Cloud observations from space

Courtney Schumacher Texas A&M University

International Geophysical Year

- 1957-1958
- IGY was international effort to advance earth sciences
- In preparation for IGY both U.S. and Russia announced that they would launch an earth satellite

Space race

4 October 1957: Launch of Sputnik

 First earth-orbiting satellite
 Helped determine density of upper atmosphere

Birth of satellite meteorology

13 October 1959: US launches Explorer-7

 Payload includes Verner Suomi and Robert Parent's flat plate radiometer

Cameras in space

V.E. Suomi and Herman LeGow inspect Explorer 7

- 1 April 1960: TIROS 1 first weather satellite
 - Carried visible camera and passive IR radiometer for daytime and nighttime obs
 - \odot Launched into low-earth orbit
 - \odot Operated for 2.5 months
 - \odot First of 10 TIROS satellites

Clouds and weather correlate

Mosaic of TIROS-1 images from May 19 and 20, 1960

TIROS-1 cloud structure superimposed on a weather map

Historic (1965): TIROS IX (photos)

FIRST COMPLETE VIEW OF THE WORLD'S WEATHER

TIROS IX

FEBRUARY 13, 1965

Modern day: 1-day of VIIRS (visible imagery)

On Suomi NPP Satellite

In the past many decades, the instruments and the <u>orbits</u> and <u>wavelengths</u> they use to measure weather and climate have proliferated.

Orbits and scan geometry

Low-earth orbit

- 300-1000 km above Earth
- Polar/sun-synchronous (same time each day, e.g., 1 am/1 pm)
- Inclined/non sun-synchronous (sampling at
 different times of day in precessing orbit)
 - http://youtu.be/y_jM_BxQGvE

Geostationary

- 35,786 km above Earth
- Most of hemisphere (except poles)
- Full disk: every 15 minutes, regional: every 5 minutes, mesoscale: 30 60 seconds
- <u>https://www.youtube.com/watch?time_conti</u> <u>nue=1&v=qCAPwgQR13w</u>

Geostationary satellite coverage

Cross-track scanning

Satellite architecture design/data set choices

• What are you trying to study?

 \odot For example: Tropical cyclone precipitation structure

- \odot Need to observe/resolve eyewall and rainbands
- Over what area?
 - \circ Inclination, swath width
- How frequently do we need to observe?
 O Period
- At what spatial resolution?
 Footprint size, number of footprints
- At what accuracy?

 \circ Altitude

Note: Choices affect multiple categories, tradeoffs!

р :				
Region	Spectral range	Fraction of solar output	Remarks	
Visible	$0.4 < \lambda < 0.7 \ \mu \mathrm{m}$	39%	Atmosphere mostly transparent	
Near IR	$0.7 < \lambda < 4 \ \mu { m m}$	52%	Partially absorbed, mainly by water vapor	
Thermal IR	$4 < \lambda < 50 \ \mu m$ 0.9%		Absorbed and emitted by water vapor, carbon dioxide, ozone, and other trace gases	
Far IR	$0.05 < \lambda < 1 \ \mathrm{mm}$		Absorbed by water vapor	
Microwave	λ >1 mm		Clouds semi-transparent	

Table 3.1: Regions of the electromagnetic spectrum

Petty (2006)

<u>Shortwave</u>

Figure 3.3 from Petty (2006)

Visible

Useful for identifying reflective surfaces

 albedo

$\odot\,\text{cloud}$ structure and thickness

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 75

Visible

• Also good for dust and smoke

Visible + Near IR

• Together, VIS & Near IR can be used to retrieve

- $\circ \operatorname{cloud} vs \operatorname{snow}$
- \odot optical thickness (thicker clouds) and cloud phase
- \circ cloud particle size

Visible + Near IR

• Together, VIS & Near IR can be used to retrieve

- $\circ \operatorname{cloud} vs \operatorname{snow}$
- \odot optical thickness (thicker clouds) and cloud phase
- \circ cloud particle size

Region	Spectral range	Fraction of solar output	Remarks			
Visible	$0.4 < \lambda < 0.7~\mu{ m m}$	39%	Atmosphere mostly transparent			
Near IR	$0.7 < \lambda < 4 \ \mu m$	52%	Partially absorbed, mainly by water vapor			
Thermal IR	$4 < \lambda < 50 \ \mu { m m}$	0.9%	Absorbed and emitted by water vapor, carbon dioxide, ozone, and other trace gases			
Far IR	$0.05 < \lambda < 1 \text{ mm}$		Absorbed by water vapor			
Microwave	λ >1 mm		Clouds semi-transparent			

<u>Longwave</u>

actions of the electrometric meeting Table 2 1. D.

Petty (2006)

GOES longwave channels (2 km, day and night)

Figure 3.3 from Petty (2006)

IR water vapor at mid/upper levels

IR brightness temperature in window region

- Representative of cloud top temperature
- Intermittent
 convective bursts
 (and overshooting
 tops) within growing
 cold canopy over
 Coral Sea
- Coldest observed brightness temperature by geostationary satellite (-103.83°C)

https://cimss.ssec.wisc.edu/satellite-blog/archives/56584

Climatology of Aqua/MODIS coldest cloud tops

Figure 4. A map of all particularly cold brightness temperatures (BTs) recorded by the MODIS instrument aboard NASA's Aqua satellite between August 2004 and August 2020. The location of the cold BT discussed in this study is shown by the red star. Areas outside 30° North/South latitude are excluded, as no extreme cold BTs were recorded there. Similar, regional, data for AHI is shown in Figure S4. AHI, Advanced Himawari Imager; BT, brightness temperature.

Proud and Bachmeier (2021)

	Table 5.1: Regions of the	electromagnetics	spectrum	
Region	Spectral range	Fraction of solar output	Remarks	
Visible	$0.4 < \lambda < 0.7 \ \mu \mathrm{m}$	39%	Atmosphere mostly transparent	
Near <mark>I</mark> R	$0.7 < \lambda < 4 \ \mu { m m}$	52%	Partially absorbed, mainly by water vapor	
Thermal IR	$4 < \lambda < 50 \ \mu { m m}$	0.9%	Absorbed and emitted by water vapor, carbon dioxide, ozone, and other trace gases	
Far IR	$0.05 < \lambda < 1 \ \mathrm{mm}$		Absorbed by water vapor	
Microwave	λ >1 mm		Clouds semi-transparent	Or < 300 GH

Table 3.1: Regions of the electromagnetic spectrum

Petty (2006)

Longwave

Weighting functions

- Represent contribution of atmospheric layers to measured intensity (I_{λ})
- Peak higher in atmosphere the closer a channel is to center of absorption band

 \cap

Example

from lower levels (small contribution to measured I_{λ})

More attenuation of radiation

- Small contribution from upper levels (less absorber)
- Peak represents region of atmos that contributes most to I_{λ}

Weighting Function

© The COMET Program

Weighting functions

Better measure of water vapor near the surface

Total Precipitable Water

- 23 GHz
 - Sees entire atmospheric column (transmissivity≈0.85)
 - However, coarser resolution than IR and passive MW instruments not on geostationary satellites (only low-earth orbit)

Passive MW Integrated Water Vapor

Passive MW Liquid Water Path

Cloud Liquid Water (mm)

Passive MW Rainfall

Passive MW Rainfall

- v < 37 GHz referred to as emission channels since the rainfall signature is primarily due to emission (used over ocean only)
- Higher v referred to as scattering channels since their rainfall signals rely on ice scattering (land and ocean)

Active MW remote sensing (i.e., radar)

- 3D view!
- TRMM (launched late 1997) and GPM (still in orbit) carry precipitation radars
- CloudSat (and recently EarthCare) carry cloud radars
- Upcoming research radar missions include INCUS and AOS

TRMM PR snapshots of Isabel

PR allows 3D view of storms well as snapshots of evolution of 3D structure

TRMM PR cross sections over western Nepal

PR shows different convective organization depending on large-scale flow

*See also more studies by Houze's group, Shrestha and Deshar 2014, etc.

GPM DPR cross sections over Labrador Sea during marine cold air outbreak

DPR can sense small precipitating convective cells close to nadir, CloudSat much more sensitive (but nadir only)

Intense storms w/ Precipitation Feature (PF) database

Zipser et al. (2006)

• Overshooting convective tops and the most intense storms in the tropics occur over land, esp. Africa

Intense storms w/ Precipitation Feature (PF) database

Liu and Zipser (2015)

ISS LIS lightning

• Lightning also strongest over land, with maxima where strongest convection and overshooting occur

Geostationary lightning mapper

New world record for the longest lightning flash

On 7 February 2022, the World Meteorological Organization announced that a single bolt on 29 April 2020 stretched over 767 kilometers across Texas, Louisiana, and Mississippi

How is convection best characterized from space?

- Geosynchronous data, convection tracking algorithms
 - Mostly characterizes anvil tops, but doesn't adequately describe convective organization
- Lightning (GLM and similar sensors)
- Spaceborne passive microwave in low-earth orbit
- Spaceborne radar (TRMM PR, GPM DPR, AOS PMM)
- Commercial constellations (Ka-band radars, high-frequency radiometers)
- Multi-satellite merged rainfall (e.g., IMERG)

Adapted from Scott Braun slide

CERES broadband radiances

Shortwave TOA flux

Tropical weather states

Optical thickness

 Uses patterns of cloud property joint distributions to identify distinct states of the tropical atmosphere

e.g., Jacob and Tselioudis et al. (2003)

Example day of ECMWF data assimilation

Importance for NWP

