Stochastic Lattice Models for Clouds and Parameterization of Organized Convection

Boualem Khouider

ICTP/PIMS summer school, July 1-19, 2024.

- Lecture 1: Stochastic modelling, Markov processes, Theory and Simulation (9 am - 10:30 am); Chapter 4 and Section 10.2.
- Lecture 2: The stochastic multicloud model (11 am 12:30 pm); Chapter 10: Sections 10.3 to 10.6
- Hands-on activities (2:30 pm 3:45 pm):
- Lecture 3: Waves and convective organization in the SMCM (4:00 pm - 5:15 pm); Chapter 11.

Lecture 1

Monte Carlo Simulation, Markov Chains, and the Birth-Death Process

Discrete-time Markov chains

Limiting distribution and detailed balance

Random Walk

Poisson Process

Continuous time Markov Chains

Kolmogorov backward and forward equations

Birth and death process

A stochastic model for convective inhibition

The microscopic stochastic model for CIN: the Ising model

The coarse grained stochastic model for CIN

The transition probability matrix and Gillespie's Algorithm Numerical results

Coupling the CIN model to a Toy GCM

Mean-field regime and effect of CIN on CC-Waves Effect of stochastic fluctuations on climate dynamics

Monte Carlo Simulation

- Markov Chain Monte Carlo: sample from complex or unknown distribution (Steward 1994; Robert and Cassella 2007)
- Construct a Markov process whose equilibrium distribution is the target distribution
- First need to generate random numbers. The typical command "rand" generates pseudo-random numbers; periodic sequences of floating-point numbers with very large periods!
- Monte Carlo Integration

Monte Carlo Integration

Law of large numbers:

 $X_1, X_2, \cdots, X_n, n \ge 2$ I.I.D's with common mean μ and common standard deviation, σ .

Sample mean:
$$\mu \approx \bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j.$$
 (1)

 $E(\bar{X}_n) = \mu$ (unbiased estimation).

$$Var[\bar{X}_n] = \frac{1}{n^2} \sum_{j=1}^n Var[X_j] = \frac{\sigma^2}{n}$$
 Slow Convergence: $O(1/\sqrt{n})$

► For integrals on [0,1]:

$$I = \int_0^1 g(x) dx = E[g(U)], U \sim \mathcal{U}([0, 1])$$

For general $\int_a^b h(x) dx$? [a, b] can be infinite!

Sampling arbitrary distributions

Inverse tranform method: for a pdf f on [a, b]. CDF is a uniform distribution.

$$U = F_X(X) = \int_{-\infty}^X f_X(x) dx \sim \mathcal{U}([0,1])$$
Conversely $X = F^{-1}(U) \sim f$:

$$P(\{X \le x\}) = P(\{F^{-1}(U) \le x\}) = P(\{U \le F(x)\}) = F(x).$$

 Acceptance-rejection: When F(x) is not easy to invert:
 Take a sample Y from g(x) such that Kg(x) ≥ f(x);
 Accept sample if U = G⁻¹(Y) ≤ f(Y)/Kg(Y), reject otherwise. K sets the acceptance rate: K ~ 1/r (See Exercise 1.)

Discrete-time Markov chains

- A sequence X_t of random variables is called a stochastic processes. Can be continuous or discrete.
- Discrete Markov chain (Markov/ memoryless property)

$$P\{X_{n+1} = x_j | X_n = x_i, X_{n-1} = x_k, \cdots, X_0 = x_l\} = P\{X_{n+1} = x_j | X_n = x_i\}$$

Homogeneous or stationary Markov chain:

$$P\{X_{n+1} = x_j | X_n = x_i\} \equiv P\{X_1 = x_j | X_0 = x_i\}$$

Transition Probability Matrix

$$P = [P_{ij}]_{i,j\geq 0} = P\{X_{n+1} = x_j | X_n = x_i\}$$

P is a stochastic matrix: rows sum to 1 & entries ≥ 0.
 Chapmann-Kolmogorov

$$P_{ij}^{(n+m)} = \sum_{k=0}^{\infty} P_{ik}^{(n)} P_{kj}^{(m)}, i, j = 0, 1, 2, \cdots$$

(n-step transition matrix) $P^{(n)} = P^n = P \times P \times \cdots \times P$.

Equilibrium Distribution, Time reversibility, detailed balance and limiting distribution

- A Markov chain is in equilibrium if Prob{X_n = x_j} = Prob{X_m = x_j}, n ≠ m.
- Limiting distribution
 π_j = lim_{n→∞} Prob{X_n = x_j|X₀ = x_i} ≡ (Pⁿ)_{ij}

 When π_j exists, it satisfies π_j = ∑_{i=0}[∞] π_iP_{ij} or π = πP.
 Consider reversed time process · · · , X_{n+1}, X_n, X_{n-1}, · · · .

It is a Markov chain with transition matrix

$$Q_{ij} \equiv P\{X_m = x_j / X_{m+1} = x_i\} = \frac{\pi_j}{\pi_i} P_{ji}.$$

• The Markov chain is reversible is said to be $Q_{ij} = P_{ij}$

$$\iff \pi_i P_{ij} = \pi_j P_{ji}$$
: detailed balance

i.e, in the long run the rates for transitions from i to j and back are equal.

Random Walk

Random steps to left or right ... M + 1 positions: $0, 1, 2, \dots, M$

 $P_{i,i+1} = \alpha_i, \ P_{i,i-1} = 1 - \alpha_i, \ i = 1, \cdots, M-1; \ P_{0,1} = 1, P_{M,M-1} = 1.$

Limiting distribution Satisfies Detailed balance:

 $\pi_0 = (1 - \alpha_1)\pi_1, \ \pi_i \alpha_i = \pi_{i+1}(1 - \alpha_{i+1}), \ 1 \le i \le M - 2, \ \pi_{M-1}\alpha_{M-1} = \pi_M.$

Equilibrium/limiting distribution:

$$\pi_0 = \left[1 + \sum_{j=1}^M \prod_{l=1}^j \frac{\alpha_{l-1}}{1 - \alpha_l} \right]^{-1} \text{ and } \pi_j = \pi_0 \prod_{l=1}^j \frac{\alpha_{l-1}}{1 - \alpha_l}.$$

• When $\alpha_j = 0.5, j = 1, 2, \cdots, M - 1$, we get $\pi_0 = \pi_M = 1/2M$ and $\pi_j = 1/M$, for $1 \le j \le M - 1$.

Poisson process

- A counting process N_t that counts the number of events of a certain type that occur by some time t > 0.
- Sequence of Poisson random variables with mean λt .
- ▶ Time increments are (independent) Poisson random variables:

$$P\{N_{t+s} - N_t = k\} = P\{N_s - N_0 = k\} = P\{N_s = k\} = e^{-\lambda s} \frac{(\lambda s)^{\kappa}}{k!}$$

For a small time increment:

$$P\{N_{t+h} - N_t = 1\} = \lambda h + o(h) \text{ and } P\{N_{t+h} - N_t \ge 2\} = o(h)$$

- Inter-arrival times (T₁, T₂, · · · , T_n time increments between successive events) are i.i.d exponential with parameter λ (mean 1/λ: average waiting time between events).
- Event waiting times $S_n = \sum_{j=1}^n T_j$ are $\Gamma(n, \lambda)$
- Memoryless: Exponential is only distribution such that

$$P\{T > t + s\} = P\{X > t\}P\{X > s\}.$$

Continuous time Markov Chains

▶ Stochastic process X_t , $t \in [0, +\infty)$ s.t. (Markov property)

$$P\{X_{t+s} = x_j/X_s = x_i, X_u = x_u, 0 \le u \le s\} = P\{X_{t+s} = x_j/X_s = x_i\}.$$

Homogeneous/stationary if for all s > 0,

$$P\{X_{t+s} = x_j / X_s = x_i\} = P\{X_t = x_j / X_0 = x_i\} \equiv P_{i,j}(t)$$

transition probability matrix P(t)— $(P^n$ in the discrete case.) Waiting time is exponential R.V. \iff Markov property:

$$\mathcal{T}_i = \inf\{s > 0 \text{ such that } X_{t+s}
eq x_i \text{ given that } X_t = x_i\}$$

- ▶ Times T_{ij} of transitions $x_i \longrightarrow x_j$ exponential R.V.'s.
- We have $T_i = \min_{j \neq i} T_{ij}$, by construction
- ▶ If we denote by q_{ij} the rates of the T_{ij} 's and v_i the rate of T_i , then $v_i = \sum_{j \neq i} q_{ij}$.
- For small time increment

 $P_{ii}(h) = P\{T_i > h\} = 1 - v_i h + o(h); P_{ij}(h) = P\{T_{ij} < h\} = q_{ij} h + o(h).$

• Infinitesimal generator matrix $R = [R_{ij}]$:

$$R_{ii} = -v_i$$
 and $R_{ij} = q_{ij}$, when $i \neq j$,
11/31

Kolmogorov backward and forward equations Chapman-Kolmogorov equations

$$P_{ij}(t+h) - P_{ij}(t) = \sum_{k=0}^{\infty} P_{ik}(h) P_{kj}(t) - P_{ij}(t) = \sum_{k \neq i} P_{ik}(h) P_{kj}(t) - [1 - P_{ii}(h)] P_{ij}(t).$$

• Divide both sides by $h, h \rightarrow 0$ yields Backward equations

$$rac{d}{dt}P_{ij}(t)=\sum_{k
eq i}q_{ik}P_{kj}(t)-v_iP_{ij}(t).$$

• Equivalently C-K: $P_{ij}(t+h) = \sum_{k=0}^{\infty} P_{ik}(t)P_{kj}(h)$, which yields

$$rac{d}{dt}P_{ij}(t)=\sum_{k
eq j}q_{kj}P_{ik}(t)-v_jP_{ij}(t)$$
 : Forward Eqns.

In matrix form

P' = RP (backward eqns.); & P' = PR(forward eqns.)

• With initial conditions $P_{ij}(0) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$ we have the solution

 $P(t) = \exp(tR)$ (Matrix exponential: Hard to evaluate when R is large.).

Limiting distribution and detailed balance

- Limiting distribution: $\lim_{t\to\infty} P_{ij}(t) = P_j$.
- Steady state of forward equations:

$$\sum_{k \neq j} q_{kj} P_k = v_j P_j, \ 0 \le P_j \le 1, \ \sum_{j=0}^{\infty} P_j = 1.$$
 Equilibrium distribution

The Markov chain is said to be time reversible if

 $P_i q_{ij} = P_j q_{ji}, i, j = 0, 1, 2, \cdots$ (Detailed balance)

Queueing theory example: When in service, a certain machine breaks down at a time rate μ > 0. When broken the repair shop waiting time has rate λ > 0. Find the fraction of time the machine is in service.

Answer: Set State 1: machine in service & State 0: Machine at the repair shop. Detailed balance:
 μp₁ = λp₀ ⇒ p₁ = λ/(λ+μ).
 (Probability of the quicker to go first!)

Birth and death process

- Customers arrive in a shop according to a Poisson process with rate λ > 0. Shop has m tellers and each serve customers with a service time rate μ > 0. Customers leave the shop as soon as they are served.
- The number of customers in the shop at time t, Xt, is a Markov chain. Transition rates:

 $q_{n,n+1} = \lambda$, for $n \ge 0$, $q_{n,n-1} = n\mu$ for $1 \le n \le m$, $q_{n,n-1} = m\mu$ for $n \ge m+1$.

 $v_0 = \lambda, v_n = \lambda + n\mu$, for $1 \le n \le m$, and $v_n = \lambda + m\mu$ if $n \ge m + 1$

- Infinitesimal matrix is tridiagonal. State space is infinite. It becomes bounded if we set q_{N,N+1} = 0.
- We can assume in general $q_{n,n+1} = \lambda_n$ (depends on *n*).

Birth and death process-continued.

Forward equations at steady state:

$$\lambda_0 P_0 = \mu_1 P_1,$$

 $(\lambda_n + \mu_n) P_n = \mu_{n+1} P_{n+1} + \lambda_{n-1} P_{n-1}, n \ge 1.$

Yields detailed balance for birth and death process:

$$\lambda_n P_n = \mu_{n+1} P_{n+1}, \ n \ge 0$$

This yields the equilibrium solution

$$P_n = \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_0}{\mu_n\mu_{n-1}\cdots\mu_1}P_0, \quad P_0 = \left[1 + \sum_{j=0}^{\infty} \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_0}{\mu_n\mu_{n-1}\cdots\mu_1}\right]^{-1}$$

Necessary condition for limiting distribution to exist

$$\sum_{j=0}^{\infty} \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_0}{\mu_n\mu_{n-1}\cdots\mu_1} < \infty$$

▶ For the queueing theory example $\iff \lambda/m\mu < 1!$

A Stochastic Model for Convective Inhibition (CIN)

CIN is an energy barrier for convection.

The microscopic stochastic model for CIN: the Ising model

Define an order parameter on (microscopic) lattice

Intuitive rules

- A) If a CIN site is surrounded by mostly CIN sites, then it has higher probability to remain a CIN site.
- B) If a PAC site is surrounded by mostly CIN sites, then it has higher probability to switch to a CIN site.
- C) The large-scale flow, $\vec{u_j}$, supplies an external potential $h(\vec{u_j})$ that can modify the microscopic dynamics according to whether external conditions favour CIN or PAC.

Hamiltonian energy function and Gibbs measure

Microscopic energy for CIN:

$$H_h(\sigma_I) = -\frac{1}{2} \sum_{x} \sum_{y \neq x} J(|x - y|) \sigma_I(x) \sigma_I(y) - h \sum_{x} \sigma_I(x).$$

• Nearest neighbour interactions: $J(r) = \begin{cases} J_0 & \text{if } r < 1\\ 0 & \text{otherwise} \end{cases}$

- For J₀ > 0, σ_I(x) = 1 is the configuration with lowest energy and σ_I(x) = 0 has the highest energy (so are checkerboards). The opposite happens when J₀ < 0.
- External potential $h \equiv h(\vec{u_j})$ modifies *this ground-state*.
- Hamiltonian dynamics: Grand canonical Gibs equilibrium measure

$$G(\sigma_I)=\frac{1}{Z}e^{-\beta H_h(\sigma_I)},$$

 β is the inverse temperature Z is partition function (hard to compute!).

Spin-flip rules and Arrhenius dynamics

A configuration flips randomly, one site at a time

$$\sigma_l^{x}(y) = \begin{cases} 1 - \sigma_l(x) & \text{if } y = x \\ \sigma_l(y) & \text{if } y \neq x \end{cases} = \begin{cases} q_{01} \\ q_{10} \end{cases}$$

Markov-jump process with Arrhenius rates

$$c(\sigma_I, x) = \begin{cases} \frac{1}{\tau} e^{-\beta V(x)}, & \sigma_I(x) = 1\\ \frac{1}{\tau}, & \sigma_I(x) = 0 \end{cases}$$

 $V(x) \equiv \Delta H = H_{\{x=0\}} - H_{\{x=1\}} = \frac{1}{2} \sum_{z \neq x} J(|x-z|)\sigma_I(z) + h$ Detailed balance satisfied!

$$q_{01}G(H_h(\{x=0\}) = \frac{1}{\tau}e^{-\beta(H_h(\{x=1\}) - H_h(\{x=0\})}G(H_h(\{x=0\}))$$
$$= q_{10}G(H_h(\{x=1\}))$$

Guarantees that G is the limiting distribution of the Markov process.

This is how MCMC works!

The coarse grained stochastic model for CIN

Fine and Coarse lattices: $\Lambda \equiv \frac{1}{ma}\mathbb{Z} \cap [0,1]$ and $\Lambda_c \equiv \frac{1}{m}\mathbb{Z} \cap [0,1]$.

$$D_k \equiv rac{1}{q} \{1, 2, ..., q\}, orall k = 1, ..., m.$$

► Coarse-grained process: $\eta_t(k) = \sum_{y \in D_k} \sigma_{I,t}(y) \in \{0, 1, ..., q\}^{\Lambda_c}.$

 Coarse grained Hamiltonian: *H*(η) = -¹/₂ ∑_{l ∈ Λ_c} ∑_{k ≠l} *J*(k, l)η(k)η(l) - ¹/₂ *J*(0, 0) ∑_{l ∈ Λ_c} η(l)(η(l) - 1) - h ∑_{l ∈ Λ_c} η(l).

 Birth-death process:

$$Prob\{\eta_{t+\Delta t}(k) = n + 1 | \eta_t(k) = n\} = C_a(k, n)\Delta t + o(\Delta t)$$

$$Prob\{\eta_{t+\Delta t}(k) = n - 1 | \eta_t(k) = n\} = C_d(k, n)\Delta t + o(\Delta t)$$
(2)
$$Prob\{\eta_{t+\Delta t}(k) = n | \eta_t(k) = n\} = 1 - (C_a(k, n) + C_d(k, n))\Delta t + o(\Delta t)$$

$$C_{a}(k,n) = \frac{1}{\tau_{I}}[q - \eta(k)]; \quad C_{d}(k,n) = \frac{1}{\tau_{I}}\eta(k)e^{-\beta\bar{V}(k)}$$
$$\bar{V}(k) = \sum_{l \in \Lambda_{c}, l \neq k}\bar{J}(k,l)\eta(k) + \bar{J}(0,0)(\eta(k)-1) + h; \quad \bar{J}(0,0) = \frac{J_{0}}{q-1}$$

The transition probability matrix and Gillespie's Algorithm

The transition probabilities:

$$P'_{i,j}(t) = C_d(j+1,k)P_{i,j+1}(t) + C_a(j-1,k)P_{j,j-1}(t) - (C_a(j,k) + C_d(j,k))P_{i,j}(t), \ j = 0, \cdots, q$$
(3)

Solution: $[p_t(j, j')] = e^{tA}$ with A tri-diagonal matrix etc.

• This can be expansive to compute.

- Gillespie's exact algorithm:
 - 1) Given the state η_t of the process at time $t, 0 \le t \le \Delta T$.
 - 2) Draw a uniform random number r_1 from [0, 1] and set $s = -\frac{1}{\lambda + \mu} \ln(r_1)$.
 - 3) If $s + t > \Delta T$, then set $t = \Delta T$ and terminate the algorithm. Otherwise (the transition is accepted) we draw a second uniform random number r_2 in [0, 1].

4) If
$$r_2 < \lambda/(\lambda + \mu)$$
, set $\eta_{t+s} = \eta_t + 1$.
otherwise set $\eta_{t+s} = \eta_t - 1$.

5) Set t = t + s. If $t < \Delta T$ goto 1.

Numerical tests for the coarse graining process

Evolution in time of the random process η_t/q . single realization v.s. ensemble average (100): $\tau_I = 3$ hours, q = 5

Increasing q - q = 40Convergence to Mean field dynamics.

Coupling the CIN model to a Toy GCM

2d-Shallow water equations (Majda and Shefter, 2001)

$$\begin{array}{ll} \frac{Du_1}{Dt} & -\bar{\bar{\alpha}} \frac{\partial \theta}{\partial t} = -C_D u_1 & q_1 = MM_c, \quad M_c = \sigma_c (CAPE)^{1/2} \\ \frac{D\theta_1}{Dt} & -\bar{\alpha} \frac{\partial u_1}{\partial x} = q_1 + \frac{1}{1+s} Q_R^0 - \frac{1}{1+s} \frac{\theta_1}{\tau_D} & m_+ = (1-\mu)m_c + \mu m_s \\ h \frac{\partial \theta_{eb}}{\partial t} = D(\theta_{eb} - \theta_{em}) + C_\theta(\theta_{eb}^* - \theta_{eb}), & D = m_e - m_-; m_- = \frac{1-\Lambda}{\Lambda} m_+, \\ \frac{\partial q_2}{\partial t} = \frac{1}{\tau_s} (sq_1 - q_2) & m_s = M^{-1}q_2, m_e = (1-\sigma_c)w_e^- \equiv -(m_c + H_m u_x)^+ \end{array}$$

- A dynamically slaved second baroclinic mode to includes effect of stratiform evaporative cooling
- μ is the stratiform instability parameter!
- Wind enhanced surface evaporation and friction (WISHE): $C_x = \frac{C_x^0}{h} \sqrt{u_0^2 + u_1^2}$
- ► σ_c convection area coverage- important stability parameter; CCW's Instability when $\sigma_c \gtrsim 0.0014$.
- Two-way coupling with the mesoscopic CIN model:

$$h = -[\tilde{\alpha}\theta_{eb} + (1 - \tilde{\alpha})m_s], \quad \sigma_c = \sigma_c^+ - \sigma_I(\sigma_c^+ - \sigma_c^-)$$

Mean-field regime

Majda and Khouider (PNAS, 2002)

The mean-field equation for (mesocopic CIN coverage)

$$\frac{\partial \sigma_I}{\partial t} = \frac{1}{\tau_I} \left\{ 1 - \sigma_I \left[1 + e^{\left(-\beta h - \beta J * \sigma \right)} \right] \right\}$$

$$J * \sigma_I \approx J_0 \left[\frac{1}{4} \sigma_I (x_j - \Delta x) + \frac{1}{2} \sigma_I (x_j) + \frac{1}{4} \sigma_I (x_j + \Delta x) \right]$$

• Multiple equilibria: $h = \bar{h}$ Radiative convective equilibrium state.

$$F(\bar{\sigma}_I) \equiv e^{-\beta \bar{h}} (1 - \bar{\sigma}_I) - \bar{\sigma}_I e^{-\lambda J_0 \bar{\sigma}_I} = 0; \quad \sigma_* = \frac{1}{1 + e^{-\beta \bar{h}}}$$

Interaction of CIN with CC-waves

- Start with an RCE states in which CCW's are unstable, $\bar{\sigma}_c = 0.002$, $\tau_I = 72$ h; Use the mean field equation for CIN.
- ▶ 100 day simulation: Wave train of nonlinear waves (13 m/s).
 - Higher Mean CAF: $\bar{\sigma}_c \approx 0.0035.$
 - CIN fluctuation further destabilize the system.

- CIN and CAPE are out of phase as in a predator-prey system.
- ► CAPE is in phase with rising [™] air (convergence).

Wave structure

- Front to rear downward tilted heating, temperature, and wind anomalies
- Warm lower troposphere in suppressed phase of wave characterized by descending motion
- Warm upper troposphere coinci with active convection (heating and rising motion.

Multiple equilibria regime

▶ Initialize one half of domain with high CIN equilibrium and the other with a low CIN equilibrium: $\sigma_c^- = 0.001$, $\sigma_c^+ = 0.01$.

Simulation results depend on τ_I

- For large τ₁ (72h): similar results as above; CCWaves wipe out CIN.
- For small τ₁ (3h): steady state pattern with spikes and plateaus of CIN and CCWaves that **do not carry CIN**.
- For intermediate τ_l (12h): Mixture of plateaus and spikes of CIN and CCWaves that carry CIN as before

Stochastic effects on large scale/climate dynamics

Khouider, Majda and Katsoulakis (PNAS, 2003)

- Couple the Toy GCM with the coarse-grained stochastic model for CIN
- No stratiform contribution $\mu = 0$ (No instability when WISHE is off)
- Mimic Western Pacific/Indian Ocean warm pool

$$\frac{\theta_{eb}^{*}(x)}{\theta_{eb}^{*,0}} = \begin{cases} 1 + A_0 \cos\left(\frac{\pi(x-x_0)}{L_0}\right), & |x-x_0| < \frac{L_0}{2} \\ 1, & |x-x_0| \ge \frac{L_0}{2} \end{cases}$$

Interaction Potential Affects Wave fluctuations

Moderate Walker Forcing: A₀ = 0.5

Interaction potential, βU_0	Time, τ _l , days	Climate, m·s ⁻¹		Fluctuation, m·s ⁻¹		Mean area	Standard deviation,
		a.	<i>a</i> ₊	u′.	u'+	fraction, $\bar{\sigma}_c$	$\langle (\sigma_c - \bar{\sigma}_c)^2 \rangle^{1/2}$
1	5	-0.856	0.855	-0.207	0.214	4.55×10^{-4}	3.00×10^{-4}
1	20	-0.855	0.856	-0.214	0.208	$4.55 imes 10^{-4}$	2.96×10^{-4}
0.01	5	-1.047	1.046	-0.508	0.486	9.96×10^{-4}	3.18×10^{-4}
0.01	20	-1.048	1.040	-0.804	0.676	9.96×10^{-4}	3.15×10^{-4}
-0.01	5	-1.047	1.049	-0.603	0.572	1.00×10^{-3}	3.15×10^{-4}
-0.01	10	-0.923	0.920	-4.497	4.429	1.00×10^{-3}	3.14×10^{-4}
-0.1	5	-0.816	0.867	-4.820	4.727	1.04×10^{-3}	3.11×10^{-4}
-0.1	10	-0.824	0.877	-4.861	4.737	1.04×10^{-3}	3.12×10^{-4}

Strong Walker Forcing: A₀ = 1

Interaction potential, βU_0	Time, τ _I , days	Climate, m·s ⁻¹		Fluctuation, m·s ⁻¹		Mean area	Standard deviation,
		ū.	<i>ū</i> _+	u′.	u'+	fraction, $\overline{\sigma}_c$	$\langle (\sigma_c - \bar{\sigma}_c)^2 \rangle^{1/2}$
1	5	-1.417	1.417	-0.536	0.436	4.56×10^{-4}	3.00×10^{-4}
1	20	-1.415	1.417	-0.330	0.546	$4.56\times10^{.4}$	3.00×10^{-4}
0.01	5	-1.692	1.691	-1.196	1.603	9.96×10^{-4}	3.17×10^{-4}
0.01	20	-1.692	1.691	-1.180	1.266	$9.96 imes 10^{-4}$	3.17×10^{-4}
-0.01	5	-1.693	1.693	-1.421	1.470	1.00×10^{-3}	3.15×10^{-4}
-0.01	10	-1.693	1.693	-1.277	1.243	1.00×10^{-3}	3.16×10^{-4}
-0.1	5	-1.700	1.699	-0.990	1.092	1.04×10^{-3}	3.10×10^{-4}
-0.1	10	-1.700	1.700	-1.447	1.269	1.04×10^{-3}	$3.07 imes 10^{-4}$

- SST forcing doesn't influence stochastic CIN (controlled by local interactions)
- Stronger climate has smaller stochastic fluctuations...more deterministic!

Effect of CIN on Walker circulation

Circumnavigating WISHE waves

 $A_0 = 0.5, \quad au_I = 10 \text{ days (dash)}, \quad eta J_0 = -0.01$

(Low level) Easterlies destabilize eastward moving waves and Westerlies destabilize westward moving waves. This is not physical due to Lack of Persistent Easterlies over Indian Ocean!