

Differentiable Monte Carlo for spin models

Tiago de Souza Farias

Federal University of São Carlos Physics Department Brazil

June 2024

Spin Models

- Materials
- Biological cells
- Machine learning
- Combinatorial problems

 $\mathcal{H} = \sum J_{ij} \sigma_i \sigma_j$ $\overline{i,j}$ $\sigma \in \{-1,1\}$

Monte Carlo simulation

Metropolis-Hastings algorithm

- Select random spin σ_i
- Flip its value $\sigma_i \rightarrow -\sigma_i$
- Calculate energy difference ΔE
- If $\Delta E < 0$, accepts the flip
- Else accepts the flip with probability $p = e^{-\Delta E/k_B T}$

Differentiable Monte Carlo

Differentiable Monte Carlo

- Select random spin σ_i
- Flip its value $\sigma_i' = -\sigma_i$
- Calculate energy difference ΔE
- Calculate the probability of flip $p = e^{-\Delta E/k_B T}$
- Calculate the weight $q = (1 + e^{-\alpha(p-r)})^{-1}$
- Change the spin value to $\sigma_i \leftarrow q \sigma_i' + (1-q) \sigma_i$
- Optimize or discretize the spin values

Differentiable Monte Carlo

- Select random spin σ_i
- Flip its value $\sigma'_i = -\sigma_i$
- Calculate energy difference ΔE
- Calculate the probability of flip $p = e^{-\Delta E/k_B T}$
- Calculate the weight $q = (1 + e^{-\alpha(p-r)})^{-1}$
- Change the spin value to $\sigma_i \leftarrow q \sigma_i' + (1-q) \sigma_i$
- Optimize or discretize the spin values

We have standard MC at $\ lpha
ightarrow \infty$

Results

Finding the state with lowest energy

 $\mathcal{L} = \sum \int J_{i,j} \sigma_i \sigma_j$

 $\sigma \leftarrow \sigma - \eta \frac{\partial \mathcal{L}}{\partial \sigma}$

Finding the state with lowest energy

Finding the state with lowest energy

State preparation

 $\mathcal{L} = \frac{1}{N} \sum_{i} (\hat{\sigma}_i - \sigma_i)^2$

 $J \leftarrow J - \eta \frac{\partial \mathcal{L}}{\partial J}$

State preparation

 $\mathcal{L} = \frac{1}{N} \sum_{i} (\hat{\sigma}_i - \sigma_i)^2$

 $J \leftarrow J - \eta \frac{\partial \mathcal{L}}{\partial J}$

State preparation

Conclusions and future scope

- We presented Differentiable Monte Carlo, a method that can optimize spins or exchange parameters with Monte Carlo simulation;
- We applied DMC to optimize spins values in order to get the state of lowest energy;
- We applied DMC to optimize the exchange parameters in order for the spins to reach a specific distribution;

- We presented Differentiable Monte Carlo, a method that can optimize spins or exchange parameters with Monte Carlo simulation;
- We applied DMC to optimize spins values in order to get the state of lowest energy;
- We applied DMC to optimize the exchange parameters in order for the spins to reach a specific distribution;

- Apply DMC to combinatorial problems: vehicle routing, travelling salesman, etc;
- Apply DMC to machine learning: Boltzmann machine;
- Extend DMC to quantum spin models;
- Investigate material properties (e.g. topological materials) with DMC.

Thank you!

tiago.farias@ufscar.br tiago939@gmail.com

Farias, Tiago S., et al. "A Differentiable Programming Framework for Spin Models." Computer Physics Communications, vol. 302, Sept. 2024, p. 109234. ScienceDirect, https://doi.org/10.1016/j.cpc.2024.109234