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Hands-on activity worksheet for Thursday (July 4th)

afternoon: Stochastic Modelling and the Stochastic
Multi-Cloud Model

5th Summer School on Theory, Mechanisms and Hierarchical
Modelling of Climate Dynamics: Convection and Clouds

July 3, 2024

Theoretical teasers:

o Let T1,T5 be two independent exponentially distributed random variables with rates

A > 0,u > 0, respectively.

(a) Show that S = min(71,75) is an exponential random variable with rate A + p.

(b) Show that P{Ty < To} = 33
(c) Show that if p = X then T} + T3 is a Gamma random variable with param-
eters a = 2 and A and in general if 17,75, --,T, are n independent and
exponentially distributed random variables, with the same rate A, then the

sum S, = 11 + T + --- T, is Gamma distributed with parameters n and A;
fs, (@) = "I ATe A/ (n — 1)L,

Write down the forward and backward equations for a bounded birth death process
with birth rates A, and death rates u, where g =0 and A\, = 0 for £ > 1. Give the
infinitesimal generator matrix.

Find the transition probabilities for a birth only process, i.e, a birth-death process
for which A, > 0 and u,, = 0 for all n. Start with the case A\, = A, i.e, the birth rate
is independent of n.

2 Experiments with the random walk

It is known in probability theory that the symmetric random walk in 2d (on an infinite
lattice, i.e, on Z?) is recurrent, i.e, if the process is started at the origin then the probability



for it to return to the same point (some time in the far future) is unity. This is not the
case for the random walk in three dimensions and higher. For the 3d symmetric random
walk the probability of return is approximately 0.35. Write a computer code! to simulate
the random paths of the symmetric random walk in 2d, using Monte Carlo sampling, and
try to demonstrate the above result. To do so you can make a sufficiently large ensemble of
runs, i.e simulated paths, all of the same length, call it Nstep, each starting at the origin.
For clarity let us call the ensemble size N sample. Compute the frequency of returns to the
origin for the given ensemble by counting how many of the ensemble members have actually
returned in Nstep steps. Consider and increasing sequence of experiments corresponding
to a sequence of (Nstep, Nsample) values to see whether the frequencies tend towards
unity. Better results are obtained with larger Nstep values while Nsample can be kept
relatively small. As a starting point set Nstep= 1000 and vary Nsample. At first you can
try increasing values of Nsample (like 10, 100, 1000) while Nsample is kept the same. Then,
increase Nstep and repeat the experiment. Conclude.

Hint: The experiments tend to be more effictive when Nsample is small and Nstep is
large.

Other useful games to play with the random walk code:

1. The random walk is known to be a diffusive process and in fact a good model for
the phenomenon of diffusion and known to converge to the heat equation when properly
scaled. The distribution of the position of the process X (¢) at any given time ¢ > 0,
quickly converges to a Gaussian distribution as ¢ increases. For the symmetric Random
walk, the mean of X (t) remains always zero and the standard deviation increases as t'/2,
i.e, 02(t) ~ t. The continuous time version of the Random walk is in fact the Brownian
motion and there are specific algorithms on how to sample this process.

The features above and other similarities with the Brownian motion can in principle
be easy demonstrated using numerical experiments. One important feature of the Brow-
nian motion is that it has independent increments and that X (t2) — X (¢1) is a Gaussian
distributed with mean zero and variance ~ (to — tl)l/ 2 This also can be demonstrated.

2. Incidentally, asymmetric Random walks converge to a Brownian motions with a
drift, i.e, the similar process except that the mean is not zero; it drifts/varies linearly with
time.

3. Curious to experiment with the 3D case? You can also adopt the code to 3d
and demonstrate non recurrence for the symmetric random walk in 3d. Convincingly
establishing convergence of the return frequency to the number 0.35 can be hard though!

'Python code provided



3 Standalone SMICM code

Experiment with the standalone SMCM Python code provided to you. The file
driver_stochastic_local_int.py contains the main driver and all intrernal dependen-
cies/routines. It is a good idea to first look through the code and try to get familiar with
its structure and understand which part of the code does what. In particular you may
identify some key parameters such as

e the external controls (CAPE, low level CAPE, atmospheric dryness),

e internal dynamics parameters such as the transition time scales (7x;), and the local
interaction matrix Jy

e the resolution parameters consisting of the size of the microscopic lattice n and the
coarsening parameter g

e the integration time, T'end, and the time step, dt used to solve the mean field equa-
tions.

To run the code you must download all the dependencies and type python3
driver_stochastic_local_int.py. After the program finishes running it will produce
five figures and a text file. They are Meanfield Plot.png, Micro MultiState Process Grid.png,
Micro MultiState Process Time.png, Coarse Grained Plot Grid.png, Coarse Grained Plot
Time.png, stochasticlocal.txt

Now that you are familiar with the code, there are many ways to play and experiment
with the code. You can for instance try to see how sensitive the model is to any of the key
parameters listed above.

e You can begin by playing with the parameters 7g;. You can for instance try to
anticipate which 715 should be changed and how (up or down) in order to promote
a certain desire, such as a dominant cloud fraction of one particular cloud type (say
deep or maybe stratiform).

e Similarly you can try to see how sensitive the model is to the entries of Jy. You can see
how certain configurations of Jy lead to more or less clumpy-ness (self- organization)
of one or more cloud types. The matrix Jy can be used as a medium to
incorporate into the SMCM the effect of land-sea (temperature and or
moisture) contrast on convective organization or how a background shear
can organize convection in the form of MCS’s. The latter is the subject
of at least one project for Week 3, with the goal of using observed (i.e
reanalysis) shear profiles during MCS activity to inspire a choice of Jj
that would lead to an MCS like behaviour in the standalone SMCM.



e [t is also interesting, from the modelling point of view, to see how changing the num-
ber of lattice sites and level of coarsening affects, one way or another, the behaviour
of the model.

e Finally, perhaps the ultimate goal is to explore to what extent the external controls
actually control the behaviour of the small scale dynamics, say the area fraction
distribution and make diagrams like in the figure below. This particular task can be
extended to a project for Week 3 (if there is interest). The project would consists
in first produce the equivalent diagrams from observations (using radar data for the
rain-type area fractions as a proxy for the cloud type area fractions combined with
corresponding controls from reanalysis data).
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