Information theory, entropy (and statistical mechanics)

Vojkan Jaksic **McGill University**

PART II: RELATIVE ENTROPY

1

SETTING

 $\mathcal{A} = \{a_1, \cdots, a_l\}$ finite alphabet (often $\mathcal{A} = \{0, 1\}^N$).

 $P(A)$ –the set of all probability measures on A.

The entropy of $P \in \mathcal{P}(\mathcal{A})$ is

$$
S(P) = \sum -P(a) \log P(a).
$$

This lecture is dedicated to relative entropy which involves pairs $(P,Q) \in \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A}).$

RELATIVE ENTROPY

$$
S(P,Q) = \sum_{a \in \mathcal{A}} P(a) \log \frac{P(a)}{Q(a)}
$$

 $0/0 = 0$. Kullback-Leibler divergence (1951).

If
$$
Q = P_{\text{ch}}
$$
, $P_{\text{ch}}(a) = 1/|\mathcal{A}|$,
\n $S(P, P_{\text{ch}}) = S(P_{\text{ch}}) - S(P) = \log |\mathcal{A}| - S(P) \ge 0$
\nwith equality iff $P = P_{\text{ch}}$.

Relative entropy = "information distance". It is not a metric. $(P,Q) \mapsto S(P,Q)$ is not symmetric and the triangle inequality fails.

BASIC PROPERTIES

(1) $S(P,Q) \ge 0$ with equality iff $P = Q$.

(2) Pinker inequality:

$$
S(P,Q) \geq \frac{1}{2} \left(\sum |P(a) - Q(a)| \right)^2
$$

with equality iff $P = Q$.

(3) The map $(P,Q) \mapsto S(P,Q)$ is jointly convex:

 $S(\lambda P_1+(1-\lambda)P_2, \lambda Q_1+(1-\lambda)Q_2) \leq \lambda S(P_1, Q_1)+(1-\lambda)S(P_2, Q_2).$

(4) For further properties and axiomatic characterizations see the Lecture Notes.

STOCHASTIC MONOTONICITY

 $\mathcal{A}_1, \mathcal{A}_2$ two finite alphabets.

 $M = [M(a, b)]_{(a, b) \in A \times B}$ stochastic matrix: $M(a, b) \ge 0$, \sum b $M(a, b) = 1.$

 $M(a, b)$ = transition probability $a \rightarrow b$.

Induced map $\mathbb{M} : \mathcal{P}(\mathcal{A}_1) \to \mathcal{P}(\mathcal{A}_2)$,

$$
\mathbb{M}(P)(b) = \sum_{a \in \mathcal{A}_1} P(a)M(a,b).
$$

Stochastic montotonicity

 $S(M(P), M(Q)) \leq S(P,Q).$

5

FIRST APPLICATION: SHANNON THEOREM

 ${0, 1}^*$ = the set of all finite length words with letters from ${0, 1}$.

Code: one-one map

$$
C: \mathcal{A} \to \{0,1\}^*.
$$

 $C(a)$ codeword, $C(\mathcal{A}) = \{C(a)\}\$ the codebook.

If $P \in \mathcal{P}(\mathcal{A})$ is the source statistics, the expected code length is

$$
\langle C \rangle_P = \sum_{a \in F} \ell(C(a)) P(a).
$$

The goal is to minimize $\langle C \rangle_P$.

Prefix-free coding.

A word $u \in \{0,1\}^*$ is a prefix of a word $w \in \{0,1\}^*$ if $w = uv$ for some $u \in \{0,1\}^*$. A set $W \subset \{0,1\}^*$ is called prefix-free if no element of W is a prefix of some other element of W .

Kraft-McMillan inequality: If $W = \{w_1, \dots, w_n\}$ is prefix-free, then

$$
\sum_{j=1}^n 2^{-\ell(w_j)} \leq 1.
$$

The converse also holds: if $1 \leq l_1 \leq \cdots \leq l_n$ is a sequence of integers satisfying

$$
\sum_{j=1}^n 2^{-l_j} \le 1,
$$

then there exists a prefix-free set $W = \{w_1, \cdots, w_n\}$ in $\{0,1\}^*$ such that $\ell(w_j) = l_j$.

A code C is called prefix-free if its codebook $C(\mathcal{A})$ is a prefix free subset of ${0, 1}^*$.

To each $P \in \mathcal{P}(\mathcal{A})$ we can associate a prefix-free code by taking

$$
l(a) = -\lceil \log_2 P(a) \rceil.
$$

Then $l(a) \geq 1$ and

$$
\sum_{a\in\mathcal{A}}2^{-l(a)}\leq \sum_{a\in\mathcal{A}}P(a)=1,
$$

and so there exists prefix-free code C such that

 $\ell(C(a)) = -\lceil \log_2 P(a) \rceil$.

A code with these properties is not unique and any such code is called a *Shannon's code* for P. Note that for any Shannon code

 $\langle C \rangle_P \leq S(P) + 1.$

A basic result of the prefix-free coding is:

The expected length of any prefix-free code $C : A \mapsto \{0, 1\}^*$ satisfies

 $\langle C \rangle_P > S(P)$.

The basic asymptotic result discussed in the first lecture is an easy consequence of these results and asymptotic irrelevance of the prefix-free assumption. Quick reminder.

A code sequence $(C_N)_{N>1}$ is the collection of one-one maps $C_N:\mathcal{A}^N\rightarrow \{\mathsf{0},\mathsf{1}\}^*.$

 (P_N) sequence of marginals of an ergodic P on one-sided shift.

$$
\langle C_N \rangle_{P_N} = \sum_{x_1^N \in \mathcal{A}^N} \ell(C_N(x_1^N)) P_N(x_1^N).
$$

Theorem.

$$
\liminf_{N \to \infty} \frac{\langle C_N \rangle_{P_N}}{N} \ge s(P)
$$

and there are **optimal codes** for which

$$
\lim_{N \to \infty} \frac{\langle C_N \rangle_{P_N}}{N} = s(P)
$$

Proof: Apply previous discussion to A^N instead of A and then use Elias construction (transforming a code to prefix-free one without affecting the asymptotic).

Proof of the relation $\langle C \rangle_P \geq S(P)$.

We introduce the Kraft-MacMillan pressure

$$
P_{KM} = \log_2\left(\sum_{a \in \mathcal{A}} 2^{-\ell(C(a))}\right) \leq 0,
$$

and the Kraft-McMillan probability distribution

$$
P_{\mathsf{KM}}(a) = \frac{2^{-\ell(C(a))}}{\sum_{b \in \mathcal{A}} 2^{-\ell(C(b))}}.
$$

Then (with logarithms in the base 2),

$$
S(P, P_{\mathsf{KM}}) = \langle C \rangle_P - S(P) + P_{\mathsf{KM}},
$$

which can be written as

$$
\langle C \rangle_P - S(P) = S(P, P_{\mathsf{KM}}) - P_{\mathsf{KM}}.
$$

Hence

$$
\langle C \rangle_P \geq S(P)
$$

follows from the sign of the relative entropy and the Kraft-McMillan inequality.

The identity gives much more and indicates the mechanism that leads to saturation of the Shannon bound in the asymptotic settings.

More preciaely, the Shannon bound is saturated,

$$
\lim_{N \to \infty} \frac{\langle C_N \rangle_{P_N}}{N} = s(P),
$$

iff

$$
\lim_{N \to \infty} \frac{1}{N} S(P_N, P_{\mathsf{KM},N}) = 0
$$

and

$$
\lim_{N \to \infty} \frac{1}{N} P_{KM,N} = 0.
$$

Particularly interesting if the code is universal!

SECOND APPLICATION: GIBBS VARIATIONAL PRINCIPLE

 $A=$ set of configurations of a physical system under consideration.

Example: Gas of molecules on lattice $\{1, \cdots, N\}$.

$$
\mathcal{A} = \{(\omega_1, \cdots, \omega_N) \, | \, \omega_j \in \{0, 1\}\}
$$

Molecule is present/absent at lattice site j corresponds to $\omega_j =$ $1/0$. Configurations: words of length N.

Hamiltonian (energy) map $H : \mathcal{A} \to \mathbb{R}$. $H(a)$ = energy of the configuration a.

Physical states = elements of $P(A)$.

$$
\langle H \rangle_P = \sum_a H(a) P(a)
$$

the expected value of energy in a state P .

A state of thermal equilibrium at inverse temperature β is described by the Gibbs Cannonical Ensemble

$$
P_{\beta}(a) = e^{-\beta H(a)} / Z(\beta)
$$

$$
Z(\beta) = \sum_{b \in \mathcal{A}} e^{-\beta H(b)}.
$$

Pressure $P(\beta) = \log Z(\beta)$.

Gibbs Variational Principle:

$$
P(\beta) = \max_{P \in \mathcal{P}(\mathcal{A})} (S(P) - \beta \langle H \rangle_P)
$$

with unique maximizer $P = P_{\beta}$.

Starting point of equilibrium statistical mechanics.

Proof. :

$$
S(P, P_{\beta}) = \beta \langle H \rangle_P - S(P) + P(\beta).
$$

The result follows from $S(P, P_\beta) \geq 0$ which gives

$$
\mathsf{P}(\beta) \geq S(P) - \beta \langle H \rangle_P
$$

with equality iff $P = P_{\beta}$.

PARALLELS AND ORTHOGONALITY

Information theory (IT): the code length map $a \mapsto \ell(C(a))$.

Statistical mechanics (SM): Hamiltonian map $a \mapsto H(a)$.

In both cases one considers the expectation values $\langle C \rangle_P$ and $\langle H \rangle_{P^+}$

Kraft-McMillan probability distribution parallels Gibbs Canonical Ensemble. Same for the respective pressures.

$$
P_{KM}(a) = \frac{2^{-\ell(C(a))}}{\sum_{b \in \mathcal{A}} 2^{-\ell(C(b))}}
$$

$$
P_{\beta}(a) = \frac{e^{-\beta H(a)}}{\sum_{b \in \mathcal{A}} e^{-\beta H(b)}}.
$$

The starting points of both theories (Shannon theorem and the Gibbs variational principle) follow from the parallel relative entropy balance equations

$$
S(P, P_{KM}) = \langle C \rangle_P - S(P) + P_{KM},
$$

$$
S(P, P_{\beta}) = \beta \langle H \rangle_P - S(P) + P(\beta).
$$

Now to orthogonality:

In IT P is given, it is the statistics of the source. In SM one searches for P describing physical state of thermal equilibrium.

In SM Hamiltonian H is given. In IT one searches for codes that minimize the cost function $\langle C \rangle_P$.

SM comes with conservation of energy and one looks for thermal states such that

$$
\langle H \rangle_{P_\beta} = e.
$$

This defines $e \mapsto \beta(e)$ and the Gibbs Variational Principle gives that $P_{\beta(e)}$ is the unique maximizer or

 $\{S(P) | \langle H \rangle_P = e\}.$

18

Setting

$$
s(e) = S(P_{\beta(e)}), \qquad p(e) = P(\beta(e))
$$

one arrives at the basic thermodynamical equations

$$
s(e) = e\beta(e) + p(e), \qquad \frac{\mathrm{d}s(e)}{\mathrm{d}e} = \beta(e).
$$

In IT one minimizes the code cost while it is the pressure that is conserved through the bound

$$
P_{KM} = \log_2 \left(\sum_{a \in \mathcal{A}} 2^{-\ell(C(a))} \right) \leq 0,
$$

which is asymptotically saturated for optimal codes achieving Shannon's bound.

Universal codes lead to universal Hamiltonians with completely broken locality structure.

These observations lead to a particular research program partly sketched in the Toulouse Winter 2024 course. The further links with Boltzmann entropy and Sanov's theorem (Large Deviation Principle) are also discussed there.

THIRD APPLICATION: HYPOTHESIS TESTING AND STEIN LEMMA

We know that the underlying probabilistic experiment is with probability $1/2$ described by P and with probability $1/2$ by Q.

Hypothesis I: Q is correct. Hypothesis II: P is correct.

By performing an experiment we wish to decide with minimal error probability which Hypothesis is correct.

A *test* is $T \subset A$. If the outcome is in T, we chose Hyp II. If the outcome is not in T , we choose Hyp I.

Error probabilities are $Q(T)$ (type-I error) and $P(T^c)$ (type-II error).

Two coins

22

Coin 1. P (Head) = P (Tail) = 1/2.

Coin 2. $Q(\text{Head}) = 2/3$, $Q(\text{Tail}) = 1/3$.

Test $T = \{Head\}$. Type-I error = 1/3, Type-II error = 1/2.

Test $T = \{\text{Tail}\}\.$ Type-I error =2/3, Type-II error=1/2.

Type-I error is minimized for $T =$ Head. Completely intuitive.

Back to the general setting.

For $\epsilon \in (0,1)$, the Stein error exponent is

$$
s(\epsilon) = \min\{Q(T) | P(T^c) < \epsilon\}.
$$

The type-I error is minimized by allowing ϵ -window in the type-II error.

The errors and error exponents get better if the experiment is repeated N times. The outcomes are in $A^N = A \times \cdots \times A$, and P, Q are replaced by $P_N = P \times \cdots \times P$ and Q_N . The Nth Stein error exponent is

$$
s_N(\epsilon) = \min\{Q_N(T_N) \,|\, T_N \subseteq \mathcal{A}^N,\, P_N(T_N^c) < \epsilon\}
$$

Stein Lemma:

$$
\lim_{N\to\infty}\frac{1}{N}\log s_N(\epsilon)=-S(P,Q)
$$

Symbolically,

$$
s_N(\epsilon) \sim e^{-NS(P,Q)}
$$
.

Basic (and very general result) + novel perspective on the first Shannon theorem (source coding).

General setting: $P \sim (P_N)$, $Q \sim (Q_N)$ two ergodic sources on (Ω, φ) such that the specific relative entropy

$$
s(P,Q) = \lim_{N \to \infty} \frac{1}{N} S(P_N, Q_N)
$$

exists.

Under very general conditions the Stein Lemma holds:

$$
\lim_{N \to \infty} \frac{1}{N} \log s_N(\epsilon) = -s(P, Q).
$$

BACK TO SOURCE CODING

 $P \sim (P_N)$ ergodic source, $0 < \epsilon < 1$ "allowed coding error".

Coding pair (C_N, D_N) . Coder $C_N : \mathcal{A}^N \to \{0,1\}^M$. Decoder $D_N: \{0,1\}^M \to \mathcal{A}^N$. Compression coefficient = M/N .

The error probability of the coding pair (C_N, D_N) is

$$
P_N\left\{x_1^N \in \mathcal{A}^N \,|\, D_N \circ C_N(x_1^N) \neq x_1^N\right\}.
$$

If this probability is $<\epsilon$, the pair (N, M) is called ϵ -good.

For given N, let $M(N)$ be smallest number such that the pair $(N, M(N))$ is ϵ -good.

 $M(N)/N$ is the **best possible compression** subject to the allowed ϵ -error probability.

The optimal $M(N)$ is

$$
M(N) = \min\{\lfloor \log_2 |T_N|\rfloor \mid T_N \subseteq \mathcal{A}^N, P_N(T_N^c) < \epsilon\}.
$$

Taking Q to be the product of (uniform) measures P_{ch} on A,

$$
Q(T_N) = |T_N|/|A|^N,
$$

\n
$$
\lim_{N \to \infty} \frac{M(N)}{N} = \log_2 |A| + \lim_{N \to \infty} \frac{1}{N} s_N(\epsilon)
$$

\n
$$
= \log_2 |A| - s(P, P_{\text{ch}}) = s(P).
$$

Stein Lemma can be viewed as the generalization of the Shannon source coding with completely different interpretation.

Source coding = hypothesis testing between $Q = \times P_{\text{ch}}$ (the source of maximal specific entropy) and P.

Is statistical mechanics interpretation of Stein Lemma possible?

Yes, and it is linked with interpretation of a very important discoveries (early 1990's) in non-equilibrium statistical physics dealing with entropy production, second law of thermodynamics, and entropic fluctuation relations.

Evans-Cohen-Morriss, Evans-Searles, Gallavotti-Cohen, Lebowitz-Spohn...

FLUCTUATION RELATIONS AND ARROW OF TIME

Alphabet A is equipped with involution Θ : $\mathcal{A} \rightarrow \mathcal{A}$. To be interpreted as time-reversal.

To $P \in \mathcal{P}(A)$ one associates P_{Θ} by $P_{\Theta}(a) = P(\Theta(a))$.

Relative entropy (relative information) function

$$
I_{P,P_{\Theta}}(a) = \log \frac{P(a)}{P_{\Theta}(a)}.
$$

$$
\langle I_{P,P_{\Theta}} \rangle_P = \sum_a I_{P,P_{\Theta}}(a)P(a) = S(P,P_{\Theta}).
$$

We denote by Q the probability distribution of the random variable $I_{P,P_{\bigTheta}}$ wrt $P,$

$$
Q(s) = P\{a \,|\, I_{P,P_{\Theta}}(a) = s\}.
$$

Fluctuation Relation: $Q(-s) \neq 0$ iff $Q(s) \neq 0$ and in this case

$$
\frac{Q(-s)}{Q(s)} = e^{-s}.
$$

Fundamental universal relation that implies and refines the signature $S(P, P_{\Theta}) \ge 0$ since, with $S = \{s | Q(s) > 0\},\$

$$
S(P, P_{\Theta}) = \sum_{s \in S} sQ(s) = \sum_{s > 0, s \in S} s(Q(s) - Q(-s))
$$

=
$$
\sum_{s > 0, s \in S} sQ(s)(1 - e^{-s}) \ge 0.
$$

Proof of the Fluctuation Relation. Set

$$
e(\alpha) = \sum_{a} e^{-\alpha I_{P,P_{\Theta}}(a)} P(a)
$$

$$
e(\alpha) = \sum_{a} [P_{\Theta}(a)]^{\alpha} [P(a)]^{1-\alpha} = \sum_{a} [P_{\Theta}(\Theta(a))]^{\alpha} [P(\Theta(a))]^{1-\alpha}
$$

$$
= \sum_{a} [P_{\Theta}(a)]^{1-\alpha} [P(a)]^{\alpha} = e(1-\alpha).
$$

Hence

$$
\sum_{s \in \mathcal{S}} e^{-\alpha s} Q(s) = \sum_{s \in \mathcal{S}} e^{-(1-\alpha)s} Q(s),
$$

It follows that for all $\alpha \in \mathbb{C}$,

$$
\sum_{s\in\mathcal{S}}e^{-\alpha s}(Q(s)-e^{s}Q(-s))
$$

and so

$$
Q(s) = e^s Q(-s).
$$

33

Back to one-sided shift (Ω, φ) , ergodic $P \sim (P_N)_{N>1}$.

Reversal $\Theta_N: \mathcal{A}^N \to \mathcal{A}^N,$

$$
\Theta_N(x_1x_2\cdots x_N) = x_Nx_{N-1}\cdots x_1.
$$

$$
P_{\Theta_N} = P_N \circ \Theta_N,
$$

$$
P_{\Theta_N}(x_1\cdots x_N)=P_N(x_Nx_{N-1}\cdots x_1).
$$

Fluctuation Relation holds for pairs $(P_N, P_{\Theta_N})!$

There exists unique ergodic source \widehat{P} on (Ω, φ) such that

$$
\widehat{P}_N = P_{\Theta_N}.
$$

 \widehat{P} is *the reversal* of P.

The entropy production observables are $(x = x_1x_2 \cdots \in \Omega)$ $\sigma_N(x) = \sigma_N(x_1 x_2 \cdots x_N) = I_{P_N, P_{\Theta_N}}(x_1, \cdots, x_N)$ $=$ log $P_N(x_1x_2\cdots x_N)$ $P_N(x_Nx_{N-1}\cdots x_1)$.

Note that

$$
\int_{\Omega} \sigma_N \mathsf{d} P = S(P_N, P_{\Theta_N}).
$$

Under very mild regularity assumptions on P (subadditivity decoupling, in addition to ergodicity), for P -a.e. x ,

$$
\lim_{N \to \infty} \frac{1}{N} \sigma_N(x) = \lim_{N \to \infty} \frac{1}{N} S(P_N, P_{\Theta_N}) =: \text{ep}
$$

This limit is the entropy production of (Ω, φ, P) , the measure of its irreversibility. The limit is automatically ≥ 0 (the Second Law).

Stein Lemma and hypothesis testing of arrow of time.

Hypothesis testing between P_N and $P_{\bigTheta_N}.$ Stein error exponent

$$
s_N(\epsilon) = \min\{P_N(T_N) | T_N \subseteq \mathcal{A}^N, P_{\Theta_N}(T_N^c) < \epsilon\}
$$

Stein Lemma connects to the entropy production:

$$
\lim_{N \to \infty} \frac{1}{N} \log s_N(\epsilon) = -\lim_{N \to \infty} \frac{1}{N} S(P_N, P_{\Theta_N})
$$

$$
= -\exp \leq 0
$$
Second Law

Entropy production/the Second Law quantifies distinction/separation between the past and future.

Fluctuation Relations (tautological for finite N). They lead to the fine form of the Second Law.

Entropy production LLN

$$
\lim_{N \to \infty} \frac{1}{N} \sigma_N(x) = \text{ep} \qquad P - \text{a.s.}
$$

Fine form concerns fluctuations in this convergence and validity of the Large Deviation Principle

$$
P\{\sigma_N(x) \sim s\} \sim e^{-NI(s)}
$$

where I is the rate function (non-negative, convex, vanishing only at ep).

The real Fluctuation Relation follows from finite N relations and is

> $I(-s) = I(s) + s$ Fine form the Second Law

> > 37

EXAMPLE: MARKOV SOURCE

Stoshastic matrix $M = [M(a, b)]_{(a, b) \in A \times A}$. $M(a, b) > 0$.

 $\mathbf{p} = (p(a))_{a \in \mathcal{A}}$ the unique invariant probability vector, $pM = p, p(a) > 0.$

Induced Markov chain source: unique P on (Ω, φ) with marginals $P_N(x_1x_2 \cdots x_N) = p(x_1)M(x_1x_2)M(x_2, x_3) \cdots M(x_{N-1}x_N).$ Reversal \hat{P} : also Markov chain induced by stochastic matrix

$$
\widehat{M}(a,b) = \frac{p(b)}{p(a)}M(b,a).
$$

Same invariant vector p. P and \widehat{P} are ergodic.

$$
\sigma_N(x) = \log \frac{p(x_1)}{p(x_N)} + \sum_{j=1}^{N-1} \log \frac{M(x_j, x_{j+1})}{M(x_{j+1}, x_j)}.
$$

Ergodic theorem:

$$
\text{ep} = \lim_{N \to \infty} \frac{1}{N} \sigma_N(x) = \sum_{(a,b)} p(a) M(a,b) \log \frac{M(a,b)}{M(b,a)}.
$$

Very intutive formula!

 $R_a(b) = M(a, b), R_a(b) = M(a, b).$ Rows of M and \tilde{M} , R_a , $\tilde{R}_a \in \mathcal{P}(\mathcal{A})$.

$$
ep = \sum_{a \in \mathcal{P}(\mathcal{A})} p(a) S(R_a, \hat{R}_a).
$$

This formula should be compared with the one for the specific entropy of the Markov process (first computed by Shannon)

$$
s(P) = \lim_{N \to \infty} \frac{S(P_N)}{N} = -\sum_{(a,b)} p(a)M(a,b) \log M(a,b)
$$

=
$$
\sum_{a \in P(A)} p(a)S(R_a).
$$

Note that $ep \geq 0$ and $ep = 0$ iff $Ra = R_a$ for all a .

$$
ep = 0 \t\t \text{iff} \t\t \underline{p(a)M(a,b) = p(b)M(b,a)}
$$

 Detailed Balance Condition

Far reaching generalizations, technical state of the art results: Cuneo N., VJ., Pillet C-A, Shirikyan A.: Large deviations and fluctuation theorem for selectively decoupled measures on shift spaces, Rev. Math. Phys. 31 (2019)

Fine form = standard LDP for Markov chains. $r(\alpha)$ = spectral radius of the matrix $[M(a,b)^{1-\alpha}\widehat{M}(a,b)^{\alpha}],$

$$
e(\alpha) = \log r(\alpha).
$$

Symmetry

$$
e(\alpha) = e(1-\alpha).
$$

LDP for σ_N holds with the rate function

$$
I(s) = \sup_{\alpha \in \mathbb{R}} (\alpha s - e(-\alpha)).
$$

$$
I(-s) = I(s) + s.
$$

 $e(\alpha)$ is linked to other (finer) error exponents (Chernoff, Hoeffding). That discussion involves Renyi's relative entropy.

Very general theory! Part of the theory of dynamical systems. LLN for σ_N gives the Second Law, LDP its fine form. Difficult mathematical problems. What about physics?

OPEN SYSTEMS

Basic paradigm of non-equilibrium statistical mechanics. The reservoirs are in thermal equilibrium at inverse temperatures β_1, β_2 . The temperature differential induces energy (heat) transfer from the hotter to the colder reservoir. Hamiltonian setting of classical mechanics! The reservoirs are infinitely extended (to sustain constant energy fluxes). S is finite dimensional Hamiltonian system.

The formalism applies, and the Stein error exponent (hypothesis testing of the arrow of time) is linked to the thermodynamics by the basic relation

$$
ep = \beta_1 \Phi_1 + \beta_2 \Phi_2,
$$

where Φ_1 , Φ_2 , are heat fluxes ($\Phi_1 + \Phi_2 = 0$) out of reservoirs $\mathcal{R}_1, \mathcal{R}_2$.

 $ep > 0$ heat flows from hot to cold.

 $ep > 0$ there is heat flowing from hot to cold!

Rigorous results in Hamiltonian setting are scarce and technically difficult.

For additional information and references see

J.V., Pillet C-A., Shirikyan A.: Entropic fluctuations in thermally driven harmonic networks, J. Stat. Phys., 166 (2017), 926-1015

and forthcoming monographs:

1. Cuneo N., J.V.., Pillet C-A., Shirikyan A.: What is a Fluctuation Theorem? Springer.

2. Cuneo N., J.V., Nersesyan V., Pillet C-A., Shirikyan A.: Mathematical Theory of the Fluctuation Theorem. CRM monograph series.