

Variational quantum algorithms and Quantum Machine Learning

Cica Gustiani

21 June 2024

ICTP

There are plenty of VQAs out there for various applications

¹Cerezo, M., Arrasmith, A., Babbush, R. et al. Variational quantum algorithms. Nat Rev Phys 3, 625–644 (2021).

There are plenty of VQAs out there for various applications

¹Cerezo, M., Arrasmith, A., Babbush, R. et al. Variational quantum algorithms. Nat Rev Phys 3, 625-644 (2021).

Simulating quantum systems on quantum computer

Static: ground-state

$$\hat{H}\left|\psi\right\rangle=E\left|\psi\right\rangle$$

Dynamics: the time-evolution operator

$$i\hbarrac{d}{dt}\ket{\psi(t)}=\hat{H}\ket{\psi(t)}$$
 $\psi(t)
angle=e^{-i\hat{H}t}\ket{\psi(0)}$, constant \hat{H}

Quantum Phase Estimation

Estimating the ground state energy (and excited states). $H |\psi\rangle = E |\psi\rangle$ $e^{-i\hat{H}\tau} |\psi\rangle = e^{-iE\tau} |\psi\rangle = e^{-i2\pi\varphi} |\psi\rangle$

Quantum Phase Estimation

Estimating the ground state energy (and excited states). $H |\psi\rangle = E |\psi\rangle$ $e^{-i\hat{H}\tau} |\psi\rangle = e^{-iE\tau} |\psi\rangle = e^{-i2\pi\varphi} |\psi\rangle$

 $E = 2\pi \varphi / \tau$ and $U = e^{-iH\tau}$

Quantum Phase Estimation

Estimating the ground state energy (and excited states). $H |\psi\rangle = E |\psi\rangle$ $e^{-i\hat{H}\tau} |\psi\rangle = e^{-iE\tau} |\psi\rangle = e^{-i2\pi\varphi} |\psi\rangle$

 $E = 2\pi \varphi / \tau$ and $U = e^{-iH\tau}$

Grows by precision of φ and U.

Noisy Intermediate-Scale Quantum (NISQ) era

https://www.quandco.com/ja/blog/arxiv-1801-00862

Noisy Intermediate-Scale Quantum (NISQ) era

https://www.quandco.com/ja/blog/arxiv-1801-00862

Noise-resilient algorithms

Error mitigation

From variational method to VQE

The classic Rayleigh-Ritz method

$$E_{0} = \min_{|\psi\rangle} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

test function $|\psi_t\rangle$

$$\frac{\langle \psi_t | H | \psi_t \rangle}{\langle \psi_t | \psi_t \rangle} \ge E_0, \quad \forall | \psi_t \rangle$$

From variational method to VQE

The classic Rayleigh-Ritz method

$$E_{0} = \min_{|\psi\rangle} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

test function $|\psi_t\rangle$

$$\frac{\langle \psi_t | H | \psi_t \rangle}{\langle \psi_t | \psi_t \rangle} \ge E_0, \quad \forall | \psi_t \rangle$$

ansatz: $|\phi(\vec{\alpha})\rangle = \sum_{i} \alpha_{i} |\phi_{i}\rangle$

$$E_{est} = \min_{\vec{\alpha}} \frac{\langle \phi(\vec{\alpha}) | H | \phi(\vec{\alpha}) \rangle}{\langle \phi(\vec{\alpha}) | \phi(\vec{\alpha}) \rangle} = \min_{\vec{\alpha}} E(\vec{\alpha}) \ge E_0$$

classical optimisation over α via $\frac{\partial E(\vec{\alpha})}{\partial \alpha_j} = 0$

From variational method to VQE

The classic Rayleigh-Ritz method

VQE framework

 $\min_{\vec{\alpha}} \left< \phi(\vec{\alpha}) \right| H \left| \phi(\vec{\alpha}) \right>$

- Parameterised unitary (ansatz): $|\phi(\vec{\alpha})\rangle = (\prod_k g_k(\alpha_k)) |0\rangle^{\otimes n}$
- Hamiltonian as Pauli sums: $H = \sum_j c_j P_j$, Paulis P_j

- Parameterised unitary (ansatz): $|\phi(\vec{\alpha})\rangle = (\prod_k g_k(\alpha_k)) |0\rangle^{\otimes n}$
- Hamiltonian as Pauli sums: $H = \sum_{j} c_{j} P_{j}$, Paulis P_{j}
- By linearity: $\langle \phi(\vec{\alpha}) | H | \phi(\vec{\alpha}) \rangle = \sum_{j} c_{j} \langle \phi(\vec{\alpha}) | P_{j} | \phi(\vec{\alpha}) \rangle$ parallel!

- Parameterised unitary (ansatz): $|\phi(\vec{\alpha})\rangle = (\prod_k g_k(\alpha_k)) |0\rangle^{\otimes n}$
- Hamiltonian as Pauli sums: $H = \sum_j c_j P_j$, Paulis P_j
- By linearity: $\langle \phi(\vec{\alpha}) | H | \phi(\vec{\alpha}) \rangle = \sum_{j} c_{j} \langle \phi(\vec{\alpha}) | P_{j} | \phi(\vec{\alpha}) \rangle$ Hadamard test in the test in t

- Parameterised unitary (ansatz): $|\phi(\vec{\alpha})\rangle = (\prod_k g_k(\alpha_k)) |0\rangle^{\otimes n}$
- Hamiltonian as Pauli sums: $H = \sum_j c_j P_j$, Paulis P_j
- By linearity: $\langle \phi(\vec{\alpha}) | H | \phi(\vec{\alpha}) \rangle = \sum_{j} c_{j} \langle \phi(\vec{\alpha}) | P_{j} | \phi(\vec{\alpha}) \rangle$ parallel!

- Classical optimisation over $\vec{\alpha}$
- Some noise can be handled by automatic adjustment of $\vec{\alpha}$

VQE framework

$$H_{\vec{R}} = -\sum_{i} \frac{\nabla_{R_{i}}^{2}}{2M_{i}} - \sum_{i} \frac{\nabla_{r_{i}}^{2}}{2} - \sum_{i,j} \frac{Z_{i}}{|R_{i} - r_{j}|} + \sum_{i,j>i} \frac{Z_{i}Z_{j}}{|R_{i} - R_{j}|} + \sum_{i,j>i} \frac{1}{|r_{i} - r_{j}|}$$

 \Rightarrow second quantisation

Occupation $|01...1..\rangle \leftrightarrow \text{qubit } |01...1..\rangle$

$$H_{\vec{R}} = -\sum_{i} \frac{\nabla_{R_{i}}^{2}}{2M_{i}} - \sum_{i} \frac{\nabla_{r_{i}}^{2}}{2} - \sum_{i,j} \frac{Z_{i}}{|R_{i} - r_{j}|} + \sum_{i,j>i} \frac{Z_{i}Z_{j}}{|R_{i} - R_{j}|} + \sum_{i,j>i} \frac{1}{|r_{i} - r_{j}|}$$

Jordan-Wigner mapping

 \Rightarrow second quantisation

 $\mathsf{Occupation} | \mathsf{01} \dots \mathsf{1} \dots \rangle \leftrightarrow \mathsf{qubit} | \mathsf{01} \dots \mathsf{1} \dots \rangle$

Hartree-Fock

1-electron orbitals: $\{\varphi_j(\vec{r}) = \sum_k c_k \phi_k(\vec{r})\} \rightarrow \text{self-consistent field}$

Occupation state: Slater determinant of Spin orbitals $\{\varphi_j(\vec{r})_{\uparrow}, \varphi_j(\vec{r})_{\downarrow}\}$

$$H_2 = \sum_{pq} h_{pq} a_p^{\dagger} a_q + rac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$

Occupation
$$|01...1..\rangle \mapsto \text{qubit } |01...1..\rangle$$

$$H_2 = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$$

$$a_j^{\dagger} \mapsto |1\rangle\langle 0|_j \otimes Z_{j-1} \otimes \cdots \otimes Z_1$$

 $a_j \mapsto |0\rangle\langle 1|_j \otimes Z_{j-1} \otimes \cdots \otimes Z_1$

|1
angle 0| = (X - iY)/2 and |0
angle 1| = (X + iY)/2

$$H'=\sum_k c_k P_k$$

Others: Bravyi-Kitaev, Parity

Or stick to the first quantisation (2105.12767v3)

Spatial electronic configuration of He2 using grid method

www.science.org/doi/10.1126/sciadv.abo7484

VQE framework

Parameter training: $\vec{\alpha}$

Steepest gradient

descent

$$G = \frac{\partial E(\vec{\alpha})}{\partial \alpha_j}$$

$$\vec{\alpha}' = \vec{\alpha} - \lambda G$$

²McArdle, S., Jones, T., Endo, S. et al. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf 5, 75 (2019). https://doi.org/10.1038/s41534-019-0187-2

Parameter training: $\vec{\alpha}$

Steepest gradient descent

 $G = \frac{\partial E(\vec{\alpha})}{\partial \alpha_i}$

Imaginary-time evolution²/ Quantum natural gradient

$$\vec{\alpha}' = \vec{\alpha} - \lambda F^{-1} G$$

 $F_{ij} = 4 \operatorname{Re} \left[\langle \partial_i \psi(\vec{\alpha}) | \partial_j \psi(\vec{\alpha}) \rangle - \langle \partial_i \psi(\vec{\alpha}) | \psi(\vec{\alpha}) \rangle \langle \psi(\vec{\alpha}) | \partial_i \psi(\vec{\alpha}) \rangle \right]$

²McArdle, S., Jones, T., Endo, S. et al. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf 5, 75 (2019). https://doi.org/10.1038/s41534-019-0187-2

Training: ansatz ϕ

- Fixed ansatz
- Hardware-efficient ansatz
- Adaptive ansatz

 $\{R\sigma_j(\alpha), C_i(R\sigma_j(\alpha))\}\$

 $\{e^{\hat{T}-\hat{T}^{\dagger}}\}$

Bond-dissociation curve

³https://www.nature.com/articles/nature23879

VQE + error mitigation

⁵https://www.nature.com/articles/s41586-019-1040-7

Dynamical simulation

Dynamical simulation

Dynamical simulation

e.g., H_2 has 15 Pauli terms, H_2O has > 1500 Pauli terms

Trotterisation vs VQA

Trotterisation vs VQA

Dynamics simulation via VQA: compiling the propagators $e^{-i\alpha P_j}$

Compilation

Goal: synthesise circuit ${\mathcal C}$ that approximates U

$$|\psi\rangle \sim |\psi'\rangle \iff \mathcal{C}^{\dagger} U = I$$

For all $|\psi\rangle$

Compilation via Choi-Jamiølkowski state

Goal: synthesise circuit $\ensuremath{\mathcal{C}}$ that approximates \ensuremath{U}

Compilation via Choi-Jamiølkowski state

Goal: synthesise circuit ${\mathcal C}$ that approximates U

Cost: $1 - |\langle \Phi | (\mathcal{C}^{\dagger} U \otimes I) | \Phi \rangle|^2$ Cost= $0 \iff \mathcal{C}^{\dagger} U = I$

Trotterisation vs VQA on H₂ dynamics

Exp $(-iH\Delta t)$ for *H*₂ Gates: { $R\sigma(\alpha), C(R\sigma(\alpha))$ }, σ are Paulis

⁶ https://arxiv.org/abs/2206.11246

Approaches on Quantum Computing and Machine Learning

⁷Schuld, Maria, and Francesco Petruccione. Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.

Approaches on Quantum Computing and Machine Learning

⁷Schuld, Maria, and Francesco Petruccione. Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.

Approaches on Quantum Computing and Machine Learning

VQA on QML differs in the presence of data training

⁷Schuld, Maria, and Francesco Petruccione. Supervised learning with quantum computers. Vol. 17. Berlin: Springer, 2018.

Machine learning: Kernel method

Classification problem: distinguishing two sets of data

Machine learning: Kernel method

Classification problem: distinguishing two sets of data

Kernel $\kappa(x^j, x)$, similarity measure between data points x^j and x classifier using kernel κ :

$$y = \sigma(\sum_{j} y^{j} \kappa(x^{j}, x))$$

Machine learning: Feature map

Expanding the feature space: map the data into a larger space Example: SVM (support vector machine)

$$\mathcal{F}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{pmatrix}$$

Classifier model is defined on the feature space

1. Data
$$(X, Y) \in \mathcal{X} \times \mathcal{Y}$$

(X) \longrightarrow relation? \longrightarrow (Y)

1. Data
$$(X, Y) \in \mathcal{X} \times \mathcal{Y}$$

(X) \longrightarrow relation? \longrightarrow (Y)

2. Model $f(x;\theta) \in \mathcal{F}$, where θ are free parameters $X \longrightarrow f(x;\theta) \longrightarrow Y$

1. Data
$$(X, Y) \in \mathcal{X} \times \mathcal{Y}$$

(X) \longrightarrow relation? \longrightarrow (Y)

2. Model $f(x;\theta) \in \mathcal{F}$, where θ are free parameters $X \longrightarrow f(x;\theta) \longrightarrow Y$

3. Loss $L(f(x;\theta), y) \in \mathbb{R}$: minimisation

1. Data
$$(X, Y) \in \mathcal{X} \times \mathcal{Y}$$

(X) \longrightarrow relation? \longrightarrow (Y)

2. Model $f(x;\theta) \in \mathcal{F}$, where θ are free parameters $X \longrightarrow f(x;\theta) \longrightarrow Y$

3. Loss $L(f(x;\theta), y) \in \mathbb{R}$: minimisation

Feature map Φ

$$(X) \longrightarrow \Phi(x) \longrightarrow f(\Phi(x);\theta) \longrightarrow (Y)$$

Machine learning: inner product as kernel

 $\mathrm{tr}(x,x') = \langle \phi(x), \phi(x') \rangle$

Theorem 1. Let $\phi : \mathcal{X} \to \mathcal{F}$ be a feature map. The inner product of two inputs mapped to feature space defines a kernel via

$$\kappa(x, x') := \langle \phi(x), \phi(x') \rangle_{\mathcal{F}}, \tag{1}$$

where $\langle \cdot, \cdot \rangle_{\mathcal{F}}$ is the inner product defined on \mathcal{F} . 8

⁸Schuld, M. and Killoran, N., 2019. Quantum machine learning in feature hilbert spaces. Physical review letters, 122(4), p.040504.

Machine learning: inner product as kernel

 $\mathrm{tr}(x,x') = \langle \phi(x), \phi(x') \rangle$

Theorem 1. Let $\phi : \mathcal{X} \to \mathcal{F}$ be a feature map. The inner product of two inputs mapped to feature space defines a kernel via

$$\kappa(x, x') := \langle \phi(x), \phi(x') \rangle_{\mathcal{F}}, \tag{1}$$

where $\langle \cdot, \cdot \rangle_{\mathcal{F}}$ is the inner product defined on \mathcal{F} . 8

\mathcal{F} has to be Hilbert space!

⁸Schuld, M. and Killoran, N., 2019. Quantum machine learning in feature hilbert spaces. Physical review letters, 122(4), p.040504.

Data encoding is the Quantum Feature Map

$$(X) \longrightarrow |\Phi(x)\rangle \longrightarrow f(|\Phi(x)\rangle;\theta) \longrightarrow (Y)$$

Data encoding is the Quantum Feature Map

$$(X) \longrightarrow |\Phi(x)\rangle \longrightarrow f(|\Phi(x)\rangle;\theta) \longrightarrow (Y)$$

Examples:

• Binary encoding:

$$x = (1,0,1) \mapsto X \otimes I \otimes X \ket{000}$$

• Amplitude encoding is exponentially more compact but hard to prepare

$$x\mapsto \sum_{j}x_{j}\left|j\right\rangle$$

• Rotation angle encoding

$$x\mapsto \bigotimes_j Rx(x_j)|0\ldots 0\rangle$$

Variational circuits in QML model

Variational circuits in QML model

Variational quantum classifier⁹

 8 Havlíček, Vojtěch, et al. "Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.

Thank you for your attention! ;)