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Key takeaways:

• Planetary waves are trapped along the equator due to the change in the Coriolis 
parameter’s sign.
• The equatorial wave spectrum includes fast-oscillating inertia-gravity waves and 

low frequency Rossby waves, with mixed Rossby-gravity wave branch and an 
eastward-propagating equatorial Kelvin wave filling the frequency gap.
• Linear theory works well to interpret observations, providing mechanistic insights 

into the global scale atmospheric response to tropical convective heating.
• Important questions remain about the role of moisture in convectively coupled
equatorial waves and the Madden-Julian Oscillation (MJO).



Part 1: Theory of Tropical Waves

• Matsuno’s theory for free 
equatorial waves
• Dispersion diagrams
• Convectively coupled equatorial 

waves
• MJO theor(y)iesX
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Matsuno’s theory for free equatorial waves

Tropical dynamics is markedly different from the 
midlatitudes because as one crosses the equator, 
the vertical component of the Earth’s rotation 
vector (Ω) changes sign. 

𝑓 = 𝑓! + 	𝛽𝑦 𝑓 = 𝑓! = 0

𝑓 = 2Ωsin(lat)
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vector (Ω) changes sign. 

𝑓 = 𝑓! + 	𝛽𝑦

Matsuno’s looked for wave 
solutions when: 
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Matsuno’s theory for free equatorial 
waves

Introducing rescaled velocity and interface height 
perturbations

The equatorial 
beta plane linear 
shallow equations 
configuration 
leads to a solvable 
wave problem 
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Matsuno’s theory for free equatorial 
waves

Introducing rescaled velocity and interface height 
perturbations

the linear dynamics around a state of rest can be 
written as 

The equatorial 
beta plane linear 
shallow equations 
configuration 
leads to a solvable 
wave problem 

Assuming wave solutions in the x-direction

leads to a linear system of equations

Which can be combined into a single equation for  
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This equation is formally analogous to the 1D quantum 
harmonic oscillator, with a known set of orthonormal solutions  
given by 

Where each basis element.        is a solution of the Eq. (*) 
provided that:

Matsuno’s theory for free equatorial 
waves

Meridional wind 
wave solutions are  
proportional to 
the solutions for 
the 1D quantum 
harmonic 
oscillator

(*) 
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wave modes. Remember that any real mode solution is a combination of a mode (!, k)
with its complex conjugate (�!,�k), so that a given real inertia gravity-wave mode
involve both positive and negative frequency inertia-gravity wave bands.

The equatorial f -plane is peculiar, as the frequency gap between wavebands closes
when f = 0 : a three-fold degeneracy point occurs at the origin (k, l) = (0, 0), see
Fig. 13.1. This band-touching point is an obstruction to smoothly deforming the family
of f -plane eigenmodes parameterized by (k, l) from one hemisphere to another. This
singularity plays an important role in shaping the structure of the equatorial wave
spectrum in more complicated problems where f varies with latitude. As we shall see,
taking into account meridional variations of the Coriolis parameter around the equator
indeed drastically changes the global structure of the wave spectrum.

13.2.2. Matsuno spectrum on the equatorial beta plane

The simplest model for the equatorial wave guide. To take into account the ef-
fect of the planet rotation on a plane tangent to the equator, one needs to consider
the variations of the Coriolis parameter with latitude. A groundbreaking contribution
comes from Matsuno (1966), who considered the simplest possible configuration al-
lowing for explicit computations, namely linear variations of the Coriolis parameter
with latitude (Matsuno 1966) : f = �y. This is the equatorial version of the beta-
plane approximation already introduced in Chapter 9 for midlatitude dynamics. This
configuration leads to a solvable wave problem exhibiting solutions with properties
that are consistent with observed equatorial waves.

The equatorial Rossby radius of deformation. The equatorial beta plane shallow
water wave problem admits a single intrinsic frequency

p
c� and a single intrinsic

length scale
p

c/�. This length scale will play a central role in the remainder of this
chapter. It is called the equatorial radius of deformation, by analogy with the f -plane
Rossby radius of deformation (see e.g. Chapter 10).

The main difficulty with respect to the f -plane case is that the linear operator in
Eq. (13.2) now depends on y. Owing the translational invariance in the x-direction
only, eigenmodes are expressed as

(u, v, ⌘) = (û(y), v̂(y), ⌘̂(y)) ei!t�ikx + c.c. . [13.5]

The linearized dynamic (13.2) is then recast as an eigenvalue problem for the fre-
quency ! :

!

0

@
û
v̂
⌘̂

1

A =

0

@
0 �i�y ck

+i�y 0 ic@y
ck ic@y 0

1

A

0

@
û
v̂
⌘̂

1

A , [13.6]

The equatorial Rossby radius of deformation
	

                𝐿 =	
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If                                , then  and          are

A solution                    with is thus admissible only if
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After some manipulations, one finds that the meridional velocity satisfies

d2v̂

dy2
+

✓
!2

� �2y2

c2
�

�k

!
� k2

◆
v̂ = 0 , [13.7]

with the condition that v vanishes at large |y|. This equation is formally analogous to
the celebrated 1D quantum harmonic oscillator, whose solutions are well documen-
ted. To compute these solutions, it is convenient to project the field v onto a basis of
parabolic cylinder functions defined as

'n(y) = Hn

 
yp
c/�

!
e�

1
2

y
2

c/� , n 2 N. [13.8]

The functions Hn(⇠) are Hermite polynomials of order n : H0(⇠) = 1, H1(⇠) = 2⇠,
and, more generally

Hn+1(⇠) = 2⇠Hn(⇠)� 2nHn�1(⇠),
dHn

d⇠
= 2nHn�1(⇠). [13.9]

Each basis element 'n is a solution of Eq. (13.7) provided that

!2
� k2c2 �

�c2k

!
= (2n+ 1)�c, [13.10]

which is the equatorial counterpart of energy quantization in the quantum harmonic
oscillator case.

One must keep in mind that equation (13.7) gives only partial information on the
initial multicomponent wave problem (13.6), that also involves the fields u and ⌘.
Substituting v̂ = 'n/

p
c� into this matricial equation, and using the relation (13.9)

between Hermite polynomials yields

i (! � ck) (û+ ⌘̂) = �'n+1, [13.11]

i (! + ck) (û� ⌘̂) = �2n'n�1 . [13.12]

A solution v / 'n with n 6= 1 is thus admissible only if ! 6= ±ck, otherwise the field
u and ⌘ diverge. We also obtain from these expressions the polarization relation for
each solution indexed by n :

0

@
û
v̂
⌘̂

1

A

n,!

= Ak,!

0

@
1
2 (! + k)'n+1 + n (! � k)'n�1

�i(�c)�1/2
�
!2

� c2k2
�
'n

1
2 (! + k)'n+1 � n (! � k)'n�1

1

A , [13.13]

which can be combined as

Matsuno’s theory for free equatorial waves Zonal wind and 
perturbation 
height fields can 
be obtained from 
the meridional 
wind solution
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Matsuno’s theory for free equatorial waves There is a discrete 
spectrum of 
shallow water 
waves on the 
equatorial beta 
plane

With some algebra, three types of solutions ( 𝜔	(𝑘)   for the dispersion relation 
can be derived:

n=-1 (Kelvin)
n=0 (Yanai)

n≥1 (Inertia-
Gravity and Rossby)

Discrete wave solutions:

Dispersion relation:
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Matsuno’s theory for free equatorial waves There are 
eastward and 
westward moving 
Inertia-Gravity 
waves. Rossby 
waves move 
westwards 

Inertia-Gravity waves:
• When n>0, there are three solutions to the dispersion 

relation equation. The two high frequency solutions are 
denoted Inertia-Gravity waves.

• If the term                     is small in the dispersion relation then 

is the approximate frequency of inertia-gravity waves

Rossby waves:
• The remaining low frequency solution is close to geostrophic 

balance. Neglecting the term ω2  in the dispersion relation, 

is the approximate frequency of Rossby waves
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Inertia-gravity and Rossby waves. When n � 1, the three solutions of Eq (13.10)
all satisfy ! 6= ±ck, and one gets for each value of zonal wavenumber k a triplet of
eigenmodes (13.13), just as in the f -plane configuration.

The two high frequency modes with opposite signs correspond to inertia-gravity
waves. In fact, neglecting the term �c2k/! in Eq. (13.10), we recover a dispersion
relation analogous to that for f -plane inertia-gravity waves :

! = ±

p
c2k2 + �c(2n+ 1). [13.14]

The main difference with respect to f -plane inertia-gravity wave appears at next order
in �/(!k). Those corrections induce an asymmetry with respect to k in the dispersion
relation of inertia-gravity waves, and this asymmetry is due to the planetary vorticity
gradient �.

The remaining low frequency solution is close to geostrophic balance, and can
thus be identified to the f -plane geostrophic wave band. Neglecting the term !2 in Eq
(13.10), one recovers the dispersion relation of Rossby waves encountered in §10.4 of
Chapter 10 on quasi-geostrophic dynamics :

! =
��k

k2 + (2n+ 1)�/c
. [13.15]

This dispersion relation shows that planetary vorticity gradients induced by the �
term has lifted the degeneracy of the flat geostrophic waveband encountered in the
f -plane.

Yanai (mixed Rossby-gravity waves). The case n = 0 in Eq. (13.10) is special :
one of the three possible roots is ! = �ck, which, according to Eq. (13.11-13.12), is
not an admissible solution. There are thus only two solutions

! =
kc

2
±

1

2

p
k2c2 + 4�c. [13.16]

The positive frequency solution corresponds to a single branch that transits from the
low frequency Rossby wave band to the high frequency inertia-gravity wave band as
k is increased from negative to positive values. For this reason, this solution is often
called a mixed Rossby-gravity wave mode. Owing to the reality of the fields in
physical space, any actual Rossby-gravity wave mode is actually a superposition of a
mode belonging to this branch and of the complex conjugate solution belonging to
the dual negative frequency branch. Those modes are also commonly called Yanai
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Dispersion relation:

Phase velocity:

𝑐𝑝 =
𝜔
𝑘

Group velocity:

𝑐" =
𝜕𝜔
𝜕𝑘
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Matsuno’s theory for free equatorial waves
Even 𝑛 yields a 𝑣

structure that is 
symmetric across 
the equator, and 
odd yields 
antisymmetric 𝑣
structure

Inertia-Gravity waves:

Rossby waves:
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Matsuno’s theory for free equatorial waves

Yanai Waves:
• Yanai waves correspond to solutions to the dispersion 

equation when n=0:

• The positive frequency solution corresponds to a single 
branch that transits from the low frequency Rossby wave 
band to the high frequency inertia-gravity wave band as k is 
increased from negative to positive values. For this reason, 
this solution is often called a mixed Rossby-gravity wave 
mode. 

• The phase velocity is positive if 𝑘 > 0 and negative if 𝑘 <
0,	but the group velocity is always positive.

• Those modes are commonly called Yanai waves, in honor of 
M. Yanai who discovered them in observations. 
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The positive frequency solution corresponds to a single branch that transits from the
low frequency Rossby wave band to the high frequency inertia-gravity wave band as
k is increased from negative to positive values. For this reason, this solution is often
called a mixed Rossby-gravity wave mode. Owing to the reality of the fields in
physical space, any actual Rossby-gravity wave mode is actually a superposition of a
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the dual negative frequency branch. Those modes are also commonly called Yanai

Yanai waves 
behave as Rossby 
waves as k →
−∞	and as a 
Inertia-Gravity 
wave as k → ∞
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Matsuno’s theory for free equatorial waves

Yanai Waves horizonal structure:

x-direction

y-
di

re
ct

io
n

For Yanai waves 𝑣 
is symmetric across 
the equator
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Matsuno’s theory for free equatorial waves Kelvin waves have 
zero meridional 
wind component 
and are non-
dispersive

Kelvin Waves:
• Are solutions of the shallow water system when 𝑣 = 0 
• A vanishing meridional velocity implies geostrophic balance 

in the meridional direction :

• The eastward non-dispersive propagating mode
 is the only admissible solution. The westward mode does not 
vanish as y → ∞	(i.e. rotation plays an important role by 
selecting the eastward propagating mode)
• Because this solution is a root for the dispersion relationship 

when n=-1, this mode is often labeled  by the index n=-1

https://www.jstage.jst.go.jp/article/jmsj1965/44/1/44_1_25/_article


Matsuno’s theory for free equatorial waves Kelvin waves zonal 
wind and height 
are symmetric 
with respect to the 
equator

Kelvin Waves horizonal structure:

x-direction

y-
di

re
ct

io
n

Kelvin waves are non-
dispersive:
	 𝑐𝑝= 𝑐">0
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waves, in honor of M. Yanai who discovered them in observations. When k changes
sign, the phase speed changes from westward to eastward, and some authors use the
term Yanai waves only for the westward propagating mode. Finally, one peculiarity
of their polarization relation is that ⌘̂ = û.

Kelvin waves. A last class of modes is obtained by looking for solutions satisfying
v̂ = 0. A vanishing meridional velocity implies geostrophic balance in the meridio-
nal direction : �yû = �c@y ⌘̂. In the other direction, the field û satisfies a classical
wave equation with dispersion relation ! = ±ck. It turns out that only the eastward
propagating mode ! = ck is an admissible solution. To see this, it is useful to com-
bine meridional geostrophic balance with mass conservation !⌘ = cku, which yields
!�y⌘̂ = �c2k@y ⌘̂. The solution associated with ! = �ck must be discarded as it
leads to a field ⌘ that diverges at large y. Even if the Coriolis parameter does not enter
into the dispersion relation, rotation plays an important role by selecting the eastward
propagating mode. This is the equatorial Kelvin wave, with polarization relation

(û, v̂, ⌘̂) = (1, 0, 1)e�
y
2

2c/� . [13.17]

Note that just as for the Yanai wave, the Kelvin wave mode satisfies û = ⌘̂. Its branch
in the dispersion relation transits from the negative-frequency inertia-gravity wave
band to the positive one as k is increased. The name of this wave mode comes from
its strong similarities with unidirectional trapped modes along a coast originally
computed by Kelvin. This mode is sometimes labelled by the index n = �1, as
! = ck is one of the root of Eq. (13.10) and the polarization (13.17) is recovered
from Eq. (13.13) in that case.

Group velocity. The zonal group velocity for a wave mode of frequency !(k) is
defined as cg,x = @k!, which corresponds to the slope of the dispersion relation.
Recall that group velocity describes propagation of the envelop of a wavepackets,
which also gives the direction of propagation for wave energy. Remarkably, the group
velocity of Kelvin and Yanai wave branches always positive. This means that those
waves can only propagate energy eastward. By contrast, equatorial Rossby and
inertia-gravity waves propagate energy in both westward and eastward directions,
depending on their wavenumber. Note that zonal group velocity should not be
confused with zonal phase velocity c� = !/k : zonal phase velocity of Rossby
waves is always westward, yet it group velocity changes sign from law wavenumbers
to high wavenumbers ; group velocity of Yanai waves is always eastward, while its
phase velocity changes sign with zonal wavenumber k.

Spatial structure of the eigenmodes : the equatorial waveguide. The Kelvin wave
height field ⌘̂ is the lowest order parabolic function '0, namely a Gaussian

https://www.jstage.jst.go.jp/article/jmsj1965/44/1/44_1_25/_article
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How to relate Matsuno’s theory to an 
actual tropical atmosphere?

The shallow water model introduced in the 
previous slides is the simplest setting to 
discuss equatorial waves, but it is not 
obvious to relate this model to an actual 
atmosphere. For instance, what would be 
the fluid depth (H) in this framework?

Linearized hydrostatic Boussinesq flow model

Linearized 
hydrostatic 
Boussinesq 
equations can be 
used to physically 
interpret Matsuno’s  
SW solutions

https://www.jstage.jst.go.jp/article/jmsj1965/44/1/44_1_25/_article


𝜕"𝑢𝑚′ + 𝜕#𝜙𝑚-𝛽𝑦𝑣$" = 0

𝜕"𝑣𝑚′ + 𝜕%𝜙𝑚 + 𝛽𝑦𝑢𝑚$ = 0

𝜕"𝜙𝑚′ +  𝑐𝑚&(𝜕#𝑢𝑚 + 𝜕%𝑣𝑚) = 0

Linearized hydrostatic Boussinesq flow model

How to relate Matsuno’s theory to an 
actual tropical atmosphere?

https://www.jstage.jst.go.jp/article/jmsj1965/44/1/44_1_25/_article


𝜕"𝑢𝑚′ + 𝜕#𝜙𝑚-𝛽𝑦𝑣$" = 0

𝜕"𝑣𝑚′ + 𝜕%𝜙𝑚 + 𝛽𝑦𝑢𝑚$ = 0

𝜕"𝜙𝑚′ +  𝑐𝑚&(𝜕#𝑢𝑚 + 𝜕%𝑣𝑚) = 0

Linearized hydrostatic Boussinesq flow model

How to relate Matsuno’s theory to an 
actual tropical atmosphere?

Dispersion relation:
EW vertical propagation 
properties!

https://www.jstage.jst.go.jp/article/jmsj1965/44/1/44_1_25/_article


The concept of the equivalent height: The horizontal phase speed cm of nonrotating hydrostatic Boussinesq 
waves with vertical wavenumber m can be interpreted in terms of an equivalent depth. This would be the 
depth of a shallow water model supporting similar horizontally propagating waves : 

How to relate Matsuno’s theory to an 
actual tropical atmosphere?

z

Zt

Zs

𝑚 = 1

𝑚 = 2

ws= 0

wt= 0

x

ℎ'((𝑥, 𝑡)

𝑥

https://www.jstage.jst.go.jp/article/jmsj1965/44/1/44_1_25/_article
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Equatorial waves on the sphere. The equatorial Rossby radius of deformation on
a planet of radius a with rotation rate ⌦ scales as

p
ca/⌦. For a finite zonal wavenu-

meber k , the beta plane approximation is justified in the limit where the parameter
p
c ⌦a vanishes, so that the planet size is much larger than the equatorial radius of

deformation. The spherical case with
p
c/⌦a of order one involves several complica-

tions. There are finite-size effects such as quantization of the zonal wavenumber, and
changes in the meridional structure of eigenmodes. In addition, their are geometrical
effects ; for instance, Kelvin-like waves on a curved surface are dispersive. Important
analytical work in spherical geometry was initially carried out by Longuet-Higgins,
and it remains an active subject of research (Paldor 2015 ; Boyd 2018).

13.2.4. Response to an external forcing.

The computation of the Matsuno spectrum can conveniently be used to describe the
linear response of the system to a prescribed external heat source and in the presence
of dissipation, which amounts to finding solutions of

@

@t

0

@
u0

v0

⌘0

1

A = L

0

@
u0

v0

⌘0

1

A+

0

@
0
0
Q

1

A� ↵

0

@
u0

v0

⌘0

1

A , [13.18]

where L stands for the linear shallow water wave operator given in Eq. (13.2). The
choice of a single linear friction term with damping coefficient ↵ simplifies the fol-
lowing discussion. More realistic dissipative terms would involve different coeffi-
cients for the momentum and mass conservation equations, and/or would be nonlinear.
Owing to the linearity of equation (13.18), we focus without loss of generality on a
plane wave forcing Q = Q̂(y)eikx�i!t. The self-adjointness of the linear operator
L implies that the set of shallow water eigenmodes obtained for a given value of k
defines a basis onto which any triplet of fields vanishing at infinity can be projected
(see (Gallagher and Saint-Raymond 2006) for a proof). The forcing term can thus be
conveniently expressed as

0

@
0
0
Q

1

A = eikx�i!t
X

j

Fj(k,!)êj(k, y) + c.c. [13.19]

where j is an index for all the shallow water modes associated with a given value of k
(one Kelvin mode, two Yanai modes, and a countable infinite number of triplets with
two inertial-gravity wave modes and one Rossby mode) :

êj(k, y) =

0

@
ûj

v̂j
⌘̂j

1

A , Lêj = !j êj ,

Z +1

�1
dy ê⇤

i
· êj = �i,j . [13.20]
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Figure 13.3. a) Stationary response of linear shallow water model with frictional
dissipation ↵ and a localized mass loss term interpreted as a heat source (in red).
Parameters are those used in (Vallis 2017). The contour lines represent the height

field. b) Vertical structure of the flow when the same one layer shallow water model is
interpreted as the first vertical mode of a continuously stratified hydrostatic

Boussinesq flow model with a flat bottom and a rigid lid (see subsection 13.3.2). Black
arrows correspond to the meridionally averaged flow.

this model to an actual atmosphere. For instance, what would be the fluid depth in
this framework ? As we shall see, shallow water waves emerge naturally from more
complicated flow models.

13.3.1. Hydrostatic Boussinesq waves.

To proceed, we start by addressing the role of density stratification on equatorial
waves, by considering an hydrostatic Boussinesq flow model (see Chapter 5). The
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this model to an actual atmosphere. For instance, what would be the fluid depth in
this framework ? As we shall see, shallow water waves emerge naturally from more
complicated flow models.

13.3.1. Hydrostatic Boussinesq waves.

To proceed, we start by addressing the role of density stratification on equatorial
waves, by considering an hydrostatic Boussinesq flow model (see Chapter 5). The
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What about convectively coupled equatorial waves?

Free Equatorial Waves

𝜕"𝑢′ + 𝜕#𝜙-𝛽𝑦𝑣$ = 0

𝜕"𝑣′ + 𝜕%𝜙 + 𝛽𝑦𝑢$ = 0

𝜕"𝜙′ +  𝑐&(𝜕#𝑢 + 𝜕%𝑣) = 0

𝜕"𝑢′ + 𝜕#𝜙-𝛽𝑦𝑣$ = 0

𝜕"𝑣′ + 𝜕%𝜙 + 𝛽𝑦𝑢$ = 0

𝜕"𝜙′ +  𝑐&(𝜕#𝑢 + 𝜕%𝑣) = 𝑄1

𝐷"𝑞$ = −𝑄2

Convectively coupled equatorial waves

The combination of weak rotation, stronger insolation and moisture availability in the tropics leads to two-
way feedbacks between tropospheric equatorial waves and moist convection, which gives rise to what is 
known as convectively coupled equatorial waves.

Diabatic heating from moist convection 
might play a role in the initiation phase of 
the wave, but its maintenance is 
uncoupled from moist convection.

Moist convection and circulation co-
evolve and interact



One primary observed impact of moisture on equatorial waves is to reduce their frequency inferred from Matsuno’s theory. 
In turn, the lengthening of their time scale allows clouds and precipitation to organize into large-scale coherent structures 
that are consistent with the divergence fields of equatorial waves. 

What about convectively coupled equatorial waves?

ℎCD ~ 250m
𝑐E = 50𝑚𝑠FG 
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To obtain the order of magnitude of heq for the Earth atmosphere, we assume that
deep convection sets a vertical wavenumber m = ⇡/H with H = 15 km the typical
height of the troposphere. The buoyancy frequency is of the order of N = 10�2 s�1,
and g = 10 m.s�1, which, using (13.24), leads to the dry atmosphere equivalent depth
heq = 250 m, with typical phase speed cm = 50 m.s�1.

Compressibility. The previous analysis can easily be generalized to a compressible
atmosphere. Let us just emphasize one key change induced by compressible effects,
namely a shift of the vertical wavenumber in the expression of the phase speed for
nonrotating waves :

cm =
N

(m2 + 1/4H2
s
)1/2

, [13.25]

with Hs = ⇢0/@z⇢0 the scale height of the atmosphere exponential density variations.
Thus, for a given vertical scale of perturbations, compressible effects tends to decrease
the phase speed and the corresponding equivalent depth.

13.3.2. A shallow water interpretation of Walker circulation

Let us now consider that the atmosphere is confined between a flat bottom and a
rigid lid at z = H . This can be thought as a simple model for the troposphere. The
novelty with respect to previous subsections is that vertical velocity vanishes at the
upper and lower boundaries. Consequently, eigenmodes of the linearized hydrostatic
dynamics (13.22) are standing wave patterns on the vertical, that are called baroclinic
modes. As before, the velocity and geopotential field of each barolinic mode obeys an
equivalent shallow water equations, with
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For a given baroclinic mode with frequency !, the vertical velocity is

w0 =
!

N
�0
m
sin(mz), [13.27]

and boundary conditions are satisfied provided that m is an integer multiple of ⇡/H .

This decomposition into baroclinic modes makes possible a direct application of
Matsuno-Gill response to continuously stratified fluids. Within the Boussinesq fra-
mework, heating is represented by a source term in the buoyancy equation. Let us
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One primary observed impact of moisture on equatorial waves is to reduce their frequency inferred from Matsuno’s theory. 
In turn, the lengthening of their time scale allows clouds and precipitation to organize into large-scale coherent structures 
that are consistent with the divergence fields of equatorial waves. 

There are two main theories to explain how moisture is linked to the slowdown of convectively coupled equatorial waves in 
comparison to their dry counterparts:

What about convectively coupled equatorial waves?

The presence of moisture can 
destabilize a density profile 
that would be otherwise be 
stable in a dry atmosphere. 
(Emanuel et al. 1994). 

𝑁')) = 1 − 𝛼 𝑁

The vertical wavenumber m is  
unchanged 

Destabilization due to deep moist convection 

𝜕#𝑢𝑚′ + 𝜕$𝜙𝑚-𝛽𝑦𝑣%" = 0

𝜕#𝑣𝑚′ + 𝜕&𝜙𝑚 + 𝛽𝑦𝑢𝑚% = 0

𝜕#𝜙𝑚′ +  𝑐𝑚'(𝜕$𝑢𝑚 + 𝜕&𝑣𝑚) = 0

𝑒𝑓𝑓
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One primary observed impact of moisture on equatorial waves is to reduce their frequency inferred from Matsuno’s theory. 
In turn, the lengthening of their time scale allows clouds and precipitation to organize into large-scale coherent structures 
that are consistent with the divergence fields of equatorial waves. 

There are two main theories to explain how moisture is linked to the slowdown of convectively coupled equatorial waves in 
comparison to their dry counterparts:

What about convectively coupled equatorial waves?

The equivalent height is set by latent heat 
release within the lower half of the troposphere 
(cumulus congestus clouds), which tends to 
precede the development of deep clouds, 
favoring a higher order vertical wavenumber m 
than would be expected from latent heating 
associated with deep convection. 

Stratiform Instability

𝑚 = 1

x

𝑚 > 1

x

Mapes 2000, Majda and Shefter 2001, Johnson et. al 1999

https://journals.ametsoc.org/view/journals/atsc/57/10/1520-0469_2000_057_1515_cisste_2.0.co_2.xml
https://math.nyu.edu/faculty/majda/pdfFiles/JAS-2%20%202001%20Majda%20Shefter.pdf
https://journals.ametsoc.org/view/journals/clim/12/8/1520-0442_1999_012_2397_tcotc_2.0.co_2.xml


One primary observed impact of moisture on equatorial waves is to reduce their frequency inferred from Matsuno’s theory. 
In turn, the lengthening of their time scale allows clouds and precipitation to organize into large-scale coherent structures 
that are consistent with the divergence fields of equatorial waves. 

There are two main theories to explain how moisture is linked to the slowdown of convectively coupled equatorial waves in 
comparison to their dry counterparts:

What about convectively coupled equatorial waves?

The equivalent height is set by latent heat 
release within the lower half of the troposphere 
(cumulus congestus clouds), which tends to 
precede the development of deep clouds, 
favoring a higher order vertical wavenumber m 
than would be expected from latent heating 
associated with deep convection. 

Stratiform Instability

Mapes 2000, Majda and Shefter 2001, Johnson et. al 1999

Superposition of m=1 and m=2 
vertical modes from an idealized 
model (Kiladis 2009)

https://journals.ametsoc.org/view/journals/atsc/57/10/1520-0469_2000_057_1515_cisste_2.0.co_2.xml
https://math.nyu.edu/faculty/majda/pdfFiles/JAS-2%20%202001%20Majda%20Shefter.pdf
https://journals.ametsoc.org/view/journals/clim/12/8/1520-0442_1999_012_2397_tcotc_2.0.co_2.xml


Break!



MJO Theory (ies)?

• 40-50 day tropical oscillation seen in 
zonal winds, specific humidity, 
temperature, pressure and 
precipitation
• The convective active phase moves 

eastward from the Indian Ocean the 
Central Pacific



from Kiladis et al 2006
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MJO Theory (ies)?

https://journals.ametsoc.org/view/journals/atsc/62/8/jas3520.1.xml
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MJO Theory (ies)?

https://journals.ametsoc.org/view/journals/atsc/62/8/jas3520.1.xml


Yoneyama, K. & Zhang, C. (2020)

Why is the MJO important?

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020GL087182


MJO propagation in CMIP3 (Lin 2005)

file:///Users/jdias/Downloads/clim-jcli3735.1.pdf


MJO propagation in CMIP3 (Lin 2005) MJO propagation in CMIP5/6 (Chen et al. 
2021)

file:///Users/jdias/Downloads/clim-jcli3735.1.pdf
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL095241
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL095241


MJO amplitude in CMIP5/6

From Chen et al. 2021

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL095241


From Chen et al. 2021

MJO combined skill in CMIP5/6  ---     “Spider Diagram”

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL095241


MJO Theory (ies)?

from Zhang et al 2020

A commonly agreed theory for the 
Madden Julian Oscillation still does not 
exist

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019RG000685


MJO Theory (ies)?
from Zhang et al 2020

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019RG000685


MJO Theory (ies)?
from Zhang et al 2020

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019RG000685


The common base for the four MJO theories 
from Zhang et al 2020

• MJO as an atmospheric internal mode with the first 
baroclinic vertical structure, 

• an equatorial beta plane, 
• linear and hydrostatically balanced large-scale

𝑄+	𝑎𝑛𝑑 𝑄& 
𝑎𝑟𝑒 𝑡ℎ𝑒 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 
ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 
𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑠𝑖𝑛𝑘 
("Johnson et al., 2015; 
Yanai et al., 1973 "

1) Skeleton theory
2) Moisture-mode theory
3) Gravity-wave theory
4)  Trio-interaction theory 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019RG000685


Each MJO theory from Zhang et al 2020 invokes 
unique sets of parametrizations, closures, 
parameters and constants

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019RG000685


Skeleton theory

q is lower troposphere 
moisture and a is the 
meso- and synoptic wave 
activity

Apparent heating and 
moisture sink balance each 
other



Skeleton theory

q is lower troposphere 
moisture and a is the 
meso- and synoptic wave 
activity

Apparent heating and 
moisture sink balance each 
other

Variables are projected in the vertical onto the 
first baroclinic mode and in the meridional 
direction onto the equatorially trapped Kelvin 
and first Rossby wave modes 



Skeleton theory
• Solutions are stable
• Planetary-scale eastward modes have structures 

consistent with the MJO
• Slow eastward modes group velocity is nearly zero
• Convective heating and low level moisture 

anomalies are out of phase

“The key motivating idea for the skeleton theory 
is that, in an appropriate parameter regime, 
lower-tropospheric moisture and convective 
activity are set to oscillate on the intraseasonal 
scale, against each other as in a 
predator-and-prey model. ”



Moisture mode theory



Moisture mode theory

The anomalous wind field is in steady-state 
balance with the apparent heating as predicted 
by the Matsuno-Gill model 

Vertical velocity is inferred from Q1 (Weak 
Temperature Gradient approximation)



Moisture mode theory

such that there is moistening to the east of the heat source and drying to the west. It follows that the real
component (which induces propagation) of a dispersion relation is

Re ωð Þ ¼ AKR

τck
(10)

where τc is held constant for simplicity (Assumption b). For the sake of illustration, we now consider the
case of no frictional dissipation (ϵ = 0). A discussion of the importance of ϵ on the moist wave solution is
offered by Adames and Kim (2016). The dispersion relation in Equation 10, along with the cases when dis-
sipation is not neglected, is shown in Figure 12. The above dispersion relation defines the MJO as a dis-
persive wave with an eastward phase speed and a westward group velocity (bottom panels in
Figure 12). This dispersion arises because the wind anomalies in the Matsuno‐Gill response to an equator-
ial heat source are proportional to the scale of the precipitation anomalies (u′ ∝ P′/k,see Appendix C in
Adames and Kim (2016)). Qualitatively, the dispersion curves resemble those of an equatorial Rossby
wave, but exhibiting a smaller frequency and eastward propagation.

The component of the dispersion relation that corresponds to the growth and decay of the moist wave has
the following form

Figure 12. Frequency (top left panel), growth rate (top right), phase speed (bottom left), and group velocity (bottom
right) of the moist wave solution obtained by Adames and Kim (2016). The dash‐dotted line corresponds to the
case of no dissipation, while the dashed and solid lines are the cases where the dissipation length scales are 3.6 × 107 m
and 1.3 × 107 m, respectively. For these plots, τ = 12 hr, AKR = 2.5 × 10−8 m−1, the NGMS ( eM) is 0.1, and r0 = 0.2.
The dotted lines correspond to a timescale of 50 days in the top‐left panel, a phase speed of 5 m s−1 in the bottom left
panel, and a group velocity of −2 m s−1 in the bottom right panel.
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• The longwave cloud-radiation feedback plays a key role in 
generating instability;

• the spatial-scale selection is through the wide-spread 
nature of the cloud-radiative feedback;

• precipitation and moisture are in phase;

The has been studies using reanalysis and 
climate models that support the  moisture 
mode theory. But there have also been 
studies that challenge the moisture-mode 
view of the MJO



Gravity wave theory

𝑄G

Linear shallow water system 
+ trigger convection



Gravity wave theory

• Envelopes of EIG and WIG make up the “MJO”
• There is no prognostic moisture equation.



Trio interaction theory



Trio interaction theory



1. MJO selection of planetary scale? 
2. MJO selection of eastward propagation?
3. MJO slow propagation speed? 

How do these theories explain



MJO selection of planetary scale 

Skeleton theory Moisture-mode theory Gravity-wave theory Trio-interaction theory 

The zonal scale of the MJO 
is selected when the 
predicted horizontal 
structure of the MJO 
matches the observed. In its 
stochastic version, the 
selection is through 
stochastic damping of small 
scales

The zonal scale is selected by 
the vertical motion imparted 
by anomalous radiative 
heating that is stronger for 
larger scales

the horizontal scale is 
determined by the 
travel distance of 
gravity waves and 
intensity of 
precipitation

The trio-interaction theory 
selects the zonal scale 
through instability 
generated by BL 
convergence and damping 
of small scales by 
tropospheric moisture 
feedback. 

stronger and more organized convection (Ahmed & Neelin, 2018; Ahmed & Schumacher, 2015; Derbyshire
et al., 2004; Masunaga, 2012; Powell, 2016; Raymond, 2000). Figure 10 shows precipitation Pr as a function of
column integrated relative humidity, the ratio between column water vapor and column saturation water
vapor (RH = ⟨q⟩/⟨qs⟩, where angle brackets correspond to mass‐weighted integration from 1,000 to 100
hPa) for a region centered in the eastern Indian Ocean (95°E, 0°N). While there is a substantial amount of
scattering, Pr increases exponentially with increasing RH. There is no formulation that describes this
relation based on physical principles, but an empirical relation captures this exponential curve
(Bretherton et al., 2004):

Pr ¼ P0exp aRHð Þ (6)

where P0 and a are best fit coefficients. There is a clear separation between active MJO periods (blue dots)
that are characterized by high RH and increased rainfall, and suppressed periods (red dots) that are char-
acterized by low RH and little to no rainfall. This suggests that the feedback between moisture and preci-
pitation is central to the MJO. This is the backbone of the “moisture‐mode” framework. It is noteworthy
that substantial scatter exists in Figure 10. This scatter is due to other processes, such as convective avail-
able potential energy (CAPE) and convective inhibition (CIN), which modulate rainfall. While a more
complete treatment of precipitation should include these fluctuations, some studies have indicated that
CAPE and CIN predominantly affect convective coupling at higher frequencies than those of the MJO
(Raymond & Fuchs, 2007).

Linearizing Equation 6 with respect to a slowly varying mean state yields

Figure 8. Schematic describing the mechanism in which the interactions between convection and radiation lead to
planetary scale selection. In a moist atmosphere, upper‐tropospheric clouds expand far away from a region of
precipitation (clouds with blue arrows). This region reduces the outgoing longwave radiation, effectively warming the
troposphere. Upward motions (orange arrows) result in order to maintain the WTG balance. These upward motions
advect moisture upward and reduce GMS, moistening the troposphere.

Figure 9. Schematic showing the structure and propagation mechanism of the MJO as interpreted by the moisture‐mode
theory. Regions of enhanced and suppressed columnmoisture (dark and light gray shaded ovals in the plate, respectively)
are colocated with enhanced and suppressed convection (green arrows), respectively. Suppression of outgoing
longwave radiation (curved arrows) acts to warm the troposphere. This warming is balanced by enhanced vertical
motion, which advects moisture upward, maintaining the region of enhanced precipitation (orange arrows). The inverse
occurs in the region of suppressed convection. The anomalous heating and associated patterns of divergence lead to
planetary wave responses (blue arrows). These modulate the distribution of moisture through horizontal and vertical
moisture advection, as well as by modulating the surface latent heat fluxes. This modulation results in a positive moisture
tendency (dash‐dotted line) and as such the precipitation anomalies propagate eastward.
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MJO selection of eastward propagation

Skeleton theory Moisture-mode theory Gravity-wave theory Trio-interaction theory 

produces neutral solutions 
that propagate both east- 
ward and westward. At 
planetary scales, the 
eastward propagating 
solutions match the 
observed features of the 
MJO.

the eastward propagation is 
caused by advection of 
moisture by the wind 
anomalies. 

the MJO propagates 
eastward because EIG 
travels faster than 
WIG due to the β 
effect.

the BL moisture 
convergence generates 
positive moisture and 
heating anomalies to the 
east of an MJO convection 
center, leading to its 
eastward propagation. 



MJO slow propagation speed 

Skeleton theory Moisture-mode theory Gravity-wave theory Trio-interaction theory 

the key factor for the speed 
is the wave activity 
parameter (Γ)

the dry static stability, the 
strength of moisture 
advection, and convective 
moisture adjustment 
timescale determine the 
propagation speed. 

The small difference 
between the speeds 
of EIG and WIG gives 
rise to the MJO speed 
in the gravity-wave 
theory

Propagation speed is 
determined by three 
factors: (a) the basic state 
MSE, which affects the 
heating intensity and 
effective static stability, (b) 
moisture feedback which 
enhances the Rossby wave 
component and slows 
down the eastward 
propagation, and (c) the 
coupling of Kelvin and 
Rossby waves. 



This is the  effect of BL 
frictional moisture 
convergence on 
convection 

“the degree to which the observed BL moisture convergence is 
caused by BL friction and other processes (i.e., cloud heating 
and large-scale eddies) need to be quantified “

Roles of MJO feedbacks



“This fundamental discrepancy can be pushed 
to an extreme as to whether the MJO is a dry 
mode” 

This is the effect of 
evolving tropospheric 
moisture on convection

Roles of MJO feedbacks



Roles of MJO feedbacks

This represents the role of the Kelvin-Rossby dynamics in the 
MJO.. 

horizontal moisture convergence? 
horizonal moisture advection? 
slow eastward propagation ?
growth rate for planetary waves?
and not included in the gravity-wave theory! 



This is the enhancement 
of total diabatic heating 
by large-scale cloud 
radiative heating.

*In the moisture-mode theory, it provides the main mechanism 
for the horizonal moisture advection.

Roles of MJO feedbacks



It represents the role of 
synoptic-scale gravity 
waves in the MJO

“Whether gravity waves are essential to 
the MJO needs to be supported by 
evidence of their coherence in space 
and time.” 

Roles of MJO feedbacks



This is the planetary-scale envelope of synoptic-scale and 
mesoscale convective heating that interacts with large-scale 
moisture only in the skeleton theory, where it is used to 
parametrize large-scale convective heating of the MJO. 

“It remains to be confirmed whether 
interaction between synoptic and 
large-scale convective activities can be 
represented in such a simple form “

Roles of MJO feedbacks



Summary of MJO theories

The theories presented in Zhang et al 2020 are 
the result of combined efforts and feedback 
among the modeling, observing and theory 
communities .

But yes, there are lots of discrepancies among 
theories, unexplained MJO behavior, and 
simulation deficiencies… 

From Chen et al. 2021

CMIP3?

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019RG000685
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021GL095241


Key takeaways:

• Planetary waves are trapped along the equator due to the change in the Coriolis 
parameter’s sign.
• The equatorial wave spectrum includes fast-oscillating inertia-gravity waves and 

low frequency Rossby waves, with mixed Rossby-gravity wave branch and an 
eastward-propagating equatorial Kelvin wave filling the frequency gap.
• Linear theory works well to interpret observations, providing mechanistic insights 

into the global scale atmospheric response to tropical convective heating.
• Important questions remain about the role of moisture in convectively coupled
equatorial waves and the Madden-Julian Oscillation (MJO).





Part 2: Observations of Tropical Waves

1.Brief history of observations
2. Identification of tropical waves
3.Beyond space-time spectral analysis
4.Example: Observed structure of 

CCEWs 

Figure 13.4. Wave number-frequency power spectrum of equatorial data averaged.                    
from 15 S to 15 N displayed as the ratio between the raw and smoothed red noise
background spectrum (details in Wheeler and Kiladis 1999). The top panel
demonstrates dry waves in the stratosphere as power spectra of zonal wind at 50 hPa
from ERA5 reanalysis. The bottom panel shows convectively coupled waves in the
troposphere as spectra of brightness temperature from satellite observation. In both
panels, the data are decomposed into symmetric (left) and antisymmetric (right)
components. Contours start at 1.2 with an interval of 0.4 at the top panels and begin
at 1.1 with an increase of 0.1 at the bottom. Dispersion curves are overlaid for
equivalent depths of 12, 25, 100, and 800 m.
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Brief history of observations of tropical waves 
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2003-20221940-1959

N
O

AA
/N

CE
I I

nt
eg

ra
te

d 
Gl

ob
al

 R
ad

io
so

nd
e 

Ar
ch

iv
e 

(IG
RA

)



The discovery of equatorial waves in 
observations was based on sounding 
data over tropical stations and was 
motivated by Matsuno’s theoretical 
work.

Discovery of Yanai and Kelvin Waves



The discovery of equatorial waves in 
observations was based on sounding 
data over tropical stations and was 
motivated by Matsuno’s theoretical 
work.

Discovery of Yanai and Kelvin Waves



Discovery of the MJO

80

MJO!!!



Discovery of the MJO

81

MJO!!!

Cross-spectral analysis across tropical islands indicated that the 40-50 Day 
peaks are a planetary scale phenomena that moves to east



Analysis of satellite data
Chang 1970 analyzed 
hovemullers of tropical 
satellite images and 
Hayashi 1981

tim
e

Tropical Pacific

https://journals.ametsoc.org/view/journals/atsc/27/1/1520-0469_1970_027_0133_wpcpit_2_0_co_2.xml
https://www.gfdl.noaa.gov/bibliography/related_files/yh8201.pdf


Analysis of satellite data
Nakazawa, 1986, 
1987

https://www.jstage.jst.go.jp/article/jmsj1965/64/5/64_5_777/_pdf/-char/en
https://www.jstage.jst.go.jp/article/jmsj1965/66/6/66_6_823/_pdf/-char/en


Analysis of satellite data
Chang 1970 started 
looking at satellite 
images -> Takayabu 
1994, -> Wheeler and 
Kiladis 1999

https://journals.ametsoc.org/view/journals/atsc/27/1/1520-0469_1970_027_0133_wpcpit_2_0_co_2.xml
https://www.jstage.jst.go.jp/article/jmsj1965/72/3/72_3_433/_pdf
https://www.jstage.jst.go.jp/article/jmsj1965/72/3/72_3_433/_pdf
https://journals.ametsoc.org/view/journals/atsc/56/3/1520-0469_1999_056_0374_ccewao_2.0.co_2.xml


Wheeler and Kiladis 1999



Wheeler and Kiladis 1999



Wheeler and Kiladis 1999



Space-Time Coherence and Phase diagrams
U850xPR and U200xPR



Localized Space-Time Spectra

Glonbal Space-Time Spectra

center of 
120o 

window



Identification of tropical waves: spectral filtering
Kiladis 2009
Knippertz 2022

spectral peaks guide 
the definition of the 
spectral regions used 
for filtering (i.e. spectral 
coeficients are zeroed 
outside of those 
regions)

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2008RG000266
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4338


Identification of tropical waves: spectral filtering
Knippertz 2022

Kelvin Wave ~ 
15m/s

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4338


Identification of tropical waves: spectral filtering
Knippertz 2022

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4338


Identification of tropical waves: spectral filtering
Knippertz 2022

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4338


Identification of tropical waves: spectral filtering
Knippertz 2022

Randomized OLR 
fields still look like 
Kelvin Waves after 
filtering

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4338


Identification of tropical waves: spectral filtering
Knippertz 2022

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4338


Identification of tropical waves: spectral filtering
Knippertz 2022

The method *can* 
be used in real -
time applications, 
and even for 
short-range 
forecasts!

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4338


What about other methods?

Knippertz 2022

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4338


?



What about other methods?
Knippertz 2022

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4338


FFT-FFT

Kelvin Waves



Kelvin Waves



Equatorial Rossby Waves



Kiladis 2009

Maps of anomalous Tb (shading), geopotential height 
(contours), and wind (vectors) associated with a −20 K 
perturbation in Kelvin wave Tb at the base point 7.5°N, 
172.5°E, for (a) day 0 at 850 hPa, (b) day +2 at 850 hPa, 
and (c) day 0 at 200 hPa. The contour interval is 5 m in 
Figures 7a and 7b and 10 m in Figure 7c, with negative 
contours dashed. Dark (light) shading is for negative 
(positive) Tb perturbations of ±10 K and 3 K. Tb and 
wind vectors are locally significant at the 95% level, with 
the largest vectors around 2 m s−1.

Observed structure of CCEWs 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2008RG000266


Kiladis 2009

Maps of anomalous Tb (shading), geopotential height 
(contours), and wind (vectors) associated with a −20 K 
perturbation in Kelvin wave Tb at the base point 7.5°N, 
172.5°E, for (a) day 0 at 850 hPa, (b) day +2 at 850 hPa, 
and (c) day 0 at 200 hPa. The contour interval is 5 m in 
Figures 7a and 7b and 10 m in Figure 7c, with negative 
contours dashed. Dark (light) shading is for negative 
(positive) Tb perturbations of ±10 K and 3 K. Tb and 
wind vectors are locally significant at the 95% level, with 
the largest vectors around 2 m s−1.

Observed structure of CCEWs 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2008RG000266
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What are the mechanisms underlying convectively 
coupled waves (CCEW) ?

How do convective parametrizations impact the 
simulation of CCEWs ?

Are CCEWs important for sub-seasonal predictions 
within and outside the tropics?



Composites: KW over the Pacific - JJA

• Day 0 in the composites correspond to  peak 
dates in CCKW filtered amplitude at a basepoint;

• Shading shows precipitation anomalies and 
contours show zonal winds at 200hPa.
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Composites: KW over the Pacific - JJA

• Day 0 in the composites correspond to  peak 
dates in CCKW filtered amplitude at a basepoint;

• Shading shows precipitation anomalies and 
contours show zonal winds at 200hPa.

mm/day

JJA 
Obs

JJA
Forecast

juliana.dias@noaa.gov

CCEW amplitude is 
underestimated in the ECMWF



Composites: KW over the Pacific - JJA

mm/day

JJA 
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JJA
Forecast

juliana.dias@noaa.gov

JJA Tropical Pacific 
forecasts is 

somewhat improved 
when a CCKW is 

present

∆APC



KW over the Pacific: JJA, MAM, SON, DJF
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KW over the Pacific: JJA, MAM, SON, DJF
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KW over the Pacific: JJA, MAM, SON, DJF
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KW over the Pacific: JJA, MAM, SON, DJF
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