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Coastal diurnal circulations
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Land breeze convergence and convective evolution

CONVECTIVE
CELLS

<; UPPER LEVEL FLOW
N COMPONENT

MONSOON FLOW
©

JW\

S. CHINA SEA BORNEO SE

"~ (a) MIDNIGHT

MATURE CLOUD SYSTEM

W\ //

* * *

<=

1l ' ] [ N

I l

SE

W le——200 KM—n|
‘ (b) 0800 LST

DISSIPATING CLOUD SYSTEM

T WW

SEA BREEZE
NW SE

(c) NOON

Convective cells can form at the
convergence of the land breeze
and the large-scale low-level flow

Systems then often evolve into
mature MCSs as they propagate
offshore, dissipating by midday
once winds convert to onshore

Houze et al. (1981)



s it really just sea/land and valley/mountain breezes?
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Gravity waves and their impact on convection

a) evening
* Small temperature changes near

800 hPa driven by gravity waves
forced by daytime heating over
mountains changes sign of
atmospheric buoyancy from
negative (inhibited) to positive
(convecting) with a propagation
speed of 15 m/s
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* This change in buoyancy can
promote convective growth

Mapes et al. (2003)



ldealized gravity wave response to diurnal BL heating
2D dry model

Diurnal boundary heating
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Courtesy of A. O’Flanagan

*Expanding upon linear theory of land breeze near equator by Rotunno (1983) and Qian et al. (2009)



ldealized gravity wave response to deeper pulsed heating

Pulsed heating 2D dry model
= - Temperature anomalies
= Resting
o ] background
Heating imposedina ™ = state
deeper layer for 2 _ _ .
) Vertical heating profile
hours eachdayinthe w27
late afternoon
o Constant
5 background
g state
1000 I -1900 km coastline 500 km
-1.0 0.0 1.0 . 2.0 3.0 4.0 5.0 [ ..l
heating (K/day) -0.0002 -0.0001 0  0.0001 0.0002

- Wave response takes the form of wave packets propagating outward from the
coast, producing regions of warmer air near the ground and colder air aloft

- Which type of forcing is more important to offshore convective development?
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Abstract: Coastal convection is often organized into multiple mesoscale systems that propagate
in either direction across the coastline (i.e., landward and oceanward). These systems interact non-
trivially with synoptic and intraseasonal disturbances such as convectively coupled waves and the
Madden-Julian oscillation. Despite numerous theoretical and observational efforts to understand
coastal convection, global climate models still fail to represent it adequately, mainly because of
limitations in spatial resolution and shortcomings in the underlying cumulus parameterization
schemes. Here, we use a simplified climate model of intermediate complexity to simulate coastal
convection under the influence of the diurnal cycle of solar heating. Convection is parameterized via
a stochastic multicloud model (SMCM), which mimics the subgrid dynamics of organized convection
due to interactions (through the environment) between the cloud types that characterize organized
tropical convection. Numerical results demonstrate that the model is able to capture the key modes
of coastal convection variability, such as the diurnal cycle of convection and the accompanying sea
and land breeze reversals, the slowly propagating mesoscale convective systems that move from
land to ocean and vice-versa, and numerous moisture-coupled gravity wave modes. The physical
features of the simulated modes, such as their propagation speeds, the timing of rainfall peaks, the
penetration of the sea and land breezes, and how they are affected by the latitudinal variation in the
Coriolis force, are generally consistent with existing theoretical and observational studies.



Diurnal phase from IR
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Regardless of mechanism, a rich diversity of coastal convective variability
happens near tropical coasts at the diurnal time scale

Yang and Slingo (2001)



Annual mean rainfall over Sumatra

IMERG rainfall
0.1°, 2007-2019) |mm/hr
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« TRMM/GPM IMERG is consistent with many
existing satellite climatologies*, higher
resolution measurements help isolate
orographic patterns

5N

e Offshore (just west of mountains to ~150 km
offshore) — highest rainfall (12 mm/d)

Lo, \ * QOver mountains — moderate rainfall (8 mm/d)
5S —gt‘

* East of mountains — least rainfall (6-7 mm/d)

*e.g., Yang and Slingo (2001), Kikuchi and Wang (2008),
Mori et al. (2004), Love et al. (2011), Biasutti et al. (2012),
Peatman et al. (2014), Birch et al. (2016), Ling et al. (2019),
Sakaeda et al. (2020)
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Diurnal rainfall over Sumatra

IMERG rainfall anomalies

Day (7-18LT)  mmn Night (19-6 LT) mmnr

What is the driver of nocturnal
offshore rainfall propagation?

* Land breeze (Houze et al. 1981,
Ohsawa et al. 2001, Mori et al.
2004, Biasutti et al. 2012, etc.)

o What are the characteristics of
the land breeze?

* Gravity waves (Mapes et al. 2003,
Love et al. 2011, Vincent and
Lane 2016, Yokoi et al. 2017, etc.)

* Rainfall is enhanced over mountains during ols tI)oudngary.Iayer or deeper ,
daytime and is enhanced to the west and east of pulsed heating more important:
mountains in the evening and early morning
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Past studies of nocturnal offshore rainfall propagation speed
from West Sumatra

10 m/s over the Maritime Continent from CLAUS (Yang and Slingo 2001)
10 m/s off the west coast of Sumatra from TRMM (Mori et al. 2004)
10 m/s over the Maritime Continent from TRMM (Kikuchi and Wang 2008)

4 m/s off the west coast of Sumatra from X-band Doppler Radar (Mori et al. 2011)
3-5 m/s off the west coast of Sumatra from WRF, 7 m/s from TRMM (Love et al. 2011)

8 m/s over sea, 3-3.5 m/s around the west coast of Sumatra from Pre-YMC (Yokoi et al. 2017)

Thus, satellite IR studies have observed a faster offshore rainfall speed (~10 m/s),
while recent radar and high-res model studies have seen a slower speed (~5 m/s)



Land breeze characteristics over West Sumatra
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Time (LST)
 Surface observations from Padang North (2023)

show weak offshore winds (< 3 m/s) at

. : ) * Surface observations from Bengkulu
night (i.e., existence of a land breeze)

show an offshore diurnal component
of wind every day during 2018!



Nocturnal offshore rainfall propagation from Padang

Padang radar loop:
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2. Offshore propagation must start after 14 LT near the
coastline of Padang to ensure that the propagation is
nocturnal Bai et al. (2021)



Nocturnal offshore rainfall propagation from Padang
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Offshore event occurrence and Padang airport rainfall
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Nocturnal offshore rainfall propagation from Padang
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* MAM and SON have highest frequency of
offshore rainfall propagation (i.e., during
monsoon transition seasons)
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* Occurrence of offshore events correlated with
amount of rainfall received on land as well as

weaker onshore winds in MAM and SON
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Event counts

Most offshore events take place during phases
1-3 when MJO is active in Indian Ocean, or
when MJO is weak

Almost no offshore propagating events occur
in phases 4-5, when MJO is active over the MC

Strong westerly low-level winds prevent land
convection from propagating offshore during
the active MJO Bai et al. (2021)
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Gravity waves from Padang
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Offshore rainfall propagation at different distances
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* Rainfall maxima over coastal oceans propagate faster farther offshore

* Driver for offshore rainfall at different distances may be different



Variations in offshore propagation speed
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Newly formed convective system
(coast-normal component of convergence
between land breeze and background winds)
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Total DJF MAM JJA SON
No. of events 117 18 37 12 50
Total rain 4.5 4.5 4.0 5.5 5.0
Convective rain 4.5 4.5 4.0 5.5 5.0
Stratiform rain 6.0 6.5 4.5 100 6.5
ERAS 975-hPa convergence 5.5 5.5 6.0 50 55

Seasonal change in upper-level winds correlated with
change in stratiform rain speed

Storm-relative wind profile leads to stratiform clouds
expanding ahead of convective clouds (consistent with
Parker and Johnson 2000), explaining part of the
satellite discrepancy



Defining the
diurnal rainfall
by maximum
rain rate gives
different timing
than the first
harmonic across
the MC

Daily maximum vs. 15t harmonic
Time of maximum hourly rain (2007-2019 0.1°)

Over interior seas
rainfall peaks later
than the 1%t harmonic

5N

Mountainous & offshore °
rainfall peaks earlier
than the 1t harmonic

58
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e.g., Yang and Slingo 2001; , f&
Nesbitt and Zipser 2002; 2
Peatman et al. 2014; 5
Birch et al. 2016
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West African coastal processes
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* Rain maximizes
south of coast
during pre-
monsoon

e Shallow convective
rain intrudes inland
during monsoon

Huaman et al. (2023)



April-June (pre-monsoon) June-September (monsoon)
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Huaman et al. (2023)
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April-June (pre-monsoon) June-September (monsoon)
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ERAS rain over land:

* Convective rain occurs too early and is overly intense (a common GCM
problem linked to the convective parameterization), weak to no propagation
» Large-scale rain (which is from resolved/grid-scale microphysics) is absent in

AMJ and disconnected from convective rain in JAS (e.g., maximizes at 10 am
when radar rain is minimum)

Diurnal precipitation types

Radar-observed convective
(shaded) and stratiform
(contours) rain occur
simultaneously, suggesting
strong mesoscale
convective organization in
both seasons

So, please use
reanalysis rain with
great caution (esp. in
regions where
precipitation is not
assimilated), but
dynamical fields seem
reasonable in this case.

Huaman et al. (2023)



Time to enjoy some ltalian coastal processes!




