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Introduction



History of Information Technology

Che Nobel Prize in Physics

www.wikipedia.org

www.wikipedia.org




Turing Machine

https://simple.wikipedia.org/

Extended Church-Turing Thesis [Bernstein-Vazirani]
"Any realistic model of computation can be efficiently simulated by (probabilistic) Turing Machine."



Hard Problems
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Variables and negations of variables
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The 15t Quantum Revolution

Solar Panel LASER Electron Microscope

https://wikipedia.org/



The 2" Quantum Revolution
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Basic Concepts of
Quantum Computing



Miniaturization of Electronics and Moore Law
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Moore’s Law: the number of transistor in an IC doubled every

2 years [GE Moore, Electronics, 8, 114-117, 1965]

*“There's Plenty of Room at the Bottom” (1959)
*“When we get to the very, very small world —say
circuits of seven atoms —we have a lot of new
things that would happen that represent
completely new opportunities for design.
*Atoms on a small scale behave like nothing on a
large scale, for they satisfy the laws of quantum

mechanics...” [Richard Feynman]




Classical vs Quantum Computers

e Classical Computers
o Computer that uses electrical voltage or current that flows into circuit and
logic gates.
o Itis governed by the Law of Classical Physics
e Quantum Computer
o Computers that works using the principle of Quantum Physics to perform
computation in a parallel fashion
o Employing the principle of superposition, entanglement, and coherence.

... iIn essence

Computing is a Physical Process



Unitary Transform as Quantum Computation
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Steps in Quantum Computing

PREPARATION

O Preparation of initial sate of a
quantum system at t=0

EVOLUTION

o Sequential evolution of the
system by unitary transforms

MEASUREMENT

0 The measurement make the
system collapse to classical
state.



. contd.

® In a Quantum Computer
o A quantum program is
/ executed by unitary
lrl'{)l> N transforms of a set of
P2) — e quantum states |y >. It can
U () be state “0”, state “1” or
: superposition of these states.
o Unitary transformis
|Vn) — — invertible, which means that
it can be uncomputed




Quantum Compute
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Qubit, Circuit, Gates,
and Algorithm

Algorithm



Qubit



What is qubit ?

® Smallest unit of information in quantum >_
computing.

® The state of wave function |y> of the
Schroedinger Equation. e

e Can be “0”/ON, “1”/OFF, or superposition

Of HO" and Hl"
e (Qubit Realization:
Nuclear Spin in the NMR
Superconducting guantum circuit (transmon)
Photon in a cavity
Energy of an atom: ground state, excited state
Photon Polarization ... etc

Energy (in units of hv0)

O O O OO0




... contd.

Follows linearity principle (from Schrodinger
Equation)
General form

ly>=a,|0>+ a [1>

where @ and a, are complex number,

representing probability amplitude
|a, | *: probability of state |0>
|a, |*: probability of state |1>

Normalization: |a |*+ |a |*=1

10)
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|\|’>
L™ T\ o+l
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N k’/r\, R g 9
0)+11) W >><T. P
V2
|1)

6 . B
ly) = cosEIO) + e“”sznill)

Representation of qubit as
A Bloch Sphere



Bit vs Qubit

e BIT (Classical)

O

Can be in two states:
either “0” and “1”

The states can be exactly
determined.
Measurement does not
alter the states.

Can be copied (cloned)

e QUBIT (Quantum)

O

O

O

Can be in state |0>, |1>,0r
linear combination of state
|0>and | 1>.

The states can be
determined with a
particular probability.
States changed after
measurement (collapse to
IIOH Or lll”)

Cannot be copied
(no-cloning theorem).



Advantage of qubits

® The capacity increased exponentially

o Increasing one qubit, the capacity is increased twice
o  Classical: the capability increased twice when 32 bits -> 64 bit
o Quantum: capability increased when 32 qubits -> 33 qubits

e *Operation is done to all qubit superposition, likes a parallel computer
o Classical: 64-bit processor can do operatign to 64-bit binary number at a time

© Quantum: 64-qubit processor works on 2 states of binary number at a
time, or

16.000.000.000.000.000.000 = 16 x 1018 states
=> (a few) hard problems solved more easily using quantum computer



Qubit Technology

Liquid-state NMR

NMR spin lattices

Linear ion-trap spectroscopy
Neutral-atom optical lattices
Cavity QED + atom

Linear optics

Nitrogen vacancies in diamond
Electrons in liquid He
Superconducting Josephson
junctions Current
charge qubits; flux qubits; phase =
gubits

Quantum Hall qubits

Coupled quantum dots

spin, charge, excitons

Spin spectroscopies, impurities in
Semiconductor

Superconducting loops

Google,
IBM,
Rigetti,
DWave

.trapped
1\ ions NQ

Verification?

Control & configurability

¢ neutral” " ®
atoms

>

Number of Particles

Microwaves

T
= o))
x\\ ‘\\-.// /

s e [
Electron
Trapped ions Silicon quantum dots Topological qubits
Honeywell, Intel Microsoft
lonQ Corporation,

HRL
DOI: 10.1126/science.354.6316.1090






Quantum Gates

A Quantum gate/quantum logic gate is a basic
guantum circuit operating on a qubit.

Basic building block of a quantum circuit, like a
conventional logic gate of digital circuits.

n_n
Can be expressed as a matrix U of 2 x2

dimension. U is a unitary matrix: U*U=l.

The number of output is equal to the number of
input.

Quantum gates are reversible.

In reality, quantum gates realized as sequence
of EM pulse at particular frequency, duration,
and sequence.
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Single Qubit Gates 10— U | Any state | v)

* Pauli-X gate
0 1 S L
0= 11), -0y  X=|p X
Dirac notation Matrix representation Circuit representation

T I B [ e B
I STl B O [ S St AT

® \Works like the “NOT” gate

10y — X —I1)




...Contd

Name Matrix Representation Circuit Representation
Pauli Y — Gate V= 0 —t —Y —
‘ i 0
o 1 0
Pauli Z — Gates: 8 -1 —{ 7
(1 0
0 efﬂ/4)
= Tt/8 I

7/8 (T) gate




Hadamard Gate

Dirac notation

1
10) - E(IO) +11))

1
Il)*E(IO)- 1)

(10)+ |1))/N2 — |0)
(10)— [1)/N2 — |1)

Unitary matrix Circuit representation
Lyl i

=gl A —{H -
vzl -1 H

ho classical equivalent!



CNOT Gate

e A Controlled-NOT gate

® Actto 2 qubits
o qubit control O, target qubit not change
o qubit control 1, target qubit inverted

Matrix representation

1 0 0 O
M 1 8 D
CNOT = 00 0 1
0O 01 0
® Like XOR of a classical gate

0 0
.—

L/

Circuit representation




Quantum VS Classical Gates

Operator Gate(s) Matrix
X y
grem— 1
Pauli-X (X) X —b- [s 4] aidl ‘_>_ b, 1]o0
Pauli-Y (Y) v} [ )
x: | iy | =
o Tz x — o 2] 2
Pauli-Z (Z) z | [ -3 AND gate 2= (x) AND (y) ol 1]o
. Y —i 1|/o0]o
Hadamard (H) ‘\“! \}3 [i _:] 1 1 1
[ s 1 0 x y z
Phase (S, P) [(, .] ot ] oo 1
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/8 (T) {7} [0 o] £ SERE
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1 0 0 o
Controlled Not o 1 0 0 x y |z
(CNOT, CX) b s e T a x 4B b
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Controlled Z (CZ)  a I [}I > 3 :Z]
1z o 0o 0 1
x y z
. oo 1
s 273 NOR gate z=(x) NOR (y) of1]o
SWAP X l o1 09 y 1{ofo
0 0 0 1 1 1 °
Toffoli * BEREEEE
(CCNOT, — ° © o1 06 0 o x
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Circuit

'F' Quantum Circuits

) | U



Bell-State

Generate 2-qubits
entangled-state

Also called as Bell state,
Employs a Hadamard and a
CNOT gates

Hadamard gate (CNOT gate

0} : H : l :
e
1%0) |41) |92)
N
H J\ $|()())+|11)
V2
L % /




Classical VS Quantum Circuits: Classical

e C(lassical Logic Gates %11

o Obey Classical Physics by 3] >t

o State in the form of bit o« =1 =1 SIDs ol
vectors, eg S
X=“011101" . oD

o Operation defined by . I
Boole Algebra G;—:D = i

o No restriction on N e el
copying and s =)
measuring the )
state/data S L

*;D" Carry




Classical VS Quantum Circuits:

A model of quantum
computing where the
computation process is
expressed as sequence of
guantum gates with
n-registers and connected
with wires.

The width of a quantum
circuit is constant, equal to
the number of qubits
involved.

Quantum

jo) — HHSH

J1) l HHS
J2) l
q0) I N
q1) — ® N




Classical VS Quantum Circuits

® Quantum Circuits
o Obey quantum mechanics
o State vector is superposition of
gubits with complex coefficient

2" -1

[¥)= 2 el s -]

O Operauun can ve uenned as
Linear Algebra on Hilbert Space
and can be represented as
unitary matrix with complex
elements
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Quantum Algorithm

e Some particular problem can be more efficiently solve by quantum
computing than the classical one (Turing Machine based)

e Examples: integer factorization (Shor), search in unstructured
database (Grover)

e Wide impacts on cryptography and security

e Why quantum computer is faster?
o Parallelism: using superposition of quantum states, algorithm execute in
parallel
o Hilbert Space dimension: exponentially growing
o Entanglement: different qubits can be entangled, giving non-classical
correlation.



Examples of Quantum Algorithms

Algorithms

Classical steps

quantum logic steps

Fourier transform

e.g.:

- Shor’s prime factorization
- discrete logarithm problem
- Deutsch Jozsa algorithm

Nlog(N)=n2"

N=2"

- n qubits
- N numbers

log*(N) =n"

- hidden information!

- Wave function collapse
prevents us from directly
accessing the information

Search Algorithms

N

Quantum Simulation

cN bits

kn qubits




Programming a Quantum Computer

e A few languages available to implement quantum computing
o QCL (Quantum Computation Langua(fe): syntax similar to C
o Qiskit: Python-based, SDK developed by IBM. Some components:
m  Qiskit Terra, Qiskit Aer, Ignis, Aqua
m  Qiskit Optimization, Finance, Machine Learning, Nature, Pulse, ... dst

e Tools used by researchers, not developer.

qureg x1[2]; // 2-qubit quantum register x1 from qiskit import QuantumCircuit
qureg x2[2]; // 2-qubit quantum register x2
H(x1); // Hadamard operation on x1 gc = QuantumCircuit(2, 2)
H(x2[1]); // Hadamard operation on the first qubit of the register x2

gc.h(@)

gc.cx(0e, 1)

qc.measure([0,1], [9,1])



Example: Qiskit

qloe]
ql[1]
ql2]

q[3]

QISKit: Quantum Information Science Kit

Open Source framework for quantum computing.

Provides tools for creating, manipulating quantum program, and run it on a (prototype)
guantum processors of IBM Quantum experience over Cloud-Based Access.

In [7): from giskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from giskit.tools.visualization import circuit drawer
import numpy as np

composer

w:

S
[x] ]

gr = QuantumRegister(2)

. cr = ClassicalRegister(2)
= gp = QuantumCircuit(gr,cr)

z
qp.rx( np.pi/2,qr(0])
gp.cx(qr(0],qr(1])

v v
0 1 gp.measure(qr,cr)

circuit_drawer(qp)

out([7]):

q0o : |0) < R(1.6) —l—/ﬂ—
In [1]: from giskit import *
. ' q0; : |0) H+ A
In [2]: qr = QuantumRegister(2)
cr = ClassicalRegister(2) COO . 0

In [3]: ¢ = QuantumCircuit(qr, cr) # ¢ = QuantumCircuit(2,2) C01 : 0



Flow of instructions in a Quantum Computer

Program
» Quantum computer
controller

Classical computer |
Results

Measurement Commands
results (gates)

Quantum register

Low density metal
Memory . 1 Interconnects
77K

(Cryo-CMOS) J L

Control Processor
(Josephson Junction Logic)

01K High Density
.o Superconducting
Control Wires
uantum Substrate
- B 20«

(Superconducting Qubit)

Submit a job Job Queue Translate Quantum Circuit Execute on
» e = Quantum Computer

to Microwave Pulses

'\
4

<
=
Measurement Results



End of Section
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Introduction

e What is annealing?
o Aterminology in metallurgy and material science
m A heat treatment process that changes the
physical (and sometimes also the chemical)
properties of a material to increase ductility and
reduce the hardness to make it more workable,
e The annealing process requires the material
above its recrystallization temperature for a
set amount of time before cooling.
m  Or: a technique involving heating and controlled
cooling of a material to alter its physical properties.

e Optimization by annealing
o  An optimization procedure/algorithm inspired by the

annealing process to get the best/ optimal points/ solution
of a problem.

https://en.wikipedia.org/wiki/Annealing_(materials_science) https://www.youtube.com/watch?v=rRJWuj6kauA



SAis a probabilistic technique for
approximating the global optimum of a

given function.
o  Specifically, it is a metaheuristic to
approximate global optimization in a large
search space for an optimization problem.

o Lets=s,

 For k= 0 through k,,, (exclusive):
o T« temperature( 1 - (k+1)/ky .y )
« Pick a random neighbour, s, ... < neighbour(s)
o If P(E(s), E(s,....), T) = random(0, 1):

6 Soe—y

new

new

o OQutput: the final state s

https://en.wikipedia.org/wiki/Simulated_annealing

Classical/Thermal/ Simulated Annealing (SA)

23 & NCD
Temperature
A

t t T T U » Time

The annealing schedule

https://www.intechopen.com/books/3003



[Source: Nature, Biamonte 2017]

- o L A 5 ART .
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T

Quantum Annealer

Source: D-Wave Systems



Annealing Schedule =

12 = Physical temperature |

(GHz)

IYQ.,\ (0,1) = (1 i é) I]kira (o) + iI‘]pot (o)

< 3

Energy

initial final

=.
C——————
Objective Function f(X)

Objective Function f(X)

—_—

| —
Objective Function f(X)

Variable X

Variable X

D. Ottaviani, "Introduction to Quantum Annealing: Formulating and Solve QUBO Problems," PPT, CINECA Quantum Computing Lab.



Study Case:

Finding Hadamard Matrices using Quantum
Annealer



Background

e Hadamard matrix (H-matrix)
Definition: an orthogonal binary {-1,1} matrix
Applications: orthogonal codes used in CDMA, ECC (Error

W\

Base Station E A
Code 1\\ CudeZ\ Cn;h

Correction Code) with maximal error correction capability, employed ol '7 'j ’7
which is transmitted & < L
in Mariner-9, experiment design [Hedayat, 1973] Sfrsnisted oy codes  Mablle Statons R gt oo st o v %
. ‘g . . . CDMA Communication System employs
Scientific/Math: H-matrix conjecture is a ~100 years old unsolved v Py

Walsh-Hadamard Orthogonal Code
problem o — ——
e Why finding a H-matrix is hard?
For an M-order matrix, there are
[27(M?)] ~ exp (M?) binary matrices
H-matrix conjecture predicts, there is a H-matrix for every M=4k, k
positive integer. How to find it?
Brute force, worst-case condition: one should check all binary
matrices, an O[exp(M?)] problem --> a hard problem.
Proposed Solution: USE A QUANTUM COMPUTER!

g &

Wl o~ ,
Mariner-9 employed Hadamard’s ECC

to protect Mars’s images sent to Earth



Construction

Sylvester’'s Method
H - (1), e Sylvester’'s Method: only for
11 2"-order H-matrices.
]’ e Other methods for order 4k: Paley,
Baumert-Hall, Williamson, ...
1 _11 M e But, not all order (4k) can be

1 -1 1 constructed by existing methods
i o Hasn't found nor proof to exists
(<2000): 668, 716, 892, 1132,
1244, 1388, 1436, 1676, 1772,
1916, 1948, and 1964.

H, —

Hy =

r 17
Pk ek ek i P

H. H.
_[ 2‘1 zkl]:H‘2®H2k—l,

Order of Sylvester H-matrices: 1, 2, 4, 8, 16, .... 2%, ...



Finding H-matrices by Using (Binary) Optimization
4 N

e Exploit orthogonality condition of H-matrices: 1 1
H'H =1
e Start with a binary matrix B, in general
1 -1
B™B = D; in general D # I \_ /

e Then, flip elements of B=[b,], such that D->1. ﬂntum/
e Let D=[d.], we define “error energy” E as the

sum of the absolute values of the : \

off-diagonal entries of D.
E = 2;dl
e Minimize E by flipping [bij]: 1<->-1

-



Evolution towards the “ground states” (E=0)




ObJeCt|Ve (Energy) FunCt|On e Too many terms to do by hand

e Needs automatic
MxM binary matrix B=[bij] e => Symbolic Computing

(T
b,,=>s,  se{-1,+1} Ey(s) — Ex(q) — E2(q) — Ex(s) -1 H3(5),

A Hpot

/ S0 SM SM(M—l) \
S1 SM+1  tc SM(M-1)+1 Cr (45955 Q3 0ij) = 6ij (3 + €95 — 24,9, — 2,41
q;q9; < qr T+ C/\(Qian7Qk;5i,j)
SM_1 SoM—_1 - Bz
(_ SMe1 S M-l

Formulation
Quantum Annealer

M?*(M — 1) (D-Wave)only takes 2-body
Ey(s) = Ey(s) = 2 + 2 Z 8i8jSmSn interactions terms
i<j<m<n<M?-1




Quantum Annealing

aw
S
3
>
|l
I
=
S

(driver Hamiltonian/
Transverse B-Field)

—
—

12 == Physical temperature |

0 0.2 0.4 0.6 0.8 1
t/T

Annealing Schedule



Experiments



A Brief on D-Wave 2000Q

e Number of qubits: 2,048
e Number of couplers: 6,016
e Qubits connection: Chimera

Client Libraries JSON/HTTPS
WAN/LAN Solver API (SAPI)
Web Ul HTTPS

N——

~—

Quantum Machine
Instructions

D-Wave QPU

Chimera Unit Cell: K, ,
(Complete Bipartite Graph)



Experiment-1: 2-order ( )

S1 S3
S0507 5252 2 S.S.+S.S
S.S.tS.S 61 273 . .
S S, Se S, | = 071 273 D= D is symmetric
S. S S. s S,S¢1S3S, - D= s s +5.5 => take upper-part
1 3 2 3 s s +5 S 15,1S;5S, onl
11 2373 2 y

Energy = Y (off-diagonal entries)?

=> E =(s,5,%s,5,)°=(1+2s,s5 5,5, +1) Er (s) = 2 + 250515253

< _ >

E; (s) = 28 + 6sg + 651 + 652 + 653 — 1254 — 1255 + 25051 + 45052 + 25053 — 85054 — 45055

+251S9 + 45153 — 45154 — 88185 + 25953 — 85254 — 45955 — 45354 — 85355 + 85455

G Ising Coefficients

R % 0.167 0.333 0.167 —0.667 —0.333
Hy(6) = 28+ 667 + 667 + 667 + 665 — 1265 — 1267 x  « 0167 0333 —0.333 —0.667
i 26—3 a-z % 26—2 6—2 I 2&2 a-z B 86-2 6-5 B 46-2 a-z g I* * * 0.167 —0.667 —0.333

091 092 093 094 095 * * * * —0.333 —0.667

AZAZ AZ AZ AZ AZ AZ AZ AZ AZ * * * * * 0.667

 QAZAZ  AAZAZ  AAZAZ  QAZAZ ~Z AZ
8656, — 405065 — 4656 — 86365 + 85,075 h = (0.5,0.5,0.5,0.5, — 1.0,1.0)



Experiment-1: 2-order H-matrix =20 (5200 ) + 2O (21004 31,0000

]

Initial Hamiltonian Final Hamiltonian
Hy(6) = 28+ 60% 4667 + 663 + 663 — 1267 — 1262
26267 + 26565 + 26363 — 86367 — 46567
26765 + 46765 — 46765 — 85567 + 26763

x10724
—A(s)
—B(s)
6 |\ —QCP (GHz) 1.391

AR A2 AR A2 AR A2 A~Z A2 AR A2
— 86567, — 46567 — 46565 — 86567 + 8635¢

< >

140

0.167 0.333 0.167 —0.667 —0.333

be

fx a5
* * 0.167 0.333 —0.333 —0.667 e 141 o Dl o6 &
Jo * * * 0.167 —0.667 —0.333 é °
* * * » —0.333 —0.667
* * * * * 0.667
* * * * * N
0
+ + ||+ -

h =(0.5,0.5,0.5,0.5, — 1.0, 1.0)

> -5
2
Q
& = = =
-10 /
45
0 5 10 15 20 2 30 e
Solution Id — +
600
ooe
= : T
gaoo
: -
. _ 8 20

Successful .. !




Experiment-2: Find 4-order H-matrix

H,(8) = 1,248 4 6662 + - - - — 44672, + 66267 + - - - + 862,67,
389-terms

Energy

100 200 300 400 S00 600 700 800 900
Solution Id

— — 4+ +)
+

i

20

Occurence

0 \ /
0 100 200 300 400 500 600 700 800 900

Solution Id

@ | ®) Ssolution found .. !



Experiment-3: finding 3-orthogonal 12-length vectors

Hy(6) =19, 872 + 40467 + - - - + 40467, + 46367 + - - - + 865,65,

72-variables with 7,765 terms => 1,766 qubits

St Bttt e el e B,
i
5

é:#h GEREREE .§ 0

o-*@aﬁ::iﬁéiﬁi@ﬁ . ;;;g? E;OZ- Vo = (+,_,+,_,_,+,+,_,+’+,_,_)T
e o no= ooty o)
g;.f ::%%ﬁéfﬁﬁ%ﬁ%ffﬁ%:l°:% f T I G S S S S e S S T
3 !&LE;%A&A:&““% g - Solution found .. !
g-'zi_hf§#%£$g%u% - 1,000 D-Wave answer

f* R i| TR s T > 635: wrong

e e

b b ol Lo LB R B e ..,f.. bl > 365: correct
() (b)



Experiment-4: missing 1 vector in H-12

Vo
U1
V2
v3
(2
Us
V6
v7
Ug
Vg

V10

Hy(6) = 756 + 26267 + -+ + 2

T TE I e e S i

b m e = e = = =
e
I e
= = = A e =
T o
E = s e
e
e
(EOETEE I e
(P

- d
Vll (1] [ ]

Solution Id

1000

Occurence
a
8
3

(b)
o T
Uil = (—7+a_7_7_7+)+7+a—7+7+7_)

Solution ... !

AL NL

AZ AZ
G057 + -+ — 28540,

27 variables, 379 terms > 50 qubits (after embedding)



Summary

e We introduced the concept of quantum annealing

e Study Case: Finding H-matrix problem using Quantum Computing
o Formulation of Hamiltonian/Energy Function
m Conversion into 2-body interactions
o Implementation on Quantum Annealer (D-Wave)
m  D-Wave 2000Q, max 2048 qubits
o Capable to only up-to 4-order
o Solving related QUBO problems
m FInding n-set of m-order orthogonal vectors (n<m)
m Finding n-missing vector of m-order H-matrix
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Ising Hamiltonian

e D-Wave solve a problem when it is expressed in Ising Hamiltonian

Hp = %,%; Jz]azoz + X;hiof  Sometimes, it is also called H

e The user translate his/her problem into H, then

he/she specifies J and h.into a quantum annealer
D-Wave).

e D-Wave provides driver/kinetic Hamiltonian H, . ,

which is a transfer (magnetic field) The annealli?]g
is performed as follows

HQA( ) (1—_) Hlun( )+ Hpot (0

T

Schedule (GHz)

pot
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Introduction

A hybrid classical-quantum algorithm

Find a minimum eigenvalue of an Hermitian matrix H: the ground state

o Ideally phase estimation algorithm: need a “deep” circuit, an issue for existing NISQ device
o VQE: need only shallow circuits

Problem: given H, find minimum eigenvalue 4_. with associated |y . >
VQE: provides an estimate 4, bounding : 4

)‘min < /\0 - <¢’(0)|Hl¢(9)>
e Where |y(0)> is eigenstate associated with 4
e How?

o  Apply parameterized circuit U(0) to starting state |y(0)>
o It will yield U(O)ly(0)>=|y(0)>

O  Change parameter 6 to minimized <y (0)H|y(0)>

https://github.com/Qiskit/textbook/blob/main/notebooks/ch-applications/vge-molecules.ipynb



Variational Method in Quantum Mechanics

Spectral theorem: eigenvalue of an hermitian matrix H=HT is real, i.e. A =A%
Moreover, H can be expressed as

H = 3% Xl hs) (i
The expectation of observable of H on a quantum state |y> is given by
(H), = (Y|H[p)
= (W (B Nila) (@) [9) - = By i (blos) (ileh)
= =N Xl (il) [

=> the expectation value of an observable on any state can be expressed as a linear combination
using the eigenvalues associated with H as the weights. The weights are non-negatives.

Amin < (H),, = (W|Hlp) = ZN X (w:]9)|* ... the variational method



The VQE

e Need ansatz to implement the variational form.
e VQE employs parameterized circuit with a fix form: the
variational form.

o lts action is represented by linear transform U(O)

o U(O) is applied to starting state |p>, such as the vacuum state
|0> or the Hartree Fock state and generates an output state
UO)lp>= |p(6)>

o lterative optimization over |@(0)> aims to yield an expectation
value

<@(O)|Hlw(O©)>=E =1

gs min



VQE: the algorithm

1.

Encode problem into a qubit Hamiltonian
(sum of Pauli operators and their (tensor)
products)

Choose/update an ansatz for state
preparation on the quantum computer and
build the quantum circuit

Measure the basis of the qubit Hamiltonian
to get expectation values for the states
Send the result to classical optimizer to
update gate/wave parameters

Repeat 2-4 until convergence

|'¥(0)) o E(0)
10y H A
10 HA f\}\,
(= o mA

) Classical

optimizer
T pia r\l/\/
0




Eigen-value calculation: Conventional vs VQE

e Basically, VQE is a method to calculate eigenvalue of a matrix H, which
represents the Hamiltonian of a quantum system.
e Conventional/Numerical Methods

O  Mature Techniques: These methods are well-studied, optimized, and widely implemented in various software libraries.
O  Precision: They can achieve high precision, limited mainly by the numerical precision of the computer.
O  Deterministic: These methods typically provide deterministic results for eigenvalue computations.

e VQE

O  Scalability: VQE is potentially more scalable for certain problems where the Hamiltonian has an exponentially large
state space, as it uses quantum resources to represent and manipulate quantum states.

O  Quantum Advantage: VQE can exploit quantum parallelism and entanglement, potentially providing advantages for
problems that are hard for classical computers.

O  Flexibility: It is well-suited for Noisy Intermediate-Scale Quantum (NISQ) devices, as it can work with the noise and
errors inherent in current quantum hardware through error mitigation techniques.



Example-1: simple 1 qubit

e The n-qubit variational form able to generate any |y>, where |y>€GCN, and N=2",
e Consider n=1, U3 gate with parameters 0, ¢, and 1 represents

cos % —e' gin %
s, 6,0 = | 7

e'? sin £ et oog %




Example-2: 2 qubits

e Universal 2 qubit circuit

0) ——

U3(6o, po, Ao)

1) ——

U3(01, p1, 1)

[

U3(02, p2, A2)

U3(03, p3, A3)

S—e

U3(04, P4, Aa)

U3(0s, ¢s5, As)

—

U3(0s, ¢6, A6)

U3(67, ¢7, A7)

[4)



Application Example: Ground State of Li-H

Atomic Structure

3
i @)
6.94 1

Atomic Structure

1
H(®
Hydrogen
1.01 1

Energy

-7.2 1

-7.4

-7.6 1

—~7.8

—— Exact Energy
—— VQE Energy

0.5 1.0 15 2.0

2:5 3.0 3.5 4.0

Atomic distance (Angstrom)

Calculation Process: For each atomic distance R,
the VQE algorithm calculates the ground state
energy by finding the minimum eigenvalue of the
Hamiltonian H(R).

The Graph:The curve shows how the energy
changes with varying bond length, with the lowest
point indicating the optimal bond length and bond
strength of the LiH molecule.

Physical Meaning:

e The minimum point on the curve represents the most
stable configuration of the LiH molecule.

e The energy at this point is the ground state energy of
the molecule at equilibrium bond length, which is a
crucial property in understanding the molecule's
behavior and interactions.



Performance Comparison

-7.24

Energy

-7.61

=7.84

-7.4 1

—— Exact Energy
—— VQE Energy

L)

0.5

VQE
o

O

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Atomic distance (Angstrom)

Equilibrium Bond Length: ~ 1.5t0 1.6. A.
Ground State Energy: —7.88 Hartree.

Experimental

O

Equilibrium Bond Length: 1.595 A.

Hartree-Fock (HF) Method:

e Equilibrium Bond Length: Around 1.6 A.
e Ground State Energy: Approximately —7.83 Hartree.

Configuration Interaction (Cl) Method:

e Equilibrium Bond Length: Around 1.6 A.
e Ground State Energy: More accurate than HF, closer to
the exact solution.

Coupled Cluster with Single, Double, and Perturbative
Triple Excitations (CCSD(T)):

e  Equilibrium Bond Length: Around 1.6 A.

e Ground State Energy: Approximately —7.88 Hartree,
which is considered highly accurate and close to the
experimental value.

Density Functional Theory (DFT):

e Equilibrium Bond Length: Around 1.6 A, but can vary
slightly depending on the functional used.

e Ground State Energy: Generally lower than HF but
depends on the specific functional.



End of Section
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A brief on ansatz

e A parameterized quantum circuit or function that represent a trial wave

function for approximating the solution
o Astructured quantum circuit composed of quantum gates that depend on a set of adjustable
parameters
o These parameters are tuned during optimization
e Common type of ansatzes
o UCC (Unitary Coupled Cluster)
o Hardware-type ansatz
o Problem specific ansatz
e Construction

o Built using a sequence of quantum gates that applied to qubits
o Gates parameters are variable that are optimized during the algorithm



Variational Method

e A method for estimating the ground state and its energy of a quantum state H.
e Basic Principle: The ground state of a quantum system (H) is less than or
equal to the expectation value of the energy for any trial wave function vy
o E, < <ylHy>
o Procedure

o Choose Trial Wave-Function: normalized parameter {«,, o, ..} dependent y(a,, a,, ..)
o Calculate the Expectation Value of the Energy

_ <t(on,00, - )| H|<¥(a,02," - )
E(al, a2, o ‘) o <¢(a1,a21' * ')lw(al’ah' * ')>

o Minimize the Energy: by adjusting parameters: «
m  The minimum is the ground state EO.
e Usage: estimate ground state energy and wave function without requiring
exact solution of Schrodinger Equation

1 Oy oo



REF Examples

e Simple eigenvalue problem
o https://medium.com/@beef _and_rice/get-started-vge-with-bl
uegat-2ef6a/3bbaee
e Molecule problem
o https://medium.com/mdr-inc/vqe-and-quantum-chemistry-on
-blueqgat-acd0e91b4d24



https://medium.com/@beef_and_rice/get-started-vqe-with-blueqat-2ef6a73bbaee
https://medium.com/@beef_and_rice/get-started-vqe-with-blueqat-2ef6a73bbaee

VQE: Basic Concept

A hybrid quantum-classical
method to minimize expectation
value of the energy of a

Hamiltonian H.

o The Quantum Computer:
prepares and measures
quantum states

o The Classical Computer:
optimizes parameters to
minimize energy

'¥'(6))

10)—
10)—

10)—

10)—

U(o)

N DN DA

—— E(0)
~

Classical
optimizer

’\]/\/




VQE: Procedure

1. Choose a Parameterized Quantum State:
select trial wave function |y(6)>
2. Prepare quantum state:
use quantum computer to prepare |y(0)>
3. Measure Energy:
E(0) = <y(0)|H|y(0)>
4. Classical Optimization:
use classical computer to adjust 0 to minimize E(0)
5. Iterate:
repeat the preparation, measurement, and optimization steps until energy
IS minimized



Example: Finding Ground State of Lithium Hydride (LiH)

1. Construction of Molecular Hamiltonian:
a. Quantum Chemistry Methods
b. Second Quantization and Mapping

2. Parameterized Quantum State Preparation
a. Ansatz Selection: |1(0)>
b. Initialized the parameters: 0

Execute Quantum Circuit

Measurement of Expectation Values

a. Hamiltonian Decomposition
b. Measurements

5. Classical Optimization

a. Calculate Energy
b. Update/optimize Parameters

6. Repeat 2-5 (until convergence)

B w
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Background

e Quantum computers can solve problems faster than classical computers
o Shor’s factoring algorithm
o Grover Search
o  Quantum Simulations
e Resource needed in Shor’s Algorithm (with significant number of digits)
o Without ECC  :~ 1,000 qubits
o With ECC : ~ 1,000,000 qubits, ~1,000,000 gates
e Existing quantum device
o NISQ (Noisy Intermediate Scale Quantum)
o Cannot handle such problem(s)

REF: Peter Shor’s “QAOA Talk”



What do current quantum computers good for?

e Algorithm that can run on small number of qubits, gates, and shallow circuit
o Useful enough (to solve real-world problems)
o Doesn’t need (extensive) error correction
o Can be implemented on small number of qubits (<1,000)

e Solution: QAOA
o Low-depth: need not too much coherence
o Robust to error g
o Hybrid classical-quantum algorithm| =2

qubit 3

A quantum circuit of width w and depth d

[l 1-qubit gate

|

qubit 4
qubit 5
qubit 6
qubit 7
qubit 8

I 2-qubit gate

measurement

Circuit width

if

|

qubit w-1

ﬁ

B qubit w

Circuit depth d
REFs:
° Peter Shor’s “QAOA Talk”
° https://uwaterloo.ca/institute-for-quantum-computing/news/quantum-advantage-shallow-circuits



Optimization: general idea

Objective: bring the initial
state x, (with initial energy Energy
E,) to the final optimum
state x* (with optimum
energy E*)
o X, is the initial guess
o X" is the solution

Constraint
o Limited computing resource
(space/#qubits, time)
o Best way to manage (local
minimum) traps: classical,

> m

quantum

> X
Configuration space



~

problem (——H = H; + Hy+---+ Hy Trotter-Suzuki theorem

- ~ -~ A n
W etP (eA/neB/n)
time-evolution

U <I:I, t) — g—iHt/h

Energy A\ E

> X

Configuration space



€

. . problem ——H,
Unitary Evolution - B = ~Ey + oy
“Mixer” 3
(driver) Hy
Trotter-Suzuki decomposition parameterized circuit
—iHit/n eiHat/n [T —iHyt/n e—i’YHC e—iaHM
n times Trotterized
e—i’Yl He e—ial Hyy e—i’YQHC 6—'ia2HM e—-ianHM e_'i’Yn He




QAOA: the Algorithm

1. Initialize B and y c

2. Repeat until convergence criteria Classiciptimizer
are satisfied: : Borows Yrrow)
1.Prepare the state |@(B,y)) using QAOA circuit T
2.Measure the state in standard basis 1
3.Compute (w(B,v)IHp|w(B.v)) 5 3
4. Find new set of parameters (3 Y ) Prepaﬁ:tl;antum » Compute expectation

. : o new new (B, 7)H[Y(B,7))

using a classical optimization algorithm 1%(8,~))
5.Set current parameters (B,y) equal to the ;
new parameters (Bnew’vnew)




Example-1
Max-Cut problems



Solving MAX-CUT Problem Using QAOA

e A maximum cut is a cut whose size is at
least the size of any other cut.

e Thatis, itis a partition of the graph's
vertices into two complementary sets S
and T, such that the number of edges
between S and T is as large as
possible.

https://en.wikipedia.org/wiki/Maximum_cut



The brute-force method:

o exhaustively try all the binary assignments.
Quantum computing

o Translate into Ising model

o Solve the problem
We seek the partition z of vertex into two sets, A
and B, that maximize C(z)

(Z) - a‘ 1 (Z)

zi=0 if vertex-i in A, zi=1 if vertex-i in B

https://pennylane.ai/gml/demos/tutorial_gaoa_maxcut/



QAOA Circuit

e Denoting partitions using computational basis states |z>, we represent the
objective function as operator

Co = (1~ olot)
e QAOA s started in uniform superposition over n bitstring basis states
[+n) = V% > ze{oa) 12)

e \We perform a sequence of operation, |
Up, = e W8 = H;‘:Ie‘w‘d
v, 8) = Up,Uc,Ug, ,\Ugc, , - -UpUc,|+n) |
Up = e BC = I le—i')',-(l—ajzaf)/Z
) J:



Hamiltonian and Quantum Circuits

e—i'n(l—agaé’

)/2

7' qubit

At :
k'™ qubit 4

3

R: (A."()

Problem Hamiltonian

D
¢V

7™ qubit

—i3 ()‘;Z7

R - (2 ,"‘,‘))1)

Mixer/Driver Hamiltonian



n_layers=1

Solution

30 A
p=1
Objective after step 5: 4.0000000
Objective after step 10: 2.0000000 s
Objective after step 15: 2.0000000 =
Objective after step 20: 3.0000000
Objective after step 25: 2.0000000
Objective after step 30: 3.0000000
Optimized (gamma, beta) vectors:
[(-0.79877491] EEEEEFEEEEEEEEE
[ ©.42271535]] bitstrings
Most frequently sampled bit string is: 0101 n layers=2
50 4
p=2 o
Objective after step 5: 4.0000000
Objective after step 10: 4.0000000 30 4
Objective after step 15: 4.0000000 E
Objective after step 20: 4.0000000 C=4 20+
Objective after step 25: 4.0000000
Objective after step 30: 4.0000000 7
Optimized (gamma, beta) vectors: oA
[[-1.01801414 -0.96385261] ggggégéggggggggg
[ ©.60409681 ©.46537939]] bitstrings

Most frequently sampled bit string is: @101




Example-2
Finding Hadamard matrices



Background

e Hadamard matrix (H-matrix)
Definition: an orthogonal binary {-1,1} matrix
Applications: orthogonal codes used in CDMA, ECC (Error

Correction Code) with maximal error correction capability, Pt Lk,
which is transmitted
employed in Mariner-9, experiment design [Hedayat, 1973] Geroniatd by codes _ Moblle Staions SO Is rmogunat b ooges ed o obr e,
Scientific/Math: H-matrix conjecture is a ~100 years old unsolved CDMA Communication System employs
Walsh-Hadamard Orthogonal Code
problem P —— ——

e Why finding a H-matrix is hard?
For an M-order matrix, there are
[27(M?)] ~ exp (M?) binary matrices

H-matrix conjecture predicts, there is a H-matrix for every M=4k, k

positive integer. How to find it?
Brute force, worst-case condition: one should check all
binary matrices, an O[exp(M?)] problem --> a hard problem. / Y, '

Proposed Solution: USE A QUANTUM COMPUTER! “Mariner-9 employed Hadamard’s ECC

to protect Mars’s images sent to Earth




Examples of the Hadamard matrices Define Energy Function

e Deviation from the
HZ — 1 51 orthogonality condition
Non-negative value
E: squared sum of the
(1 S1
1 s
Sz S3

om T

off-diagonal values of
D, where

o
I

Simplest
non-trivial
case

%)

D=H'H

N
| -
—
_ =
S~

p—
95)
[

E=E(s)

—————————————

Convert E(s,) to
Hamiltonian

) e Since H=H(s), then



1-body term

E(H,) = (1 +S1)2

|
— RA2¢)) :
|
|

/

|

|

1 1 = {1425 |
H2=( =2(1+s,) . PROBLEM _ _ _ _ oG DRVER

1 s

=g =-1
1

1.00

go7s

Q
°
Probabilit
o
w
o

meas

0.25

0.00

Variables conversion: 0 <1; 1< -1

RlB) —



2-body term Huvoblem = G001 Hyrwer = (0°5+0%)

;S T T Tttt \‘ . T
I
E(H,) = (s,+s,)? | 4 | RulB) [——
=1+1+2s,s ; ' |
1 192 I I
H, = 51 =2(1+s;s,) | a; Ry(2y) F—ED—— Ry(B) ——
1 S5 =>s =-1,5,=+1, or ' |
=>s = +1,5 =1, o pRomsM SN DR

e ————

0518
0.482

0.45

0.30

Probabilities

0.15

0.00




—— o o e e o ——

3-body term ;
EH,) = (5,%5,8,) .
1 S1 =1+1+2s;s,s, '
H2 = =2(1+s,s,8,) ‘o

S2 53/ ps,=+1,s,=+1,s,=-10r
bs1=+1,32=-1,33=+1 or
bs1=-1,sz=+1,33=+1 or

do
o
qz
3 ¢ 1 2

meas

o
=
=

D1 RA2Y) Rx(B)
PROBLEM I\ DRIVER
__________________ / \ o o s s o s o s
e —iyC
U(C,y)=e" U(C,y)=e
0.265
0.248 0.247
0.24 0.230
k4
Z 016
©
8
£
0.08
0.00 - 0.002 0.002 0.002 0.004

e e e



e e e e e e e ] P I re——

/7 \
! v !
4-body term ” A 0
y : Ci234 =01 Q07 Q0F Q0of : I
v l S+—— rp) |—
;o
: q; \ > \ Y — R«(B) F—
I ! b
i 3 E(H)—(ss+ss) . !
25 3232+s 5,2+ b9 DR D = Ry(B) [——
Sy 8y - : o
; 23 S S S \\ PROBLEM R % DRIVER
=1+ + = —
=1+1 2$19’23334 U(C,y)=e"¢ U(C,y)=e"
= 2( 1+s,;s )
2 3 4
S1S2S3S4 -1 0.16
—_— 0137 0135
0123 . 0.121
0.12 0109 o113
2
e %o.oa
q2s ———
0.04

quss

» «meas: 4/
» «

0.00

- e e e - - — —



Finding Order-12/36: number of qubits=8

é_ 0.12
o

;i-
©
&1

Py 0088 0088 0088
=
E0.0B
g © ?
momo omo E
X &
meas
0.04
@ $ ]
q;—o—é—-
0.00
a2 ) o o o o R ~ A~ | o ~ v O
~ S ~ ~ o ~ S ~ =) ~
qs——é {L—. ~ N N~ O N N & o N N
S O O N N N N N o 8O
oS ~ ~ ~ o ~ o o oS o
- o S §S§S§SFSSS SIS
as J;_. g &8 &8 & & 8§ &8 8 S g
9 - & O—L é—. .
N DD G Sha G @ e 10 most common solutions
GSL'” 6 7

3

e Most frequent="10101011"



Results: Williamson 12 and Baumert-Hall 36

Williamson 12

0 10 20 30

Baumert-Hall 36
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Example Maxcut-2:

0 10
25 o
2
Mo s e oy o
[1is @, Al 1.0,
AR S e
[9: o 0.11

10

ot

e The brute-force method:
o exhaustively try all the
binary assignments.
e Quantum computing
o Translate into Ising model
o Solve the problem

Qiskit Output
e Obijective value computed by
the brute-force method is 3
e QAOA-Sol:[1100]
e Obijective value computed by
QAOA s 3

https://github.com/SophiaZhyrovetska/qaoa-maxcut

https://github.com/Qiskit/qgiskit-tutorials/blob/master/tutorials/algorithms/05_qgaoa.ipynb



problem ——H, Trotter-Suzuki theorem
@ efi+f9 ~ (efi/neﬁ/n)n

Energy 4 E ( A )

“driver” F—— Hp

= [I"

) (e—iﬁat/ne—iﬁnt/n)
J:

— gy [ o) = e — W)

]

> X

Configuration space



