure that is
conserved through the bound

PKM = log2

 ∑
a∈A

2−ℓ(C(a))

 ≤ 0,

which is asymptotically saturated for optimal codes achieving
Shannon’s bound.

Universal codes lead to universal Hamiltonians with completely
broken locality structure.
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These observations lead to a particular research program partly
sketched in the Toulouse Winter 2024 course. The further links
with Boltzmann entropy and Sanov’s theorem (Large Deviation
Principle) are also discussed there.

20



THIRD APPLICATION: HYPOTHESIS TESTING AND STEIN LEMMA

We know that the underlying probabilistic experiment is with
probability 1/2 described by P and with probability 1/2 by Q.

Hypothesis I: Q is correct. Hypothesis II: P is correct.

By performing an experiment we wish to decide with minimal
error probability which Hypothesis is correct.

A test is T ⊂ A. If the outcome is in T , we chose Hyp II. If the
outcome is not in T , we choose Hyp I.

Error probabilities are Q(T ) (type-I error) and P (T c) (type-II
error).
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Two coins
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Coin 1. P (Head) = P (Tail) = 1/2.

Coin 2. Q(Head) = 2/3, Q(Tail) = 1/3.

Test T = {Head}. Type-I error = 1/3, Type-II error =1/2.

Test T = {Tail}. Type-I error =2/3, Type-II error=1/2.

Type-I error is minimized for T = Head. Completely intuitive.
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Back to the general setting.

For ϵ ∈ (0,1), the Stein error exponent is

s(ϵ) = min{Q(T ) |P (T c) < ϵ}.

The type-I error is minimized by allowing ϵ-window in the type-II
error.

The errors and error exponents get better if the experiment is
repeated N times. The outcomes are in AN = A × · · · × A,
and P,Q are replaced by PN = P × · · · ×P and QN . The N th
Stein error exponent is

sN(ϵ) = min{QN(TN) |TN ⊆ AN , PN(T c
N) < ϵ}
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Stein Lemma:

lim
N→∞

1

N
log sN(ϵ) = −S(P,Q)

Symbolically,

sN(ϵ) ∼ e−NS(P,Q).

Basic (and very general result) + novel perspective on the first
Shannon theorem (source coding).
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General setting: P ∼ (PN), Q ∼ (QN) two ergodic sources on
(Ω, φ) such that the specific relative entropy

s(P,Q) = lim
N→∞

1

N
S(PN , QN)

exists.

Under very general conditions the Stein Lemma holds:

lim
N→∞

1

N
log sN(ϵ) = −s(P,Q).
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BACK TO SOURCE CODING

P ∼ (PN) ergodic source, 0 < ϵ < 1 ”allowed coding error”.

Coding pair (CN , DN). Coder CN : AN → {0,1}M . Decoder
DN : {0,1}M → AN .
Compression coefficient = M/N .

The error probability of the coding pair (CN , DN) is

PN

{
xN1 ∈ AN |DN ◦ CN(xN1 ) ̸= xN1

}
.

If this probability is < ϵ, the pair (N,M) is called ϵ-good.
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For given N , let M(N) be smallest number such that the pair
(N,M(N)) is ϵ-good.

M(N)/N is the best possible compression subject to the al-
lowed ϵ-error probability.

The optimal M(N) is

M(N) = min{⌊log2 |TN |⌋ |TN ⊆ AN , PN(T c
N) < ϵ}.

Taking Q to be the product of (uniform) measures Pch on A,

Q(TN) = |TN |/|A|N ,

lim
N→∞

M(N)

N
= log2 |A|+ lim

N→∞
1

N
sN(ϵ)

= log2 |A| − s(P, Pch) = s(P ).
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Stein Lemma can be viewed as the generalization of the Shan-
non source coding with completely different interpretation.

Source coding = hypothesis testing between Q = ×Pch (the
source of maximal specific entropy) and P .

Is statistical mechanics interpretation of Stein Lemma possible?

Yes, and it is linked with interpretation of a very important dis-
coveries (early 1990’s) in non-equilibrium statistical physics deal-
ing with entropy production, second law of thermodynamics, and
entropic fluctuation relations.

Evans-Cohen-Morriss, Evans-Searles, Gallavotti-Cohen, Lebowitz-
Spohn...
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FLUCTUATION RELATIONS AND ARROW OF TIME

Alphabet A is equipped with involution Θ : A → A. To be
interpreted as time-reversal.

To P ∈ P(A) one associates PΘ by PΘ(a) = P (Θ(a)).

Relative entropy (relative information) function

IP,PΘ
(a) = log

P (a)

PΘ(a)
.

⟨IP,PΘ
⟩P =

∑
a

IP,PΘ
(a)P (a) = S(P, PΘ).
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We denote by Q the probability distribution of the random vari-
able IP,PΘ

wrt P ,

Q(s) = P{a | IP,PΘ
(a) = s}.

Fluctuation Relation: Q(−s) ̸= 0 iff Q(s) ̸= 0 and in this case

Q(−s)

Q(s)
= e−s.

Fundamental universal relation that implies and refines the sig-
nature S(P, PΘ) ≥ 0 since, with S = {s |Q(s) > 0},

S(P, PΘ) =
∑
s∈S

sQ(s) =
∑

s>0,s∈S
s(Q(s)−Q(−s))

=
∑

s>0,s∈S
sQ(s)(1− e−s) ≥ 0.

32



Proof of the Fluctuation Relation. Set

e(α) =
∑
a

e−αIP,PΘ
(a)

P (a)

e(α) =
∑
a
[PΘ(a)]α[P (a)]1−α =

∑
a
[PΘ(Θ(a))]α[P (Θ(a))]1−α

=
∑
a
[PΘ(a)]1−α[P (a)]α = e(1− α).

Hence ∑
s∈S

e−αsQ(s) =
∑
s∈S

e−(1−α)sQ(s),

It follows that for all α ∈ C,∑
s∈S

e−αs(Q(s)− esQ(−s))

and so

Q(s) = esQ(−s).
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Back to one-sided shift (Ω, φ), ergodic P ∼ (PN)N≥1.

Reversal ΘN : AN → AN ,

ΘN(x1x2 · · ·xN) = xNxN−1 · · ·x1.

PΘN
= PN ◦ΘN ,

PΘN
(x1 · · ·xN) = PN(xNxN−1 · · ·x1).

Fluctuation Relation holds for pairs (PN , PΘN
)!

There exists unique ergodic source P̂ on (Ω, φ) such that

P̂N = PΘN
.

P̂ is the reversal of P .
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The entropy production observables are (x = x1x2 · · · ∈ Ω)

σN(x) = σN(x1x2 · · ·xN) = IPN ,PΘN
(x1, · · · , xN)

= log
PN(x1x2 · · ·xN)

PN(xNxN−1 · · ·x1)
.

Note that ∫
Ω
σNdP = S(PN , PΘN

).

Under very mild regularity assumptions on P (subadditivity de-
coupling, in addition to ergodicity), for P -a.e. x,

lim
N→∞

1

N
σN(x) = lim

N→∞
1

N
S(PN , PΘN

) =: ep

This limit is the entropy production of (Ω, φ, P ), the measure
of its irreversibility. The limit is automatically ≥ 0 (the Second
Law).
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Stein Lemma and hypothesis testing of arrow of time.

Hypothesis testing between PN and PΘN
. Stein error exponent

sN(ϵ) = min{PN(TN) |TN ⊆ AN , PΘN
(T c

N) < ϵ}

Stein Lemma connects to the entropy production:

lim
N→∞

1

N
log sN(ϵ) = − lim

N→∞
1

N
S(PN , PΘN

)

= −ep ≤ 0︸ ︷︷ ︸
Second Law

.

Entropy production/the Second Law quantifies distinction/separation
between the past and future.
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Fluctuation Relations (tautological for finite N ). They lead to the
fine form of the Second Law.

Entropy production LLN

lim
N→∞

1

N
σN(x) = ep P − a.s.

Fine form concerns fluctuations in this convergence and validity
of the Large Deviation Principle

P{σN(x) ∼ s} ∼ e−NI(s)

where I is the rate function (non-negative, convex, vanishing
only at ep).

The real Fluctuation Relation follows from finite N relations and
is

I(−s) = I(s) + s︸ ︷︷ ︸
Fine form the Second Law
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EXAMPLE: MARKOV SOURCE

Stoshastic matrix M = [M(a, b)](a,b)∈A×A. M(a, b) > 0.

p = (p(a))a∈A the unique invariant probability vector,
pM = p, p(a) > 0.

Induced Markov chain source: unique P on (Ω, φ) with marginals

PN(x1x2 · · ·xN) = p(x1)M(x1x2)M(x2, x3) · · ·M(xN−1xN).

Reversal P̂ : also Markov chain induced by stochastic matrix

M̂(a, b) =
p(b)

p(a)
M(b, a).

Same invariant vector p. P and P̂ are ergodic.
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σN(x) = log
p(x1)

p(xN)
+

N−1∑
j=1

log
M(xj, xj+1)

M(xj+1, xj)
.

Ergodic theorem:

ep = lim
N→∞

1

N
σN(x) =

∑
(a,b)

p(a)M(a, b) log
M(a, b)

M(b, a)
.

Very intutive formula!

Ra(b) = M(a, b), R̂a(b) = M̂(a, b).

Rows of M and M̂ , Ra, R̂a ∈ P(A).

ep =
∑

a∈P(A)

p(a)S(Ra, R̂a).

39



This formula should be compared with the one for the specific
entropy of the Markov process (first computed by Shannon)

s(P ) = lim
N→∞

S(PN)

N
= −

∑
(a,b)

p(a)M(a, b) logM(a, b)

=
∑

a∈P(A)

p(a)S(Ra).

Note that ep ≥ 0 and ep = 0 iff Ra = R̂a for all a.

ep = 0 iff p(a)M(a, b) = p(b)M(b, a)︸ ︷︷ ︸
Detailed Balance Condition

Far reaching generalizations, technical state of the art results:
Cuneo N., VJ., Pillet C-A, Shirikyan A.: Large deviations and
fluctuation theorem for selectively decoupled measures on shift
spaces, Rev. Math. Phys. 31 (2019)
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Fine form = standard LDP for Markov chains.
r(α) = spectral radius of the matrix [M(a, b)1−αM̂(a, b)α],

e(α) = log r(α).

Symmetry

e(α) = e(1− α).

LDP for σN holds with the rate function

I(s) = sup
α∈R

(αs− e(−α)).

I(−s) = I(s) + s.

e(α) is linked to other (finer) error exponents (Chernoff, Hoeffd-
ing). That discussion involves Renyi’s relative entropy.
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Very general theory! Part of the theory of dynamical systems. LLN for σN

gives the Second Law, LDP its fine form. Difficult mathematical problems.

What about physics?
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OPEN SYSTEMS

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
S

R

1

R

2

V

2

V

1

Basic paradigm of non-equilibrium statistical mechanics. The reservoirs are
in thermal equilibrium at inverse temperatures β1, β2. The temperature dif-
ferential induces energy (heat) transfer from the hotter to the colder reservoir.
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Hamiltonian setting of classical mechanics! The reservoirs are
infinitely extended (to sustain constant energy fluxes). S is finite
dimensional Hamiltonian system.

The formalism applies, and the Stein error exponent (hypothesis
testing of the arrow of time) is linked to the thermodynamics by
the basic relation

ep = β1Φ1 + β2Φ2,

where Φ1, Φ2, are heat fluxes (Φ1+Φ2 = 0) out of reservoirs
R1, R2.

ep ≥ 0 heat flows from hot to cold.

ep > 0 there is heat flowing from hot to cold!

Rigorous results in Hamiltonian setting are scarce and techni-
cally difficult.
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For additional information and references see

J.V., Pillet C-A., Shirikyan A.: Entropic fluctuations in thermally
driven harmonic networks, J. Stat. Phys., 166 (2017), 926-1015

and forthcoming monographs:

1. Cuneo N., J.V.., Pillet C-A., Shirikyan A.: What is a Fluctua-
tion Theorem? Springer.

2. Cuneo N., J.V., Nersesyan V., Pillet C-A., Shirikyan A.: Math-
ematical Theory of the Fluctuation Theorem. CRM monograph
series.
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