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- Models for
Tropical Climate
Dynamics

Waves, Clouds, and Precipitation
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Lecture 1: Stochastic modelling, Markov processes, Theory
and Simulation (9 am - 10:30 am); Chapter 4 and Section
10.2.

Lecture 2: The stochastic multicloud model (11 am - 12:30
pm) ; Chapter 10: Sections 10.3 to 10.6

Hands-on activities (2:30 pm - 3:45 pm):
Lecture 3: Waves and convective organization in the SMCM
(4:00 pm - 5:15 pm) ; Chapter 11.
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Lecture 1
Monte Carlo Simulation, Markov Chains, and the Birth-Death

Process
Discrete-time Markov chains
Limiting distribution and detailed balance
Random Walk
Poisson Process
Continuous time Markov Chains
Kolmogorov backward and forward equations
Birth and death process

A stochastic model for convective inhibition
The microscopic stochastic model for CIN: the Ising model
The coarse grained stochastic model for CIN
The transition probability matrix and Gillespie's Algorithm
Numerical results

Coupling the CIN model to a Toy GCM
Mean-field regime and effect of CIN on CC-Waves
Effect of stochastic fluctuations on climate dynamics
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Monte Carlo Simulation

» Markov Chain Monte Carlo: sample from complex or unknown
distribution (Steward 1994; Robert and Cassella 2007)

» Construct a Markov process whose equilibrium distribution is
the target distribution

P First need to generate random numbers. The typical
command "rand” generates pseudo-random numbers; periodic
sequences of floating-point numbers with very large periods!

» Monte Carlo Integration
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Monte Carlo Integration

> Law of large numbers:
X1, X0, , Xp,n>21.1.D's with common mean p and
common standard deviation, o.

_ 1
Sample mean: w X, = nZ;XJ (1)
J:

E(X,) =p  (unbiased estimation).

n 2
Var[X,] = % Z Var[Xj] = %S|OW Convergence: O(1/+/n)
j=1

» For integrals on [0,1]:

1
= /0 g(x)dx = E[g(U)], U ~ U([0,1]).

» For general fab h(x)dx? [a, b] can be infinite!
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Sampling arbitrary distributions

» Inverse tranform method: for a pdf f on [a, b]. CDF is a
uniform distribution.

X :
U:FX(X):/ Fe(x)dx ~U([0,1])

— 00

— ¢ LX
Conversely X = F~Y(U) ~ f : . Lo e

P{X <x}) = P{F}(U) < x}) = P({U < F(x)}) = F(x).

» Acceptance-rejection: When F(x) is not easy to invert:
> Take a sample Y from g(x) such that Kg(x) > f(x);
> Accept sample if U= G71(Y) < %, reject otherwise.

K sets the acceptance rate: K ~ 1/r (See Exercise 1.)
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Discrete-time Markov chains

> A sequence X; of random variables is called a stochastic
processes. Can be continuous or discrete.
» Discrete Markov chain (Markov/ memoryless property)

P{Xni1 = x;/Xp = xis Xp—1 = Xic, -+, Xo = x1} = P{Xp11 = xj| X, = xi}
» Homogeneous or stationary Markov chain:
P{Xn11 = xj|Xn = xi} = P{X1 = x| Xo = x}
» Transition Probability Matrix
P = [Pjlijz0 = P{Xn1 = x| Xs = xi}
» P is a stochastic matrix: rows sum to 1 & entries> 0.
» Chapmann-Kolmogorov

P = ZP,k P i j=0,1,2,
k=0

(n-step transition matrix) P(" = P" = P x P x --- x P.
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Equilibrium Distribution, Time reversibility, detailed
balance and limiting distribution

» A Markov chain is in equilibrium if
Prob{X, = x;} = Prob{Xy, = x;}, n# m.
» Limiting distribution
7 = limp_ o0 Prob{X, = x;|Xo = x;} = (P");;
» When 7; exists, it satisfies m; = Y20 m;Pjj or m = wP.
» Consider reversed time process - -+ , Xp41, Xp, Xn—1, - .
» |t is a Markov chain with transition matrix

-
Qj = P{Xm = xj/Xnt1 =X} = ;J'DJ,

1

» The Markov chain is reversible is said to be Q;; = Pj
<= m;P;j =m;Pj: detailed balance

i.e, in the long run the rates for transitions from i to j and
back are equal.
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Random Walk

> Random steps to left or right ... M + 1 positions:
0,1,2,--- M
Piiy1 =0, Pijioi=1-aj,i=1,--- M=1,Py1 =1 Pyny-—1 =1
» Limiting distribution Satisfies Detailed balance:
mo = (1—aq)m, micy = miv1(1—aiy1), 1 <i < M=2, my_1apm—1 = Tum.

» Equilibrium/limiting distribution:

. -1
M

J
o = 1+ZH101_01” and ﬂj—ﬂoll_lllai_;/.

j=11=1

» When a; = 0.5,/ =1,2,--- M —1, we get
mo=7pm=1/2M and m; = 1/M, for 1 <j < M —1.
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Poisson process
» A counting process N; that counts the number of events of a
certain type that occur by some time t > 0.
» Sequence of Poisson random variables with mean At.
» Time increments are (independent) Poisson random variables:

—As (As)k
P{N¢ys—N; = k} = P{Ns—No = k} = P{Ns = k} = e T
» For a small time increment:

P{N¢ p—N; =1} = Ah+o(h) and P{Nesp—N; > 2} = o(h)

» Inter-arrival times ( Ty, Tp,- -, T, time increments between
successive events) are i.i.d exponential with parameter A
(mean 1/)\: average waiting time between events).

> Event waiting times S, = >_7_; T; are '(n, \)

> Memoryless: Exponential is only distribution such that

P{T > t+s}=P{X>t}P{X >s}.
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Continuous time Markov Chains
» Stochastic process X;, t € [0,400) s.t. (Markov property)

P{Xt1s = xj/Xs = xi, Xy = x4, 0 < u < s} = P{ X5 = X/ Xs = X}

» Homogeneous/stationary if for all s > 0,
P{Xt+5 = XJ/XS = X,'} = P{Xt = XJ/X() = X,'} = P,',j(t)

transition probability matrix P(t)—(P" in the discrete case.)

> Waiting time is exponential R.V. <= Markov property:
T; = inf{s > 0 such that X;.s # x; given that X; = x;}

» Times Tj; of transitions x; — x; exponential R.V.’s.
» We have T; = min;; Tj;, by construction
> If we denote by gj; the rates of the Tj's and v; the rate of T;,

then v; =3 ., qjj.
» For small time increment

P,',‘(h) = P{T, > h} = 1—V,‘h—|—0(h); P,J(h) = P{TU < h} = qUh+O(h)
» Infinitesimal generator matrix R = [Rj]:

Ri = —vi and Rjj = qjj, when i # j,
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Kolmogorov backward and forward equations
» Chapman-Kolmogorov equations

U(t+h)_PU Z'le(h ij Z'le ij t)_[l_PH(h)]Plj()
k=0 ki

» Divide both sides by h, h — 0 yields Backward equations

Pu(t qukpkj viPj(t).

k#i
» Equivalently C-K: Pjj(t + h) = Y32 Pik(t)Pkj(h), which
yields
d
EPU(t) = Z qij Pic(t) — vjP;(t) : Forward Eqns.
k#j

» In matrix form

P" = RP (backward eqns.); &P’ = PR(forward eqns.)
1 ifi=y

» With initial conditions P;j(0) = d;; = { 0 otherwice

have the solution

P(t) = exp(tR) (Matrix exponential: Hard to evaluate when R is Iar%e/.zli



Limiting distribution and detailed balance

>
| 2

Limiting distribution: lim:_, Pjj(t) = P;.

Steady state of forward equations:
> quPe=viP;, 0< P <1, > P;j=1. Equilibrium distribution
k#j Jj=0

The Markov chain is said to be time reversible if
Piqj = P;qji, i,j=0,1,2,--- (Detailed balance)

Queueing theory example: When in service, a certain
machine breaks down at a time rate y > 0. When broken the
repair shop waiting time has rate A > 0. Find the fraction of
time the machine is in service.

Answer: Set State 1: machine in service & State 0: Machine

at the repair shop. Detailed balance:

ppL= AP0 => p1= 37

(Probability of the quicker to go first!)
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Birth and death process

>

>

>

Customers arrive in a shop according to a Poisson process
with rate A > 0. Shop has m tellers and each serve customers
with a service time rate 4 > 0. Customers leave the shop as
soon as they are served.

The number of customers in the shop at time t, X;, is a
Markov chain. Transition rates:

Gnnt1 = A, for n>0,qpp—1 = np for 1 < n < m,
Gnn—1 = mu forn > m+ 1.
vo=MANVp=A+nu, for1 <n<m, and v, =X+ mu if
n>m+1

Infinitesimal matrix is tridiagonal. State space is infinite. It
becomes bounded if we set gy n41 = 0.

We can assume in general g p+1 = A, (depends on n).
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Birth and death process—continued.

» Forward equations at steady state:

AoPo = pa P,
()\n +Mn)Pn = Hn—l—an—i-l + Ap—1Pp—1,n > 1.

» Yields detailed balance for birth and death process:

MPn = pnt1Pny1, n >0
» This yields the equilibrium solution

-1
p, = Mn=1An—2 O po, Py = 1+Zn1n2 0 )
Hnfn—1 """ K1 =0 HnHn—1-ccH1

» Necessary condition for limiting distribution to exist

o0

Z )\n—lAn—2 co )\0 < 00

=0 HnHn—1-"p1

» For the queueing theory example <= \/mpu < 1!
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A Stochastic Model for Convective Inhibition (CIN)

A Height Current state of the environment
'

High precipitation

16 km
] 500 m Planetary Boundary Layer
Virtiual Temperature
— SEA SURFACE

CIN is an energy barrier for convection.
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The microscopic stochastic model for CIN: the Ising model

» Define an order parameter on (microscopic) lattice

1, at a CIN site
oi(x) =

0, ata PACsite

» Area coverage for GCM grid ceII of size\xx:rr

1 "(j+1/2)A - h
&/ (jAx) = 7/ " o1 (x)dx. ¢ : : e :
Ax J(j—1/2)Ax (G-DAx  G-1/2Ax  jAx G+U2)Ax  (+DAx

» Intuitive rules
A) If a CIN site is surrounded by mostly CIN sites, then it has
higher probability to remain a CIN site.
B) If a PAC site is surrounded by mostly CIN sites, then it has
higher probability to switch to a CIN site.
C) The large-scale flow, &j, supplies an external potential h(;)
that can modify the microscopic dynamics according to

whether external conditions favour CIN or PAC.
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Hamiltonian energy function and Gibbs measure
» Microscopic energy for CIN:

(o) = 3 3 3 Hx — yor(x)oily) — h'S o)

X y#x

Jo if r<l1

» Nearest neighbour interactions: J(r) = { 0 otherwise

» For Jy > 0, 0y(x) =1 is the configuration with lowest energy
and o/(x) = 0 has the highest energy (so are checkerboards).
The opposite happens when Jy < 0.

> External potential h = h(u;) modifies this ground-state.

» Hamiltonian dynamics: Grand canonical Gibs equilibrium
measure 1

G(o)) = ?efﬁHh(U/)’

B is the inverse temperature Z is partition function (hard to
compute!).
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Spin-flip rules and Arrhenius dynamics
» A configuration flips randomly, one site at a time

iy 1=0o((x) ify=x _ | qm
Jl(y){ ai(y) if y #x {Cho

» Markov-jump process with Arrhenius rates

16-8V(), gy(x) = 1

c(o1,%) = { 1 oi(x)=0

V(x) = AH = Hpmoy — Hixmty = 3 2,0 J(IX — 2)ou(2) + h
» Detailed balance satisfied!
1

qo1G(Hh({x =0}) = 7e_f8(Hh({X:l})_Hh({XZO})G(Hh({x =0})
T

= quG(Ha({x =1})

Guarantees that G is the limiting distribution of the Markov

process.
This is how MCMC works!
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The coarse grained stochastic model for CIN
» Fine and Coarse lattices: A= miqZﬁ [0,1] and Ac = LZ N0, 1].

1
Dy=={1,2,....q},Yk=1,...m
q

» Coarse-grained process: 7:(k) = Z ore(y) € {0,1,...,q}"".
y€Dx
» Coarse grained Hamiltonian:
=—c Z > J(k,/)n(k)n()**JO 0) > n(N(n() —1) —h > n(h)
2 | Ehe kA, kAl IeNe IeNe

» Birth-death process:
Prob{nesrat(k) = n+ 1|n:(k) = n} = Ci(k, n)At + o(At)
Prob{nesae(k) = n— 1ne(k) = n} = Ca(k, n)At +o(At)  (2)
Prob{n:+at(k) = n|n:(k) = n} =1 — (Cs(k, n) + Cy(k, n))At + o(At)

Co(k,n) = %[q —n(k);  Ca(k,n) = Tln(k)e—ﬂwk)

= > J(kIyn(k) + J(0,0)(n(k) — 1) + h; J(0,0) =
1€, I#k a1




The transition probability matrix and Gillespie's Algorithm
» The transition probabilities:

Pij(t) = Calj + 1, k)Pija(t) + G(j — 1, k) Pjj-a(t)
*(Ca(jyk)‘i’cd(jak))’pi,j(t)v JZO, » q (3)

Solution: [p:(j,j')] = e* with A tri-diagonal matrix etc.

» This can be expansive to compute.
> Gillespie's exact algorithm:
1) Given the state 7, of the process at time t,0 <t < AT.
2) Draw a uniform random number r; from [0, 1] and set
s= —ﬁl# In(ry).
3) If s+t > AT, then set t = AT and terminate the algorithm.
Otherwise (the transition is accepted) we draw a second
uniform random number r, in [0, 1].
4) If n <N/ (AN+p), set neps = ne + 1.
otherwise set 1y =1y — 1.
5) Sett=t+s. If t < AT goto 1.
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Numerical tests for the coarse graining process

birth-death single realization: g=5, =3 hours, h=0 birth-death average over 100 realizations: g=5, =3 hours, h =0

E i st b o

M i g A AP A
01 Lk Ll T T Pt
ol o
T &« 6 8 0w 15w
time (nondim unis, T~ 8 hours, 1E46 fer) . time (nondim units, T~ 8 hours, 1E46 iter.)

Evolution in time of the random process 71;/q. single realization v.s. ensemble average (100): 7 = 3 hours, g =5
birth-death single realization: q=40, 7=3 hours, h =0 birth-death average over 100 realizations: q=40,7,=3 hours, h = 0

R i i

[

03
02 02 [
o o1
o O P T 4+ 5 85 w0 416 %
time (nondim units, T= 8 hours, 1E+46 iter.) time (nondim units, T= 8 hours, 1E+6 iter.)

Increasing g — g = 40
Convergence to Mean field dynamics. 231



Coupling the CIN model to a Toy GCM
» 2d-Shallow water equations (Majda and Shefter, 2001)

Duy _ 00 1/2

Pu 59 _ @ = MM, M. = oc(CAPE)
Dt ot

DOy _ 0 4 1 Qo 1 60 a Yme +

—a— =q + —— — — my = (1 — p)m, pwm.

Dt Ox 1+s Rk 1+s7p N ¢ <
0¢p 1—-A

h—= = D(0cp — Oem) + Ce(egl, — Oeb), D=me—m_;m_ = my,
ot A

9qo 1 1 —

— = —(sq1 — q2) ms =M "qa,me = (1 — UC)WE = —(mc + Hm“x)Jr
at Ts

» + A dynamically slaved second baroclinic mode to includes
effect of stratiform evaporative cooling
» 4 is the stratiform instability parameter!
» Wind enhanced surface evaporation and friction (WISHE):
G = CTB\/ us + u3
P> 0. convection area coverage— important stability parameter;
CCW's Instability when o, = 0.0014.
» Two-way coupling with the mesoscopic CIN model:

h=—[G0, + (1 — @)ms], oc=0F —oi(cl — o)
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Mean-field regime

Majda and Khouider (PNAS, 2002)
» The mean-field equation for (mesocopic CIN coverage)

o o d )

1 1 1
Jxop = hy {Zo'/(xj- — Ax) + Eal(xj) + Zo-l(xj + Ax)]

» Multiple equilibria: h = h Radiative convective equilibrium
state.

=g — .

F(a) = e PP~ 5)) — 5je

0.=1/100

ol [0.21100

Normalized sirength of interaction &

6.=3/160.
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Interaction of CIN with CC-waves

» Start with an RCE states in which CCW's are unstable,
dc = 0.002, 77 = 72h; Use the mean field equation for CIN.

» 100 day simulation: Wave train of nonlinear waves (13 m/s).

» Higher Mean CAF:
0. ~ 0.0035.

» CIN fluctuation further
destabilize the system.

CAPE (kg/J)
3 5‘ o 3 8

» CIN and CAPE are out of il
phase as in a predator-prey
system.

09975

» CAPE is in phase with rising 3 o= 1
air (convergence). e
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Wave structure

Height, km

> Front to rear downward tilted
heating, temperature, and wind
anomalies

»  Warm lower troposphere in
suppressed phase of wave
characterized by descending
motion

Height, km

©

P> Warm upper troposphere coinci
with active convection (heating
and rising motion.

Height, km

Heating and Cooling Anomalies

2000 3000 4000

Potential Temperature Anomalies

]

e [ “\“%\‘\K‘jk

C
\\Qﬁ\ \\(5)\ \53\) g’o\

1000 3000

U-W Velocity Profile; Arrow-max=0.33114 m/s

1000 2000 3000 4000
Equator, km
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Multiple equilibria regime

» Initialize one half of domain with high CIN equilibrium and the
other with a low CIN equilibrium: o2 = 0.001, oF = 0.01.

» Simulation results depend on 7y
> For large 7 (72h): similar results as above;
CCWaves wipe out CIN.

»  For small 7, (3h): steady state pattern with
spikes and plateaus of CIN and CCWaves

that do not carry CIN.

»  For intermediate 7; (12h): Mixture of
plateaus and spikes of CIN and CCWaves

that carry CIN as before

o
@

time (days)

Contours of cl(x,t)

2000 3000

X (km)

1000 400(
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Stochastic effects on large scale/climate dynamics

Khouider, Majda and Katsoulakis (PNAS, 2003)

» Couple the Toy GCM with the coarse-grained stochastic
model for CIN

» No stratiform contribution i = 0 (No instability when WISHE
is off)

» Mimic Western Pacific/Indian Ocean warm pool

O2(2) _ | 1+ Aocos (U)o — ao| <
9:,3,0 1 |m_$0‘2%
 —a
- 0,0

Equator (40,000 km)
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Interaction Potential Affects Wave fluctuations

»  Moderate Walker Forcing: Ag = 0.5

Fluctuation,
Interaction potential, Time, 7, ~ Climate, m: ms! Mean area Standard deviation,
U, days T i (o~ a )
a, ', u
1 5 0856 0855 -0207 0214 455 10 3.00% 104
1 20 -0855 0856 0214 0208 455 10 296 10
0.01 5 -1.047 1046 -0.508 0486 9.96 x 10 318 %107
001 20 -1048 1040 0804 0.676 9.96 % 10 315% 10%
0.01 5 -1L047 1049 0603 0572 1.00 % 107 315% 10%
-0.01 1000923 0920 4497 4429 1.00x 107 14 10
0.1 5 -0816 0867 -4820 4727 1.04 x 103 311 %107
0.1 10 0824 0877 4861 4737 104 107 3.12x 10%
»  Strong Walker Forcing: Ag = 1
Fluctuation,
Interaction potential, Time,;,  Climate,ms'  ms?! Mean area Standard deviation,
U, days T nction 7, (- )
a. iy u’ u’y
1 5 1417 1417 0536 0436 456 % 10% 3.00% 10%
1 20 -1415 1417 0330  0.546 456 % 10% 3.00% 10%
0.01 5 -1692 1691 -1.196  1.603 9.96 x 10 317 %107
0.01 20 41692 1691 -1.180  1.266 9.96 x 10 3.17x10%
-0.01 5 1693 1693 -1421 1470 1.00x 107 315% 10%
-0.01 10 -1.693 1693 1277 1243 100 107 316 % 10%
0.1 5 41700 1699 0990 1.092 1.04 x 103 3.10% 10
0.1 10 -1700 1700  -1447 1269 1.04 x 107 307 % 10%

P SST forcing doesn't influence stochastic CIN (controlled by local interactions)
P Stronger climate has smaller stochastic fluctuations...more deterministic!
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Effect of CIN

on Walker circulation
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Circumnavigating WISHE waves

2%0) decay phase__,

Time (days)

* -Eqwammzf
Ap = 0.5, 7 =10 days (dash), By = —0.01

(Low level) Easterlies destabilize eastward moving waves and

Westerlies destabilize westward moving waves.

This is not physical due to Lack of Persistent Easterlies over Indian

Ocean!
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