Stochastic Lattice Models for Clouds and
Parameterization of Organized Convection

Boualem Khouider

ICTP/PIMS summer school, July 1-19, 2024.
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Lecture 1: Stochastic modelling, Markov processes, Theory
and Simulation (9 am - 10:30 am); Chapter 4 and Section
10.2.

Lecture 2: The stochastic multicloud model (11 am -
12:30 pm) ; Chapter 10: Sections 10.3 to 10.6

Hands-on activities (2:30 pm - 3:45 pm):

Lecture 3: Waves and convective organization in the SMCM
(4:00 pm - 5:15 pm) ; Chapter 11.
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Introduction
The three-cloud type SMCM

Case when local interactions are ignored

Coupling the SMCM to a cumulus parameterization: Single
Column Toy GCM

SMCM with local interactions

Parameter calibration using obs data a.k.a machine learning
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Introduction

» Organized convection in tropics involves three cloud types
that interact with each other and with the environment

> Statistical-self similarity across-scales of tropical convective
systems

» Deviation from quasi-equilibrium paradigm
» Impacts fidelity of GCMs with regards to tropical weather and
climate

» Importance of missing subgrid variability due to organized
convection as a multiscale process

» Design a stochastic models to mimic these subgrid scale
interactions without substantial computational overhead in
lieu of say super-parameterization
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Tri-modal nature of tropical convection

Cloud Populations in MIT Rodar Area
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Self-similarity across scales

Mapes et al. 2006
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The stochastic model to add on an existing cumulus
scheme
Stochastic Multi-cloud Model to inform cumulus

parametrization: represent the missing sub-grid
scale variability

tochastic Multi-cloud Mode
(for cloud area fractions)
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Dilute Parcel lifting
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Multi-type Particle Microscopic Lattice Model

Multidimensional Markov process on
a Lattice with Conditional Probability
Rules

Fine lattice overlaid on GCM Grid

GGCM grid H H EE==EEEEE

Stratiform

Microscopic 7*—-—%5

grid

Each lattice is either

occupied by a cloud of @
certain type or is clear sky.|..
time varying!
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The devil is in the details:
Play simple: The three cloud type SCM.

if site / is clear sky

if site i is occupied by a congestus cloud

if site / is occupied by a deep convective cloud
if site / is occupied by a stratiform anvil.

Xi =

W N = O

Pj, = Prob {X/, o, = k/ X[ = I} = R At + o(At),  (2)
for ,k=0,1,2,3, and | # k

3
Pj=Prob{Xl pr=1/X[=11=1-"3 Pj, (3

k=0.k£I
3 .
=1-At Y  Rj+0(At)
k=0, kI
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Intuitive Transition Rules

1. A clear site turns into a congestus site with high probability if CAPE
is positive and the middle troposphere is dry.

2. A congestus or clear sky site turns into a deep convective site with
high probability if CAPE is positive and the middle troposphere is
moist.

3. A deep convective site turns into a stratiform site with high
probability with a prescribed conversion rate, which may or may not
depend on the state of the environment.

4. A cloudy site turns back to a clear sky with a certain probability
according to a prescribed decay time scale for each cloud type.

5. It is very unlikely, during the short period of time At, for a clear sky
or a congestus site to turn into a stratiform site, for a deep
convective or stratiform site to turn into a congestus site, nor for a
stratiform site to turn into a deep convective site.
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The Matrix of transition rates

» Forbidden transitions
Roz = R13 = Ro1 = R31 = R3p = 0.

» Markov process at each site (independently on whether sites
are connected or not)

—Ro1 — Roz Ro1 Ro2 0
Rio —Rio — Ri2 Ri2 0
R = . 4
Rxo 0 Roo — Roz Rz (4)
Rag 0 0 —Rap
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Case when local interactions are ignored

» Based on intuitive rules, we set

1 1
Ro1 = —T(C)r(D), Roz = —T(C)(1 - T(D)),

T01 702

1 1
Rio = —I(D), R = —T(C)(1-T(D)), (5)

7'10 T12

1
Rog = ;0(1 - r(Q)), Ros =1/723, Rz =1/T30.
where

_ 1—e X if x>0
Fx) = { 0 Otherwise. (©)

» The transition time scales 7y, are inferred from observations
(radar data) using Bayesian machine learning: De La
Chevrotiere et al. (2015,2016), Cardosso-Bihlo et al. (2019),
... Carlos’s talk next week!

13/40



Academic example

Time description Case 1 Case 2
To1 formation of congestus 1 hour | 3 hours
T10 decay of congestus 5 hours | 2 hours
T12 | conversion of congestus to deep | 1 hour | 2 hours
T02 formation of deep 2 hours | 5 hours
T3 | conversion of deep to stratiform | 3 hours | 0.5 hour
™0 decay of deep 5 hours | 5 hours
T30 decay of stratiform 5 hours | 24 hours
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The stationary distribution, cloud area fractions, and the

equilibrium statistics of the lattice model
» Equilibrium measure

P.R=0 (Steady state of forward equations)
1 R
—— 01 1 Ri2Ro Ry 1 Ri2Ro
Pe = 7 (1’ Rio+Ri2 7 Rao+Res (RO2 + R10+R12) 7 R30 Roo+FRo3 (R02 + R10+R12))
(7)

» Cloud-type area fractions

1 o 1 1 o
oc =5 2 Lix= 0= 2 Liximap 05 = 52 Lixi=y)
i=1 i=1 i=1

(8)
where .
1o, 1 it X! =
Xi=k} ™ 1 0 otherwise.
The clear sky area fraction is given by

Ocs=1—0.—04 —0s.
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Standalone example
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Monte Carlo simulation SMCM with n = 20, C = 0.25, D = 0.75, Case 1. (A) A snapshot picture of one typical
realization and (B) time series of the total coverages associated with each cloud type with the equilibrium values

overlaid (dashed lines).
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Coarse-grained process and mean-field equations

» Coarse grained process: N = n x n total number of lattice
sites, NE, N%, and NI are resp. the number of congestus,
deep, and startiform sites at time t.

» Coverage fraction

. NE X NE
i _ _ c __ _t i _ _ d _ t
Prob{X; =1} = — =o0,, Prob{X; =2} = —% =0, 9)
N N
i N! i N}
Prob{X; = 3} = Ws = g§7 Prob{X, = 0} = f = g;, Yi=1,2,---,N.

» Stochastic dynamics: Transition time is that of Min of i.i.d.
Exp. R.\V's:

Prob{ N:At = k 4+ 1/N! = k} = NesRop At + o(At). (10)
Prob{ N:*AT = k — 1/Nf = k} = Ne(Ruo + Ri2)At + o(At),
Prob{ NS = k + 1/N5 = k} = (NesRoz + NeRi2)At + o(At),

Prob{ N5 = k — 1/N = k} = Nyg(Rao + Ro3)At + o(At), (11)
Prob{ N "2t — k + 1/N! = k} = NyRp3 At + o(At), (12)
Prob{N{TA = k — 1/N! = k} = NsR3pAt + o(At), (13)

> Mixed population birth and death process with immigration.
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Probability transition matrix, Kolmogorov Equations, and
Gillespie's algorithm

» 3D vector Z; = (NE, Ni, NY),
€1 =(1,0,0),e2 = (0,1,0),e3 = (0,0, 1).
» Kolmogorov backward Equations,

d

Ipi,j =NesRo1Piteq ,j + NesRo2Pitey ,j + NeR12Piv ey —eq
+ NgR23Piye3—ey,j + NeR1oPi—e;,j + NaRooPi—e, j + NsR3oPi—es
— [Nes(Ro1 + Ro2) + Ne(Rio + Ri2) + Ng(Raz + Rao) + NsR3o] Py

3

i,je{0,1,---N}>. (14)

3 3
Solution: P(t) = exp{Rt} € & C RV XN (‘and full matrix)

» Efficiently evolved with Gillespie's algorithm (next slide)
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Multidimensional Gillespie’s exact algorithm:

Let A = Ncs(ROI + Rog) + NC(Rlo + R12) + /Vd(R23 + Rgo) + NsRsp.

Let Z; = (N¢, Ny, Ng) be the state of the system at time ¢,
0<t<AT.
Generate a random number r; uniformly from (0,1). Set
s=—%In(r).
If t+s> AT, then no transition occurs. Set t = AT. Stop.
If t +s < AT. Divide the interval into seven subintervals
h, b, -, I of sizes

NesRor NesRoz NeRig NeRiz NgRas NgRao NsRao

DD WS WD WD D WD W

respectively.

Generate a random number r». Select the subinterval /; such that

r 6 Ix. Then make the corresponding transition as follows.
If rp € I, then Nc = N¢ + 1.

If rp € I, then Ny = Ny + 1.

If rp € I3, then Nc = Ne — 1.

If ry € Iy, then Ne = Ne — 1, Ng = Ng + 1.

Ifrp € I5, then Ny = Ny — 1, Ng = Ns + 1.

If rp € Ig, then Ny = Ny — 1.

V VYVYVYYY

If rp € k7, then Ns = Ns — 1.

Sett=t+s. Ift<AT gotto 1.
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The mean field equations ... is damped

0c=(1—0c—04—0s)Ro1 — 0c(Rio + Ri2)

0qg = (1 — Oc — 04 — (75)R02 +ocRip — O’d(R20 —+ R23)

0s =0gRa3 — 05 R3p.

Real part

0 1 2

Equilibrium eigenvalues of the mean field equations.
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(15)

frequency/damping rate. CAPE C v.s dryness D on axises. Without external forcing the
system relaxes quickly to its equilibrium measure.



Stochastic oscillations depend on frequency-to-damping

ratio

Filling Fraction

Congestus

Stratifrom\

Congestus

Aﬂﬁ%&hwﬂ%

| /“W WWW'VWW\W y

40 0
Time in hours

0 20 40 0
Time in hours

Stochastic oscillations: (a) small (< 0.1) and (b) large (= 0.6) frequency to damping ratio
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Coupling the SMCM to a cumulus parameterization

Stochastic Multi-cloud Model to inform cumulus Lattice Model for Convection_&
rization: represent

paramet present the missing sub-grid scale

GCM grid

GCM
Large

Scale
Dynamics

» SMCM simulates evolution of convective area fraction of key
cloud types

» Coupled to mass flux scheme in a straightforward manner,
with the goal to break the quasi-equilibrium paradigm:

M, = oywy

(Peters et al. 2017; Dorrestijn et al. 2016)

» Here we will follow a simpler approach: different heating
profiles associated with different cloud types, not necessarily
well captured by existing mass-flux schemes.

» Success the Multi-cloud Model Paradigm in modelling
Convectively Coupled Waves and MJO (both linear theory and

non-linear simulations)
22/40



2 baroclinic mode Toy GCM

v = V2v; cos(z) + V2v, cos(2z),
0 = V26, sin(z) 4 220, sin(22).

%V; + Byvj — VO = —Cq(uo)vj — %Vp ;=12
% —divvy = Ay + & + EHs + S

% — %diva =H. - Hs + 5,

i (€D

dq 1

3¢ +div ((v1 + dv2)q) + Q div(vy + Avp) = —P + H—TD
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Congestus

Deep Stratiform

Cooling

Heating

Heating

Cooling

0402 0 02 04 06 08

Khouider and Majda, 2006; 2008: Simple models for convectively coupled waves

[a e’

Hc = O'CH—m CAPEIJF
1
Hy = [64Q + o )(319eb + a2q —
o
T(o4) = J—dTE
_ = 1
H; = as[UsQ + —(aleeb + axq —
Te(0s)
o
Te(os) = a—:f,f.’

ao(01 + 7202))]*

ao(01 + 1202))]"
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Single column run_
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Khouider et al. 2010.
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Waves along the equator with warm pool forcing

H, (Kiday)

days

i Y S ¥
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(x1000)KM

Frenkel et al. 2013
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SMCM with local interactions

Why local interactions?

» Emulate self-organization of cloud clusters at the meso-scale:
MCS's Estern Pacific ITCZ; Coastal convection, etc.

> Represent unresolved effects of shear, sea-breeze, orography,
etc. on organization of convection, turbulent mixing, radiation
feedback, etc.

» Cloud-cloud interactions: can be both favourable and
unfavourable to organization
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The multi-type particle interacting system
» Multiple particle Hamiltonian

3 3
ZZEkI ) + &k (U)X
=1 I=k
Ei(X) =~ 30 Jalli iDL xiy Liximyy 1S k<13,
iJ=1,i#j

J(r) #£0 <= r=1lor0<r< V2,

» Choose Transition Rates to yieId Gibbs equilibrium measure:

P1 — —
Roz + Rop = P Rygelo =1 4 P2 pycto—Ha y P3 o cHo—Hs
PO

PO PO

P1 Hg — H:
Ro1 = — (Ri2 + Rig)e @~
0
P2 — P1 —
Roz = = (Rag + Rpz) 0712 — Tl ppyefo—H (16)
PO PO
Rip = B Ryge M vi—1,... NVXeEEX.
P2

p is the "background” distribution counting for external potential,
associated with background rates R’k,(U). Hi — H; are
local-interaction energy difference. Partial detailed balance.

» Equilibrium measure:

w(Xe) ox e M0,
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Coarse grained approximation
» Coarse-grained Hamiltonian as a conditional expectation:

3 3 M
A(X) = E[HX)IX] = 323" EIEL(X)/X]+ > an(U) S N,
k=1 i=1
_ 3 N 3 N
E[Ea(X)/X]= =333 Z E [l = DL g L iy /K] -
» Uniform redistribution of particles, yields

3 3 M )
EEa(X)/R =~ 25 32303 v [(nb(q —2) + 4(np — n)(q — 2) + 4m ) ]

NW N NE

SW S SE

Retains interactions across coarse cells.
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Mean field equations

In the limit of a large micro and macro lattice sizes we get

oy

—— =agog — (a10 + a12)o1

ot

oo

S = 0200 + a0 — (a0 + azs)or
dos

—— = axpoy — a3003,

ot

with

5 5 T 5 T G
aro = Rko, k =1,2,3, agr = Rore 10, aip = Ripe 12, a3 = Rpze 23,

1
z 5\ T P3 s T
ap2 = —(p2Rao — p1R12)e 20 + —R3pe 30
PO PO

3
Tok(x) =D Jia * oy(x) and Tyy(x) = Foy(x) — Mok (x),
1=1

with f % g(x) = [ f(x — y)g(y) dy is the convolution operation.

7

(18)

(19)
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Numerical tests
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(A) Local Interaction (B) No Local Interaction

astrat\form
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Snapshot of the multicloud microscopic lattice model. (a) With local interactions and (b) without local

interactions. n = 40.
0.25 0 0 }

Interaction matrix Jy = 0 0.125 0.05
0 0.05 0.125
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micro: 7,0=5 ,7,0=5 ,73=5 ,7},=2, Jpy=0.25, €=0.25, D=0.5
T

T

dash: Mean field
dots: background

(C) No Local Interaction

(B) Local Interaction: Coarse grained
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Parameter calibration using obs data

» Transition probabilities of cloud types are uncertain

» Use brute-force computations using LES data. (Dorrestijn et
al. 2016)

» The formalism allows to reduce the task to learning key
parameters: transition times and CAPEO, CINO, reference
values, etc.

» What is dequate cost function:

» Cheap and dirty: Constraint the equilibrium distribution
(Peters et al. 2017)

> Precise but highly expensive

» Midway pathways exists: Carlos Sevilla's thesis
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Data from Darwin and Kwajalein
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The Bayesian Inference Procedure

De La Chevrotiere et al. (2016; 2017)

» Find a distribution of the parameters

0 = (701, T10, T12, T02, T23, T20, T30 )-

given convective area fraction data and large scale predictors
— time series:
Xe,up, 1<t < T

Prior distribution: m(8) — posterior distribution:7(8|x;)
Data information encoded model likelihood: f(x:|0; u:);

» Bayes's theorem:

 Fx0)n(0)
mO0x0) = T (x,|0)7(0)d0 (20)
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Computing the likelihood

» Markov process

fxp7lurT,0) = [1; fo1(xe|xe—1, ur_1,0)

=11, ]]':;(th—l,thl—l,Nt—l) exp[R(u¢—1, 0)At]L 4 e ne, nARL)

s

¢ is the injection of the state space S C R3 into the integers.
» MCMC allows sampling of posterior without knowing it
explicitly.
» Computational burden is in exponential matrix:
explR (1, 0)AH]
» Uniformization technique, stable and accurate but still
inefficient!
» Convergence of MCMC can also be slow

v

Alternatives: Variational inference in lieu of MCMC;
> There are also way to approximate f ... sample statistics
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Giga LES data

Khairoutdinov et al. (2001).

24 hr simulation 2048 X 2048 X 256 grid; Domain size: 204.8 X 204.8 km?2 x 27 km; data saved every 15 minutes.
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Comparison of inferred time scales

Parameter Mean (SD) [hours]
2 x 2 Partition 4 x 4 Partition  Peters et al.

To1 27.686 (8.233)  31.789 (4.795) 1

Ti0 7.426 (11.155) 1.761 (0.224) 1

T2 0.208 (0.006) 0.238 (0.001) 3

To2 17.950 (3.507) 11.821 (0.211) 4

T3 0.359 (0.001)  0.2570 (0.0001) 0.13
20 10.126 (15.674)  9.551 (13.146) 5

T30 1.444 (0.021)  1.021 (0.002) 5
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