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Chapter 1

Modelling the atmosphere: The
small stuff counts

1.1 Sub-gridscale processes in the atmosphere

The use of a finite grid mesh implies that there are some processes that will occur on smaller scales
Some examples (see schematic Fig. 1.1) are

• subgrid-scale motions such as local turbulence and non-local convection

• clouds

• radiative transfer processes

• surface exchange

Figure 1.1: Schematic of a processes that occur on small scales and generally require parametriza-
tion in regional or global models (source: ECMWF)

Some of these processes will be discussed in part 2 and 3 of this course.
The problem is that these small-scale processes make a significant contribution to the dynamical

and thermodynamic budgets.
For example, ignoring all scales of motions below the grid-scale would neglect the role of con-

vection entirely, (and lead to grid-scale storms!) Essentially, by truncating all scales of motion at
the model grid-scale, the action of small scale processes is aliased on the grid-scale, which would
lead to significant model truncation errors.

These processes must therefore be represented by a sub-model called a parametrization, since
the process is not explicitly resolved.

1.1.1 Parametrization concept

To illustrate the parametrization concept, let us consider the barotropic vorticity equation (Eqn.
1.1).
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6 CHAPTER 1. MODELLING THE ATMOSPHERE: THE SMALL STUFF COUNTS

Earliest weather forecasts integrated the Barotropic vorticity equation.

∂ξ

∂t
+∇.(vξ) + βv = 0, (1.1)

where ξ is the relative vorticity and v the horizontal velocity vector and β is the poleward gradient
of the Coriolis parameter. There is only one prognostic equation modelled, since the wind can be
specified as a diagnostic function of the vorticity field.

We do this as it is a single simple equation to illustrate the concept, however the following
analysis could be performed for the full equations of motion (Eqn. ??) if the model is based on
these.

Reynolds Averaging
We use the concept of ’Reynolds averaging’. A continuous variable ξ is defined as:

ξ = ξ + ξ′ (1.2)

where ξ is the mean of ξ in our discretised gridbox for a given model timestep, and ξ′ is the local
deviation from the average (Fig. 1.2).

Figure 1.2: Schematic of a Reynolds averaging

Similarly v = v + v′.
Substituting into the vorticity equation we get

∂ξ

∂t
+

∂ξ′

∂t
+∇.(vξ) +∇.(vξ′) +∇.(v′ξ) +∇.(v′ξ′) + βv + βv′ = 0 (1.3)

We now average this equation over the gridbox () and timestep, and thus applying the Reynolds
averaging assumptions that

• A′ = 0

• AA′ = 0

• A = A

the barotropic vorticity equation reduces to

∂ξ

∂t
+∇.(vξ) +∇.(v′ξ′) + βv = 0 (1.4)

We note that the equation for ξ looks identical to that of ξ, except for the addition term
∇.(v′ξ′). This term ∇.(v′ξ′) represents the unresolved subgrid-scale processes. This term may not
be neglected, but as it stands is not specified in terms of the grid-resolved variables. There are two
approaches we can take to specify ∇.(v′ξ′). We can

• Derive a new prognostic equation for its temporal evolution ∂∇.(v′ξ′)
∂t . We will return to this.

• Define a closure, that is a diagnostic relationship that specifies ∇.(v′ξ′) in terms of the
grid-resolved variables
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The purpose of parametrization is to give an expression for the subgrid-scale terms as functions
of the resolved values.

In this example, one wants to determine a function H of the resolved variables such that
∇.(v′ξ′) = H(v, ξ)

By doing this the prognostic equation for the grid-scale average ξ is written entirely in terms
of grid-scale quantities, and therefore the equation set is said to be ’closed’ (the same number of
unknowns as equations). The function H is said to be a parametrization

We therefore attempt to construct a series of physical models H (that can be simple or very
complicated) that use the large-scale grid resolved parameters (T, q, u, v, w etc) as input to deter-
mine all these subgrid-scale processes (e.g. the nature of turbulence, clouds, convection and so on).
This is parametrization task.

These terminology ’parametrization’ derives from the fact that the process in question is not
explicitly modelled. The ultimate output of the parametrization scheme is the tendency of the the
large-scale model equations due to the parameterized process. Convection

In the above we give examples of processes that were subgrid-scale and required representing in
parametrization schemes. We will now briefly discuss more details concerning the representation
of

• turbulence

• convection

• clouds

1.1.2 Turbulence processes

1.1.2.1 constant K diffusion turbulence parametrization

We recall the K diffusion approach for representing turbulence. For simplicity we consider the the
subgrid-scale flux in one direction only, the x-direction:

∂

∂x
(u′ξ′). (1.5)

We recall that we assumed turbulence led to down-scale mixing ξ, i.e. that it leads to a situation
where

∂ξ

∂x
= 0 (1.6)

Let us assume that the flux of ξ by subgrid motions is proportional to the resolved-scale gradient
∂ξ
∂x .

We can represent this is a simple parametrization by

(u′ξ′) = −K
∂ξ

∂x
, (1.7)

where K is a constant, which we called the diffusion coefficient.
The diffusion coefficient K represents the strength of the subgrid-eddies, i.e. the magnitude

of u′, we are assuming are always present and always of the same magnitude here, obviously a
gross-oversimplification.
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From the above
∂

∂x
(u′ξ′) = −K

∂2ξ

∂x2
(1.8)

Which can be substituted back in the full (1d) BVE to give:

∂ξ

∂t
+

∂

∂x
vξ −K

∂2ξ

∂x2
+ βv = 0 (1.9)

or more generally:

∂ξ

∂t
+∇.(vξ)−K∇2ξ + βv = 0 (1.10)

Note that the equation is now written entirely in terms of grid-mean variables. Q: How would
you improve this parametrization for turbulence?

1.1.2.2 Turbulent Kinetic Energy equation

To devise a better turbulence scheme than a simple analogy to molecular diffusion we must consider
the source of subgrid-scale fluctuations. To do this we refer to the equation for the turbulence kinetic
energy (TKE) e:

e =
1

2
(u′2 + v′2 + w′2) =

1

2

3∑
1

u2
i (1.11)

The TKE equation is derived by multiplying the momentum equation by 2ui to get (ignoring
horizontal terms as gradients are much stronger in the vertical). Here we simply give the result,
where minor terms (pressure diffusion and molecular viscous transport) are neglected:

De

Dt
= −0.5

∂u′
ju

′
ju

′
i

∂xi︸ ︷︷ ︸
turbulent transport

−u′
iu

′
j

∂ui

∂xj︸ ︷︷ ︸
shear production

−g

θ
u3θ′︸ ︷︷ ︸

Bouyancy

− ϵe︸︷︷︸
dissipation

(1.12)

If we now consider turbulent flows in the atmosphere (and in general neglecting horizontal
transport as vertical gradients are dominant), one way to derive an improved closure would be to
define K in terms of the Richardson number, that describes the ratio of the key sources and sinks
of turbulence in the turbulence kinetic energy equation, namely buoyancy and shear.

Ri =
g
θw

′θ′

w′u′ ∂u
∂z + w′v′ ∂v∂z

(1.13)

The numerator term describes the buoyant production/suppression of turbulence, while the de-
nominator represents the shear production.

• If Rif is large, buoyancy suppresses turbulence

• 0< Rif <X, shear instabilities generate turbulence (in measurements X ≈ 1, while X = 0.25
in theory)

• Rif < 0 unstable lapse rate, and both buoyancy and shear generate turbulence.

An improvement of the constant K scheme can be made by letting the viscosity depend on the
Richardson number.

We assume that the mixing should depend on the eddy size and the rate at which eddies are
generated. Therefore on dimensional grounds (units of K are m2s−1):

K = l2S (1.14)

where l is a typical length scale and S is the deformation rate

S2 = 0.5
∑
ij

(
∂ui

∂xj
+

∂uj

∂xi
)2 (1.15)
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We assume there is a local equilibrium between sources and sinks of TKE, and the shear and
buoyancy terms are balanced by dissipation of turbulence by molecular friction ϵ. Writing flux
terms as u′

iu
′
j = K∂ui/∂xj (likewise for θ) in the Richardson number form (eqn 1.13), :

−KS2 +K
g

θ

∂θ

∂z
= −ϵ (1.16)

On dimensional ground (exercise: check), we can set ϵ = K3

l40
, where l0 is a length scale typical

of the most energetic eddies. Combining these, we get

l = l0(1−Ri)
0.25 (1.17)

where Ri refers to the gradient Richardson number

Ri =
g
θ
∂θ
∂z

S2
(1.18)

Thus we can use the parameterization K = l0(1−Ri)
0.25S. l0 is usually related to the size of the

grid box used by the model, reduced in the presence of a boundary. However, some models replace
this formula for l by empirical functions with different forms for stable and unstable regimes (refer
e.g. to Monin Obukhov theory).

1.1.2.3 higher order schemes

The above approach, in which the grid mean values are prognosed and the second order terms such
as w′θ′, w′w′ are diagnosed (closed by defining them in terms of the grid mean values). Instead
we could derive prognostic equations for these terms, which would result in 3!=6 new equations
for the momentum correlations, plus additional equations for the buoyancy and other prognostic
variables. These equations will contain third order terms e.g. u′w′θ′.

For example, the variance of the total water mixing ratio would be

Dq′2

Dt
= −δw′q′2

δz
− 2w′q′

δq

δz
− ϵ (1.19)

here we are neglected turbulent transport in the horizontal, assuming vertical fluxes dominate.
The third order terms (e.g. here w′q′2) either need to be closed (resulting in a second order

scheme), or can in turn be predicted, resulting in 4th order terms. Generally higher order schemes
are more accurate, but at the cost of carrying vastly more prognostic equations. See Krüger (1988)
for a (rare) example of a third order scheme in action. Golaz et al. (2002a) introduce a kind of 2.5
order scheme. First or 1.5 order schemes are still the most common approach employed.

1.1.3 Convection

In this section we will provide an overview of the basics of convective parameterization approaches.
Convection schemes have to achieve a number of tasks:

• Remove convective instability and produce subgrid-scale convective precipitation (heating/dry-
ing) in unsaturated model gridboxes

• Produce a realistic mean tropical climate

• Be applicable to a wide range of scales (typical 10 - 200 km) and types of convection (deep,
shallow, mid-level; tropical cyclones, squall lines, monsoon, polar lows, frontal/post-frontal
convection)

1.1.3.1 adjustment schemes

• If convection motions were not permitted, the atmospheric temperature profile would adjust
until it reached local radiative equilibrium throughout the column.

• This implies that everywhere, the radiative heating due to short-wave and infra-red absorp-
tion would be balanced by emitted radiation in the short-wave.
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Figure 1.3: Schematic of convection role

• If one makes the calculation of radiative equilibrium, the temperature lapse rate is greater
than that observed.

• This is because the lapse rate is absolutely unstable to convection - Convective overturning
cools the lower atmosphere and warms the upper atmosphere

Figure 1.4 shows the temperature profile of pure radiative equilibrium, as well as a dry and
moist adiabatic lapse rate.

Early convection schemes adjusted unstable lapse rates to a typical moist convective profile.
One of the most commonly used adjustment schemes was the Betts-Miller scheme betts (1986);

Betts and Miller (1986). This calculated the heat and moisture fluxes implied by a readjust-
ment to a moist adiabat, and introduced physically-based rules to determine when the adjustment
occurred.)

There are issues with the adjustment approach:

• Difficult to ensure adjustment is physically consistent,

• Does not allow transport of tracers etc.

This lead the move towards mass flux schemes.

1.1.3.2 mass flux schemes

The mass flux approach is summarized in this simplified vertical equation for potential temperature
in an atmosphere in the vertical only.

dθ

dt
= Qls +

L

Cp
(C − E)c +

dω′θ′

dp︸ ︷︷ ︸
net condensation in updraughts & convective transport

(1.20)

The diabatic heating term Qls refers to radiative heating as well as grid-scale (or cloud scheme)
condensation/evaporation, and molecular diffusivity is neglected.

The term dω′θ′

dp represents the transport flux by sub-gridscale (turbulent) motions !!! SKIP

MATHS !!!! For example, in subsidence regions (for example in the mid to upper troposphere over
the Eastern Pacific), where convection may be absent, Qdiab is approximately zero since subsidence
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Figure 1.4: Radiative equilibrium temperature profile, dry lapse adjustment, and typical moist
lapse rate used in adjustment schemes. Source (Manabe and Strickler, 1964)

heating approximately balances radiative cooling (assuming long term temperature tendencies are

approximately zero). The aim of convection parametrization schemes is to define dω′θ′

dp or more

generally dω′ϕ′

dp , where ϕ is generic and could represent humidity, or a tracer gas etc.
To derive this we return to Reynold’s averaging:

ωϕ = (ω + ω′)(ϕ+ ϕ′) (1.21)

which gives:

ωϕ = ωϕ+ ωϕ′︸︷︷︸
=0

+ ω′ϕ︸︷︷︸
=0

+ω′ϕ′. (1.22)

The 2nd and 3rd terms on the right are zero, and thus:

ω′ϕ′ = ωϕ− ωϕ (1.23)

If the sum of the cumulus updraught areas=a and the grid-box area is A, then the convective
fraction σ (Fig. 1.5) is defined:

σ =
a

A
(1.24)

Thus a quantity can be written as the weighted average of the value in convective towers ϕc, and
the value in the environment ϕe:

ϕ = σϕc + (1− σ)ϕe (1.25)

Thus we can write
ωϕ = σ [ωϕ]c︸ ︷︷ ︸

cumulus elements

+(1− σ) [ωϕ]e︸ ︷︷ ︸
environment

(1.26)

and
ωϕ = (σωc + (1− σ)ωe)(σϕc + (1− σ)ϕe) (1.27)

We can also apply Reynolds averaging for the cumulus elements and environment separately:

[ωϕ]c = ωcϕc + ω′′ϕ′′
c︸ ︷︷ ︸

=0

(1.28)

The last term on the RHS is assumed zero since we neglect sub-plume correlations. This is known
as the top-hat approximation . The top hat approximation is usually interpreted to imply that the
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Figure 1.5: Schematic of mass flux scheme

updraught is homogeneous and sub-grid fluctuations are neglected (Fig. 1.6, although this is not
strictly true. The assumption is only that the correlation between sub-plume velocity fluctuations
and fluctuations in ϕ is zero, implying no net transport of ϕ. Inserting eqns. 1.26, 1.27 and 1.28

Figure 1.6: Schematic of the top hat approximation

into eqn. 1.23, one gets (exercise):

ω′ϕ′ = σ(1− σ)(ωc − ωe)(ϕc − ϕe) (1.29)

Thus the convective transport of ϕ is related to the difference of the updraught speed to the
environment and the perturbation of ϕ in the convective core relative to the environment. In order
to close the parametrization we would need to specify a model to describe how both σ and ωc change
with height. However, we can simplify this task, we can make the small area approximation, by
assuming σ ≪ 1, such that 1 − σ ≈ 1. We also assume that ωc ≫ ωe, to allow us to neglect the
latter. With these simplifications, Eqn. 1.29 reduces to

ω′ϕ′ = σωc(ϕc − ϕe) (1.30)

The convective mass flux is defined as:

Mc =
−σωc

g
= ρσwc (1.31)
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and substituting this we get the convective mass flux equation:

−ω′ϕ′ = gMc(ϕc − ϕe) (1.32)

parametrization components
To predict the influence of convection on the large-scale with this approach we now need to

describe:

• the convective mass flux Mc

• the values of the thermodynamic (and momentum) variables inside the clouds

• the condensation/evaporation term.

This requires a cloud model and a closure assumption to determine the mass flux (at cloud base)
from gridbox-averaged model variables. The early schemes using this approach solved a set of
equations for an ensemble of plumes (Mi) with a range of cloud top heights, for example Arakawa
and Shubert (1974). This let to a very computationally intense matrix problem to solve.

Figure 1.7: arakawa shubert scheme

Simplifications are often made:

• Steady state plume ensemble in equilibrium

• A bulk plume model

An example is the Tiedtke (1989) scheme (cited approximately 2000 times).
The Tiedtke scheme introduces an equation set similar to the one described above, but without

stating the assumption that σ is small (see equation 3 in that paper).

Figure 1.8: Tiedtke eqn 3
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The mass flux is defined as M = ρσ(wc − w) and environmental perturbations are assumed
small (small σ assumption).

The key equation for the updraught is simply:

∂Mu

∂z
= Eu −Du (1.33)

where Eu is the fractional entrainment rate and Du is the detrainment rate. So the model
needs to define:

• The cloud base mass flux (the closure, or lower boundary condition)

• The entrainment rate

• The detrainment rate

Figure 1.9: Schematic of simplified mass flux scheme such as Tiedtke (1989)

Switch to paper here:
Changes have been made to Tiedtke over time

• Entrainment is now a function of humidity - entrainment is higher in dry environments

• The closure for cloud base base flux is based on the removal of CAPE over a fixed timescale.

• The detrainment profiles have been modified

• The test parcel is for a mixed boundary layer slab, not the lowest model level

• The test parcel has an excess humidity and temperature added (Q: why?)

• The numerical solver is now implicit

Step 1a: Take parcel with mean thermodynamic properties of lowest model level (Fig. 1.10)
Step 1b: Add perturbation of vertical velocity w, temperature and humidity (representing

unresolved fluctuations). (Fig. 1.11)
Step 1c: Make ascent of parcel using a fixed “strong entrainment”, integrating an equation for

kinetic energy (and thus w). (Fig. 1.12)
Decision: IF w(LCL) > 0 AND the cloud top (where w = 0) is within 200 hPa of surface

THEN switch on shallow convection ELSE test for deep convection. (Fig. 1.13)
Step 2a: Take parcel with mean thermodynamic properties of the lowest 60 hPa of troposphere,

excluding the lowest model level. (Fig. 1.14)
Step 2b: Add fixed perturbations of 0.2K temperature and 0.1g kg−1 humidity. (Fig. 1.15).

What does this represent? The excess thermodynamic fluctuations are intended to represent



1.1. SUB-GRIDSCALE PROCESSES IN THE ATMOSPHERE 15

Figure 1.10: Tiedtke (CY36R1) Mass flux logic

Figure 1.11: Tiedtke (CY36R1) Mass flux logic

subgrid-scale variability. But their fixed values implies that they are not related to or consistent
with other assessments of sub-gridscale variability in the model (e.g. other parts of the convection
scheme, radiation, clouds etc).

Starting from w = 1ms−1 do a parcel ascent, again integrating a w-equation until w=0, with
low entrainment rate and partial rain-out (Fig. 1.16).

Decision: IF cloud top more than 200 hPa from parcel origin THEN deep convection activated,
ELSE test each individual layer to 700 hPa. (Fig. 1.17)

Step 3 Mid level convection: Test for instability to mid-level convection for any level above
500m, where RH > 80%. (Fig. 1.18) The process is highly “discrete” and “discontinuous” with
many thresholds and switching processes. This makes it hard to introduce a scheme that smoothly
switches off as resolution increases.

entrainment

ESCAPE

Entrainment

A large uncertainty remains on how to specify the entrainment of environmental air into the
convective plume and the detrainment of cloudy air into the environment. Only indirect estimates
are available from a limited number of field experiments.
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Figure 1.12: Tiedtke (CY36R1) Mass flux logic

Figure 1.13: Tiedtke (CY36R1) Mass flux logic

It is commonly assumed that:

• Shallow convective clouds entrain more than deep convective clouds.

• Entrainment is maximum close to cloud base and diminishes upwards (Yanai, 1973)(Yanai
et al., 1973).

• Detrainment is maximum close to cloud top (anvils).

A few examples of formulations for entrainment rates:

• E = f(R) (R = cloud radius), (e.g. Simpson and Wiggert, 1969)

• E = f(1/z) for shallow convection, (e.g. de Roode et al., 2000; Jakob, 2003)

• E = constant : Until recently used in Tiedtke (1989) ECMWF scheme

• E = f(RH) New ECMWF formulation, low RH implies high entrainment. justification?

microphysics SKIP SECTION

microphysics
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Figure 1.14: Tiedtke (CY36R1) Mass flux logic

Figure 1.15: Tiedtke (CY36R1) Mass flux logic

Microphysics in updraughts is simple, with a Kessler or Sundqvist type equation integrated for the
Lagrangian parcel in the final ascent.

Kessler (1969):
dql
dt

= K(ql − qcrit) if ql > qcrit (1.34)

Where K is a rate conversion constant and ql is the critical mass mixing ratio at which rain-
drop collection processes become efficient (drops are present that exceed 20 microns radius). No
information about the updraught speed is used. downdraughts

Downdraughts
Downdraughts are often treated very simply. The routine finds the highest level of free sinking
(LFS) for which an equal saturated mixture of cloud and environmental air becomes negatively
buoyant (Eqn. 1.35):

Tiedtke (1989) simply relates the “seed” downdraught mass flux to the updraught base mass
flux.

Md,b = −0.3Mu,b (1.35)

closure Example of a closure: Convection counteracts destabilization of the atmosphere by
large-scale processes and radiation - Stability measure used: CAPE
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Figure 1.16: Tiedtke (CY36R1) Mass flux logic

Assume that convection reduces CAPE to 0 over a given timescale, i.e.,

dCAPE

dt cu
= −CAPE

τ
(1.36)

1.1.3.3 Episodic mixing models

Emanuel (1991) followed on from Paluch (1979) and Raymond and Blyth (1986) to suggest an
episodic mixing model (Fig. 1.23) in which multiple plumes were calculated, each undergoing
different mixing quantities with the environment

1.1.3.4 Super-parameterization

Another approach is super parametrization, whereby a 2 or 3 dimensional cloud resolving model is
inserted into each grid-box of the GCM (Randall et al., 2003). Q: Advantages and disadvantages?

This approach was first suggested and successfully implemented in a intermediate complexity
GCM by ?, and has since been taken up as an option of the north American community climate
model by the group of David Randall at Colorado State Univerisity as well as receiving attention
by Arakawa.

The approach allows you one to omit a considerable number of parameterization assumptions
due to the (crude) resolution of convective processes. For example, the overlap of clouds in the ver-
tical is handled explicitly and does not require parametrization. The impact of vertical windshear
on the tilting of updraughts and the enhancement of sub-cloud rainfall evaporation is also explic-
itly included, effects that are usually omitted from conventional parameterization approaches, or
handled in an ad hoc way.

That said, the numerical expense of include more than a few hundred horizontal grid-points at
best in the sub-grid model means that the meso-scale is still omitted, and the jury is still out as to
whether global climate models using such schemes out perform standard approaches. Surprisingly,
there is evidence that such models can nevertheless represent the advection of squall-line-like feature
between cells of the host global model.

Conclusions:

• Parametrization introduces a sub-grid model to represent small-scale, unresolved physics

• Deep convection schemes represent the effect of non-local transport

• Early schemes were based on the adjustment approach
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Figure 1.17: Tiedtke (CY36R1) Mass flux logic

Figure 1.18: Tiedtke (CY36R1) Mass flux logic

• Mass flux are the mainstay of parametrization, even today

• Bulk assumption has weaknesses, addressed in the multi-plume approach

• move towards super-parameterization, but at the expense of computing

1.1.4 Cloud microphysics

There are two key tasks regarding cloud parameterization. The representation of the cloud geom-
etry (cloud macrophysics) and the processes that convert water between the various phases (cloud
microphysics).

A typical simple microphysics parametrization is shown in Fig. 1.25. Each yellow box repre-
sents a prognostic equation for the mass mixing ratio of a bulk water quantity, while the arrowed
pathways indicates processes that transfer water from one category to another.

Condensation/Evaporation
Since the diffusional growth of cloud droplets in supersaturated conditions is very rapid (cf. global
model timestep), it can be assumed that all excess (supersaturated) water vapour immediately con-
denses into cloud water droplets. Likewise in subsaturated conditions, all cloud drops immediately
evaporate.
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Figure 1.19: Schematic of mass flux logic chain

What information does this not provide?
Assuming fast condensation timescales implies that for warm processes, a single prognostic

equation for the total water may be employed, which is divided into liquid cloud water and water
vapour according to temperature: rt = rv+rl where rl = rt−rs(T, p). No information concerning
the cloud droplet number (related to the CCN) is provided. Either the droplet number is diagnosed
(e.g. fixed, or related to aerosol from a climatology or an online aerosol scheme), or it can be
prognosed from sources and sinks. The latter approach is referred to as a double moment scheme
as two moments, the mass mixing ratio and the droplet number are predicted.

1.1.4.1 autoconversion to raindrops

Autoconversion from cloud droplets to raindrops is a highly nonlinear process, and only becomes
efficient when there is a wide range of cloud drop sizes. Knowledge of the droplet size distribution
is usually lacking in the global model, and therefore diagnostic assumptions have to be made. This
results in a wide variety of schemes

Kessler (1969):
dql
dt

= A(ql − qcrit) if ql > qcrit (1.37)

Sundqvist et al. (1989):
dql
dt

= Aql(1− e
−(

ql
qcrit

)2
) (1.38)

Beheng (1994):
dql
dt

= AqMl (1.39)

Here, A is simply a constant, and qcrit is the critical mass mixing ratio at which the autoconversion
process becomes efficient. In order for the creation of raindrops to become efficient a wide range
of cloud droplet sizes is required to get a wide range of fallspeeds, with some of the largest drops
requiring a radius exceeding 20 microns. Therefore, if an assumption is made concerning the
distribution of dropsizes, and also the droplet concentration number (related to the number of
cloud condensation nuclei, CCN you will recall), then the critical radius for the maximum dropsizes
can be converted into a critical mean mass mixing ratio. See the paper of Liu et al. (2006) for an
intercomparison of the many autoconversion approaches, and a suggested generalization of these.

It is possible to alter the constant A to account for collision and accretion processes:

A = A0qcq
7/8
r (1.40)
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Figure 1.20: Schematic of mass flux logic chain

The form and the constants vary from scheme to scheme.

1.1.4.2 rainfall evaporation

Rainfall evaporation will depend on the relative humidity RH of the air through which rain is
falling, and the magnitude of the rainfall flux, related to the rain mass mixing ratio qr.

dqr
dt

= X1(1−RH)qX2
r (1.41)

X1 and X2 are not true constants as they contain density terms. The evaporation rate is in reality
controlled by the rate at which heat can diffuse to balance the latent heat of vaporisation.

Most current models have microphysics schemes on the order of complexity of that shown in
Fig. 1.26, with additional prognostic equations for ice. We will not focus on the details of the
microphysics here, refer to Lohmann and Roeckner (1996) for an example of a scheme. Instead let
us consider the macrophysics of clouds

1.1.5 Cloud Cover

When considering the approach to model clouds in general circulation models (GCMs), there
are a number of zero order cloud macrophysical issues that require attention, in addition to the
representation of the complex warm phase and ice phase microphysics processes that govern the
growth and evolution of cloud and precipitation particles.

Unlike cloud resolving models (CRMs) or large-eddy models (LEMs), which, having grid reso-
lutions finer than O(1km), aim to resolve the motions relevant for the clouds under consideration,
GCMs must additionally consider macroscopic geometrical effects. Claiming to resolve cloud scale
motions allows CRMs and LEMs to make the assumption that each grid scale is completely cloudy
if condensate is present. This approach is clearly not adequate for GCM size grid scale of O(100km)
for which clouds are a subgrid-scale phenomenon, (although some schemes such as Ose, 1993; Fowler
et al., 1996, have indeed adopted this approach).

GCMs must consider cloud geometrical effects. To reduce the fractal cloud to a tractable low
dimensional object, GCMs usually reduce the problem to the specification of the:

• horizontal fractional coverage of the gridbox by cloud,

• vertical fractional coverage of the gridbox by cloud,

• sub-cloud variability of cloud variables in both the horizontal and vertical, and the

• overlap of the clouds in the vertical column
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Figure 1.21: Mixing diagram from Paluch (1979)

Figure 1.22: Schematic of the episodic mixing model approach, see Emanuel (1991) for details.

The above list is far from exhaustive, and implicitly neglects interactions between adjacent
GCM columns (for example, how cloud affects solar fluxes in adjacent columns at low sun angles),
probably a safe assumption for grid-scales exceeding 10km or so (Giuseppe and Tompkins, 2003)

In fact, most GCMs further simplify the above list (i) by assuming clouds fill GCM grid boxes
in the vertical and (ii) by neglecting many of the consequences of sub-cloud fluctuations of cloud
properties. Both of these are considerable simplifications. Although vertical GCM grids are much
finer than the horizontal resolution, the same is of course also true of cloud processes. Using O(50)
levels in the vertical implies that some cloud systems or microphysical related processes are barely
if at all resolved, such as tropical thin cirrus (Dessler and Yang, 2003), or the precipitation melting
layer (Kitchen et al., 1994), which can have important implications (Tompkins and Emanuel,
2000). Likewise, many authors have highlighted the biases that can be introduced when sub-cloud
fluctuations are neglected, due to the strong nonlinearity of cloud and radiative processes (Cahalan
et al., 1994; Barker et al., 1999; Pincus and Klein, 2000; Pomroy and Illingworth, 2000; Fu et al.,
2000; Rotstayn, 2000; Larson et al., 2001a).

Nevertheless, the zero order primary task of cloud schemes, in addition to representing the
microphysics of clouds, is to predict the horizontal cloud coverage. It is clear that a utopian
perfect microphysical model will render poor results if combined with an inaccurate predictor
of cloud cover, due to the incorrect estimate of in-cloud liquid water. This introductory course
presents the general approaches used to date in GCMs for this task.

The first thing to realize is that fractional cloud cover can only occur if there is horizontal
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Figure 1.23: Decision tree of the episodic mixing model approach, see Emanuel (1991) for details.

subgrid-scale variability in humidity and/or temperature (controlling the saturation mixing ratio,
qs). If temperature and humidity are homogeneous, then either the whole grid box is subsaturated
and clear, or supersaturated and cloudy1.

This is illustrated schematically in Fig. 1.27. Fluctuations in temperature and humidity may
cause the humidity to exceed the saturated value on the subgrid scale. If it assumed that all
this excess humidity is immediately converted to cloud water (and likewise that any cloud drops
evaporate instantly in subsaturated conditions), then it is clear that the grid-mean relative humidity
(RH, where the overline represents the gridbox average) must be less unity if the cloud cover is
also less than unity, since within the cloudy parts of the gridbox RH = 1 and in the clear sky
RH < 1. Generally speaking, since clouds are unlikely when the atmosphere is dry, and since RH
is identically 1 when C = 1, there is likely to be positive correlation between RH and C.

The main point to emphasize is that, all cloud schemes that are able to diagnose non-zero
cloud cover for RH < 1 (i.e. any scheme other than an “all-or-nothing” scheme) must make an
assumption concerning the fluctuations of humidity and/or temperature on the subgrid-scale, as
in Fig. 1.27. Either (i) they will explicitly give the nature of these fluctuations, most usually by
specifying the probability density function (PDF) for the total water at each gridcell, or (ii) they
will implicitly assume knowledge about the time-mean statistics of the fluctuations (i.e. the actual
PDF at each grid point is maybe not known).

It is important to recall, when trying to categorize the seemingly diverse approaches to cloud
cover parametrization, that this central fact ties all approaches together.

1.1.5.1 relative humidity schemes

Relative humidity schemes are called such because they specify a diagnostic relationship between
the cloud cover and the relative humidity.

In the last section we saw that subgrid-scale fluctuations allow cloud to form when RH < 1.
RH schemes formalize this by setting a critical RH (denoted RHcrit) at which cloud is assumed
to form, and then increase C according to a monotonically increasing function of RH, with C=1
identically when RH=1.

One commonly used function was given by Sundqvist et al. (1989):

C = 1−
√

1−RH

1−RHcrit
(1.42)

1For simplicity, throughout this text we ignore the subtle complication of the ice phase, where supersaturations
are common (Heymsfield et al., 1998; Gierens et al., 2000; Spichtinger et al., 2003)
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Figure 1.24: Schematic of super-parameterization approach

Thus it is apparent that RHcrit defines the magnitude of the fluctuations of humidity (the
humidity variance). If RHcrit is small, then the subgrid humidity fluctuations must be large, since
cloud can form in dry conditions.

It is clear that one of the drawbacks of this type of scheme is that the link between cloud
cover and local dynamical conditions is vague. Convection will indeed produce cloud if its local
moistening effect is sufficient to increase RH past the critical threshold, but it is apparent that a
grid cell with 80% RH undergoing deep convection is likely to have different cloud characteristics
than a gridcell with 80% RH in a frontal stratus cloud. RH schemes simply state that, averaged
across all conditions across the globe, a gridcell with X% RH will have Y% cloud cover.

This lack of differentiation between different local conditions lead some authors to augment
their RH schemes using additional predictors.

The ECHAM4 climate model Roeckner et al. (1996) augments the cloud cover in the presence
of a strong temperature inversion to improve the representation of stratocumulus.

The Slingo (1980, 1987) scheme predicts the mid-level cloud cover (Cmid) as

C∗
mid =

(
RH −RHcrit

1−RHcrit

)2

, (1.43)

but Slingo modifies this according to an additional predictor, the vertical velocity at 500 hPa
(ω500), thus

Cmid = C∗
mid

ω500

ωcrit
, (1.44)

if 0 > ω500 > ωcrit while the cloud cover is set to zero if subsidence is occurring (ω500 > 0).
Likewise Xu and Randall (1996) used a cloud resolving model (CRM) to derive an empirical

relationship for cloud cover based on the two predictors of RH and cloud water content:

C = RHp

[
1− exp

(
−α0ql

(qs − qv)γ

)]
, (1.45)

where γ, α0 and p are ’tunable’ constants of the scheme, with values chosen using the CRM
data. Q: what is the weakness of such an approach? One weakness of such a scheme is, of course,
this dependence on the reliability of the CRM’s parametrizations, in particular the microphysics
scheme. Additionally, it is unlikely that the limited set of (convective) cases used as the training
dataset used would encompass the full range of situations that can naturally arise, such as cloud
in frontal systems for example.

While these latter schemes use additional predictors for cloud cover, we shall still refer to them
as “relative humidity” schemes, since the common and central predictor in all cases is RH. It is
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Figure 1.25: Schematic of a very simple microphysics scheme previously at use in ECMWF. (source:
ECMWF Tech memo 649)

Figure 1.26: Schematic of the present bulk microphysics scheme in use at ECMWF (source:
ECMWF Tech memo 649)

doubtful if any of the schemes could be reasonably simplified by replacing the RH dependence
with a fixed value.

1.1.5.2 statistical schemes

Instead of describing the spatial and temporal mean statistics of the humidity fluctuations such as
the RH schemes, another group of schemes take a different approach, by specifying the underlying
distribution of humidity (and/or temperature) variability at each grid box. These are referred to as
statistical schemes This is shown schematically in Fig. 1.28.

If the PDF form for total water qt is known, then the cloud cover is simply the integral over
the part of the PDF for which qt exceeds qs:

C =

∫ ∞

qs

G(qt)dqt, (1.46)

Likewise, the cloud condensate is given by

q̄c =

∫ ∞

qs

(qt − qs)G(qt)dqt. (1.47)

As always we are assuming that all supersaturation is immediately condensed as cloud. Here
we are also ignoring temperature fluctuations for simplicity, but these can be included.
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Figure 1.27: Schematic showing that partial cloud cover in a gridbox in only possible if temperature
or humidity fluctuations exist. The blue line shoes humidity and the yellow line saturation mixing
ratio across an arbitrary line representing a gridbox. If all supersaturation condenses as cloud then
the shaded regions will be cloudy.

Figure 1.28: Schematic showing the statistical scheme approach. Upper panel shows an idealized
PDF of total water (qt). The vertical line represents the saturation mixing ratio qt = qs, thus all
the points under the PDF to the right of this line are cloudy. The integral of this area translates
to the cloudy portion of the gridbox, marked on the lower part of the figure, with darker shading
schematically representing high total water values.
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Table 1.1: PDF forms used in statistical cloud schemes. In the summary column, the key is:
U=unimodal, B=Bimodal, S=Symmetric, Sk=Skewed.

PDF Shape Summary Reference
Double Delta U,S Ose (1993); ?
Uniform U,S LeTreut and Li (1991)
Triangular U,S Smith (1990); Rotstayn (1997); Nishizawa (2000)
Polynomial U,S Lohmann et al. (1999)
Gaussian U,S ?Ricard and Royer (1993); Bechtold et al. (1995)
Beta U,Sk Tompkins (2002)
Log-normal U,Sk Bony and Emanuel (2001)
Exponential U,Sk ?Ricard and Royer (1993); Bechtold et al. (1995)
Double Gaussian/Normal B,Sk Lewellen and Yoh (1993); Golaz et al. (2002b)

Figure 1.29: Schematic illustrating the 3rd and 4th moments; skewness and kurtosis

The main tasks of the statistic scheme is therefore to give a suitable form for the PDF of total
water fluctuations, and to derive its defining moments.

Schemes can be either diagnostic or prognostic in nature. Prognostic means that a separate
equation is introduced with memory of the PDF moments, that evolve in time. Diagnostic implies
that the PDF characteristics are instead defined in terms of other available variables (e.g. RH,
cloud water content). Examples of prognostic PDF schemes are given in Golaz et al. (2002a) (fully
self-consistent but no ice processes) and Tompkins (2002) (simplified approach, but includes ice
microphysics).

The main tasks of the statistic scheme is therefore to give a suitable form for the PDF of total
water fluctuations, and to derive its defining moments.

1.1.5.3 Defining the PDF

Various distributions have been used, many of which are symmetrical. Smith (1990) uses a sym-
metric triangular PDF, diagnosing the variance based on a critical RH function at which cloud
is determined to form, later modified by Cusack et al. (1999). This PDF has been subsequently
adopted by Rotstayn (1997) and Nishizawa (2000). LeTreut and Li (1991) use a uniform dis-
tribution, setting the distribution’s variance to an arbitrarily defined constant. A Gaussian-like
symmetrical polynomial function was used by Lohmann et al. (1999) with variance determined
from the subgrid-scale turbulence scheme following Ricard and Royer (1993), who investigated
Gaussian, exponential and skewed PDF forms. Bechtold et al. (1992) based their scheme on the
Gaussian distribution, which was modified in Bechtold et al. (1995) to a PDF linearly interpolated
between Gaussian and exponential distributions. Bony and Emanuel (2001) have introduced a
scheme that uses a generalized Log-Normal distribution. Lewellen and Yoh (1993) detail a pa-
rameterization that uses a Bi-normal distribution that can be skewed as well as symmetrical and
is bimodal, although a number of simplifying assumptions were necessary in order to make the
scheme tractable. Likewise Golaz et al. (2002b) also give a bimodal scheme. These forms are
summarized in table 1.1 and drawn schematically in Fig. 1.30.

Examples of PDFs measured in the literature are shown in Fig. 1.31. Although it is difficult
to theoretically derive a PDF form, since the qt distribution is the result of a large number of
interacting processes, therefore forcing the use of empirical methods, it is possible to use physically-
based arguments to justify certain functional forms. For example, in the absence of other processes,
large-scale dynamical mixing would tend to reduce both the variance and the asymmetry the
distribution. Therefore, the Gamma and Lognormal distributions would be difficult to use since
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Figure 1.30: Schematic of PDF forms for G(qt) used to date, divided into symmetrical and skewed
categories. The papers referred to are: LeTreut and Li (1991); Smith (1990); Mellor (1977);
Lohmann et al. (1999); Sommeria and Deardorff (1977); Bony and Emanuel (2001); Barker et al.
(1996); Tompkins (2002); Lewellen and Yoh (1993). Note that Barker et al. (1996) is not describing
a cloud scheme, but a corrective mechanism for radiative biases that assumed this distribution for
in-cloud water fluctuations.

Figure 1.31: Reproduction of LWP, ice water content and total water PDFs from various observa-
tional studies. The papers referred to are: Wood and Field (2000); Heymsfield and McFarquhar
(1996); Price (2001); ?.
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they are always positively skewed, and only tend to a symmetrical distributions as one of their
defining parameters approaches infinity. Bony and Emanuel (2001) attempt to circumnavigate this
by switching between Lognormal and Gaussian functions at a threshold skewness value.

Another problem that distributions such as the Lognormal, Gamma, Gaussian and Exponential
suffer from is that they are all unbounded functions. Thus, if these functional forms are used, the
maximum cloud condensate mixing ratio approaches infinity, and part of the grid cell is always cov-
ered by cloud. Precautionary measures, such as the use of a truncated function, can be taken, but
this increases the number of parameters required to describe the distribution, and again introduces
undesirable discreteness. Moreover, functions such as the Gaussian function or the polynomial used
by Lohmann et al. (1999) are also negatively unbounded, implying that part of the gridcell has
negative water mass. The choice of function must also involve a fair degree of pragmatism, since in
addition to providing a good fit to the available data, it must also be sufficiently simple and of few
enough degrees of freedom to be of use in a parameterization scheme. For example, Larson et al.
(2001b) were able to provide good fits to their aircraft data using a 5-parameter double Gaussian
function, but it is unclear how these parameters would be determined in a GCM cloud scheme.
The Beta distribution used by Tompkins (2002) is bounded and can provide both symmetrical
and skewed distributions, but has the disadvantage of an upper limit on the skewness when the
distribution is restricted to a sensible bell-shaped regime, and that the form is not mathematically
as simple as alternative unimodal distributions.

Considering the question of whether a unimodal distribution is necessary, we refer to a number
of observational studies. Some of the data from the following studies is shown for illustrative
purposes in Fig. 1.31. Ek and Mahrt (1991) examined PBL relative humidity variability in a
limited number of flight legs, and assumed a unimodal Gaussian fit for their distribution. Recently,
Wood and Field (2000) studied flight data from both warm and cold clouds and reported unimodal
distributions of qt, but also observing more complex distributions, giving some weakly and strongly
bimodal examples. Davis et al. (1996) reported uni- or bi-modal skewed distributions in liquid
water content from flight data in marine stratocumulus clouds. Larson et al. (2001b) have also
examined flight data for PBL clouds and found that mainly unimodal or bimodal distributions
occurred. They reported that PDFs that included positive or negative skewness were able to give
an improved fit the data. Price (2001) used tethered balloon data of PBL humidity collected
during a three year period, finding that roughly half of the data could be classified as symmetrical
or skewed unimodal. A further 25% of the data could be regarded as multimodal.

Although many of the above studies reported a significant frequency of occurrence of distribu-
tions classed as bi- or multi-modal, these distributions often possessed a single principle distribution
peak, as in the example given by Price (2001), and thus a unimodal distribution could still offer
a reasonable approximation to these cases. This also applies to the flight data examples shown
in Heymsfield and McFarquhar (1996) taken in ice clouds. Additionally, as stated in the intro-
duction, the bimodal and multimodal distributions may be exaggerated in both flight and balloon
data. Satellite data on the other hand can give a more global view at relatively high spatial res-
olutions. Two such studies have been reported by Wielicki and Parker (1994) and ? who used
Landsat data at a resolution of 28.5 meters to examine liquid water path in a large variety of cloud
cover situations. They reported unimodal distributions in nearly or totally overcast scenes, and
exponential-type distributions in scenes of low cloud fraction, as expected since in these cases only
the tail of the qt distribution is detected. Note that the analysis of LWP is likely to lead to much
smoother (and thus more unimodal) PDFs due to the vertical integration.

In summary, it appears that in the observational data available conducted over a wide variety of
cloud conditions (although rarely in ice-clouds), approximate unimodality is fairly widespread, and
that a flexible unimodal function can offer a reasonable approximation to the observed variability
of total water. That said, a significant minority of cases are very likely to be better modelled using
a bimodal distribution like those advocated by Lewellen and Yoh (1993) and Golaz et al. (2002b).

1.1.5.4 Setting the PDF moments

The second task of statistical schemes is to define the higher order moments of the distribution. If
the distribution is simple, such as the uniform distribution, then it is defined by a small number of
parameters. In the case of the uniform distribution, one could specify the lower or upper bounds of
the distribution; two parameters are required. Equivalently, one could give the first two distribution
moments: namely the mean and the variance. Likewise, more complicated PDFs that require 3
parameters can be uniquely defined using the first three moments: mean, variance and skewness;
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Figure 1.32: Even if the mean total water is correct, if the incorrect distribution width is diagnosed,
for example the narrow yellow distribution, then clear sky conditions will prevail when in fact
partial cloud cover exists (pink triangle).

Figure 1.33: Graphical aid to the derivation of the cloud cover as a function of the RH when the
total water is assumed to be uniformly distributed. If cloud begins to form at RHcrit then the
width of the distribution is 2qs(1−RHcrit). See text for details.

four-parameter distributions need the fourth moment of kurtosis (describing the PDF ’flatness’,
see schematic in Fig. 1.29), and so on.

It is clear to see why the accurate specification of the moments is important. The schematic
of Fig. 1.32 shows that, even if the distribution mean is correct, diagnosing a variance that is
too small (i.e. the distribution is too narrow) will lead to the incorrect prediction of clear sky
conditions.

Some schemes diagnostically fix the higher order moments of the distribution, such as the
variance. However, it is clear that this is not an ideal approach, since by having a fixed distribution
width (for example), the PDF (and thus cloud properties) are not able to respond to local dynamical
conditions. The fixed width (and higher order moments) are then equivalent to the specification of
the critical relative humidity at which cloud is assumed to form in the RH schemes. Indeed Smith
(1990) actually sets the width of the triangular distribution in that scheme in terms of a RHcrit

parameter.

To illustrate fixed width schemes with a specific example, let us consider the uniform distribu-
tion adopted by LeTreut and Li (1991). The PDF for a typical partially cloudy grid box is shown
in Fig. 1.33.

Considering the humidity, it is assumed that no supersaturation exists as is usual, and thus in
the cloudy portion, qv = qs. Thus the grid-mean humidity can be written as:

qv = Cqs + (1− C)qe (1.48)

where qe is the humidity in the ’environment’ of the cloud; the cloud-free part of the gridbox.
From the uniform distribution shape, it is possible to define qe in terms of a critical RH for cloud
formation RHcrit:

qe = qs(1− (1− C)(1−RHcrit)). (1.49)
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The definition of RH is qv/qs, which substituting the definitions above gives

RH = 1− (1−RHcrit)(1− C)2, (1.50)

which can be rearranged to give

C = 1−
√

1−RH

1−RHcrit
. (1.51)

This is recognised to be the relative humidity scheme used by Sundqvist et al. (1989)! Thus
it is seen that a so-called statistical scheme with fixed moments can be reduced to a RH scheme,
or likewise that RH schemes do not need to rely on ad-hoc relationships, but can be derived
consistently with an assumed underlying PDF of total water. This point was fully appreciated by
Smith (1990), whose work actually provides the RH-formulation associated with the triangular
distribution in its appendix.

The example of the Smith (1990) scheme also raises another interesting point. Since the scheme
was based on the linear s variable (see appendix below), that aims to take temperature fluctuations
into account, it is often claimed that the Smith scheme (and related schemes) include the effect of
temperature fluctuations. However, there is nothing in the scheme that specifically accounts for
the separate effect of temperature fluctuations and their correlation with humidity (see Tompkins
and Giuseppe, 2003, for more discussion). By fixing the width of the distribution, the scheme
simply defines a ’net’ effect of temperature and humidity fluctuations combined. The point is
that one could write the scheme purely in terms of humidity fluctuations, and arrive to the same
relationship, which is witnessed by the RH derivation contained in the appendix of that paper.
This in turn implies that such schemes are not, in fact, taking temperature into account in any
meaningful way.

In summary, it is important to stress that there is not a clear distinction between the so-called
’RH schemes’ and statistical schemes. If a time-invariant variance is used in a statistical scheme,
it can be reduced to a RH-type formulation and we have seen how the RH scheme of Sundqvist
et al. (1989) can be derived by assuming a uniform distribution for total water, and likewise that
the Smith (1990) scheme also reduces to an equivalent RH formulation.

1.1.6 Diagnostic versus Prognostic schemes

At this point we pause to consider the merits or otherwise of prognostic versus diagnostic cloud
schemes. Shakespeare summarizes the issue well in Act III of Hamlet:

“To be (prognostic) or not to be (prognostic), that is the question. Whether ’tis nobler in the
mind to suffer, the slings and arrows of outrageous closure assumptions, or to take arms against
a sea of authors, (convinced that diagnostic cloud schemes are the best), And by opposing, end
them?”

Hamlet is antagonizing over the issue of whether to implement a diagnostic or a prognostic
approach in his cloud scheme. By this, we mean whether or not to include a prognostic equation
for the central parameters of the scheme in question. In the case of the statistical schemes this is
likely (but not necessarily) to imply a memory (a prognostic equation) for the higher order moments
such as variance, where as in the Tiedtke Scheme approach outlined below the prognostic variable
is the cloud cover itself.

Irrespective of the variable in question, the underlying question is always whether the variable
has a fast equilibrating timescale relative to the timestep of the model. Let us take the case of
turbulence (Lenderink and Siebesma, 2000). A highly simplified prognostic equation for variance
is:

dσ2(qt)

dt
= −2w′q′t

dqt
dz

− σ2(qt)

τ
(1.52)

The two terms on the RHS represent the creation of variance due to a turbulent flux of humidity
occurring in the presence of a humidity gradient, and a dissipation term modelled by a Newtonian
relaxation back to isotropy with a timescale of τ . This equation is highly simplified by the neglect
of both turbulent and large-scale flow transport of variance, and also the horizontal gradient terms,
but it serves its illustrative purpose.

It would be possible to introduce a prognostic predictive equation for total water variance along
these lines. However, if the dissipative timescale τ is very short compared to the model timestep,
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Figure 1.34: Examples of the Beta distribution for various shape parameters.

then a very good approximation could be obtained by assuming dσ2(qt)
dt = 0, giving

σ2(qt) = −2τw′q′t
dqt
dz

. (1.53)

A diagnostic approach has the advantage that it simplifies implementation, and saves computa-
tional cost and memory. The simplification does not imply that the local cloud properties are
independent of the local dynamics; a scheme based on eqn. 1.53 can not be reduced to a RH
scheme, since the variance in each gridbox is related to the local turbulent flux. Note also that
now, with such an approach, one can sensibly include the contribution of temperature fluctuations
due to turbulence, as done by Ricard and Royer (1993).

For examples of this kind of approach, examine the diagnostic schemes in the literature that
are described by Bougeault (1982); Ricard and Royer (1993); Bechtold et al. (1995); Lohmann
et al. (1999); Chaboureau et al. (2002). These schemes mostly restrict their concern to diagnos-
tic relationships for variance to the influence of turbulence. For example, above the boundary
layer, Lohmann et al. (1999) imposed a fixed width distribution to compensate for the lack of
consideration of other processes.

It is thus apparent that for generalized cloud situations, that include the evolution of clouds
such as large-scale cirrus, which may evolve over many hours or even days, it will normally be
necessary to resort to implementing a prognostic approach.

1.1.7 A prognostic statistical scheme

The first attempt to implement a fully prognostic statistical scheme into a GCM was made by
Tompkins (2002). This modelled the total water fluctuations using a Beta distribution,

G(t) =
1

B(p, q)

(t− a)p−1(b− t)q−1

(b− a)p+q−1
(a ≤ t ≤ b) (1.54)

where a and b are the distribution limits and p and q are shape parameters (Fig. 1.34)2 and the
symbol B represents the Beta function, and can be defined in terms of the Gamma function, Γ, as
follows:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (1.55)

2the original notation is repeated, but please note that the shape parameter q is not to be confused with mixing
ratio, qv .
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The skewness (ς) of the distribution is related to the difference between the two shapes param-
eters p and q,

ς =
2(q − p)

p+ q + 2

√
p+ q + 1

pq
, (1.56)

and thus if p = q the distribution is symmetrical, but also both positive and negatively skewed
distributions are possible. As p and q tend to infinity the curve approaches the Normal distribution.
The standard deviation of the distribution is given by

σ(t) =
b− a

p+ q

√
pq

p+ q + 1
(1.57)

Although this distribution is a 4-parameter function, using a simplification such as imposing
(p− 1)(q − 1) =constant can reduce it to a three parameter distribution (Tompkins used the less
satisfying p=constant closure, which unnecessarily restricted to distribution to positive skewness
regimes), specified uniquely by the mean, variance and skewness of total water.

Tompkins (2002) attempted to introduce two additional prognostic equations to predict the
evolution of the PDF shape. Once the distribution shape is known, (i.e. distribution limits a and
b and the shape parameters p and q) the cloud cover can be obtained from

C = 1− I qs−a
b−a

(p, q), (1.58)

where Ix is the incomplete Beta function ratio defined as

Ix(p, q) =
1

B(p, q)

∫ x

0

tp−1(1− t)q−1dt, (1.59)

subject to the limits I0(p, q) = 0 and I1(p, q) = 1.
Tompkins (2002) then attempted to parametrize the sources and sinks of variance and skew-

ness separately from physical processes such as convection, turbulence, microphysics and so on.
However, there is one complication that requires consideration, and is summarized by the following
equation for cloud water qc:

q̄c = (b− a)
p

p+ q
(1− I (qs−a)

(b−a)

(p+ 1, q)) + (a− qs)(1− I (qs−a)
(b−a)

(p, q)), (1.60)

This is simply eqn. 1.47, with the Beta distribution substituted for G(qt). This tells us that if the
distribution moments are known, then the cloud water is uniquely defined. Why is this a cause for
concern? The reason is that most cloud schemes already implement a separate prognostic equation
for cloud liquid/ice water. In other words, in partially cloudy conditions, if distribution moments
and the cloud liquid water are given from the respective prognostic equations, then the problem
is potentially over-specified. To clarify this we can re-examine the simple 2-parameter triangular
distribution in Fig. 1.35. The figure shows that the 2-parameter distribution can be uniquely
defined by giving either the mean and variance, or the mass mixing ratios of vapour and cloud
water separately.

Thus a decision must be reached concerning the prognostic equation set to be used. The first
option is to use water vapour and cloud water separately to implicitly derive the variance (right
panel of Fig. 1.35). The advantage of this approach is that one does not need to explicitly derive
complex variance source/sink terms, such as the impact of microphysics on variance. If, over a
timestep, the microphysics reduces the cloud water (for example by autoconversion to snow, or
by settling out of the gridbox) then this implicitly renders a narrowing of the distribution. Addi-
tionally it is much easier to ensure conservation of cloud water (presuming the numerics employed
are designed to ensure conservation of prognostic quantities). The disadvantage is that the in-
formation is only available in partially cloudy conditions. In clear sky conditions one only knows
the distribution mean, since qc = 0 identically (see schematic of Fig. 1.36). Likewise in overcast
conditions, where qv = qs. In these situations, the loss of information requires supplementary
ad-hoc assumptions to be made, to close the system. For example, one could resort to assuming
a fixed distribution width in clear-sky conditions, thus returning to cloud formation at a specified
(RHcrit). We will see below that this issue arises once again in the Tiedtke (1993) scheme, which
resorts to such a solution.

The second approach is to abandon the separate cloud water prognostic variable in favour of
a prognostic variance equation. This has the advantage that the distribution is always known,



34 CHAPTER 1. MODELLING THE ATMOSPHERE: THE SMALL STUFF COUNTS

Figure 1.35: Schematic of the two ways of specifying the triangular distribution. Left Panel:
The distribution mean and variance is given. Right Panel: The mean vapour and cloud water
(ice+liquid) are given. In both cases the distribution is uniquely specified and the cloud cover can
be diagnosed.

Figure 1.36: Schematic of the problem that arises if distribution width is derived from separate
prognostic equations for vapour and cloud water. The curve is not uniquely defined for overcast
(blue PDF) or clear sky (green PDF) conditions. For example, for the clear-sky case, there are any
number of possible variances (width) of the distribution that give the correct mean water vapour
and zero cloud water. Two examples are marked: a wider distribution (dot-dashed) or narrower
(dotted).

even in clear sky or overcast conditions. The disadvantage is that all sources and sinks must now
be parametrized in terms of variance sources and sinks. For turbulence (Deardorff, 1974), and
perhaps convective sources and sinks(Lenderink and Siebesma, 2000; Klein et al., 2005), this is
relatively straight-forward. However, for the microphysical processes the problem quickly becomes
complicated. For simple autoconversion terms A (the rate of conversion from liquid to rain), it is
possible to derive the sink of variance3

dσ2(qt)

dt
= A′q′t =

∫
A′(qt)q

′
tG(qt)dqt, (1.61)

which analytically tractable for simple forms of A and G(qt). Nevertheless, we can imagine more
complicated scenarios, such as ice settling handled by a semi-Lagrangian advection scheme, al-
lowing settling from any particular gridbox to other all levels below it. Trying to parametrize
this equivalently in terms of variance sources and sinks is difficult. Moreover, by abandoning the
prognostic equation for ice, any inaccuracies in the handling of such a process via a variance equa-

3Note once again the care that must be taken with regard to the numerics with long timesteps. Since autocon-
version terms tend to be nonlinear they usually reduce the variance. Even if this equation is integrated implicitly
for stability, the limit for long timesteps will be zero, which is unrealistic for partially cloudy conditions since the
precipitation process does not affect the clear sky part of the domain. Thus instead one should integrate this term
implicitly for the cloudy portion [cld] of the gridcell and then combine the result with the clear sky [clr] variance

thus: σ2(qt) = C(q2s + σ2(qt)[cld]) + (1− C)(q2v [clr] + σ2(qt)[clr])− q2t
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Figure 1.37: Figure taken from Tompkins (2002) showing evolution of the boundary layer at a
gridpoint subject to stratocumulus cloud. The upper panel shows the cloud cover, while the lower
shows the total water distribution minimum (a), maximum (b) in addition to qs (marked rs in the
plot, according the notation used in that paper). In the earlier period, the scene is overcast and the
whole of the PDF is moister than qs. In this case the increase in variance from turbulence breaks
up the cloud deck intermittently. In the latter period instead the gridbox is relatively dry, and
turbulence instead creates small cloud coverage; representing the cloud capped thermals known as
’fair weather cumulus’.

tion are likely to manifest themselves in a (potentially severe) compromising of the cloud mass
conservation.

Tompkins (2002) tried to provide a solution for this dilemma by implementing a hybrid scheme.
In partially cloudy conditions variance is derived directly from the cloud water and vapour prog-
nostic equations. In clear sky and overcast conditions, the variance is prognosed using a subset
of source and sinks terms, including turbulence, dissipation, and a highly simplified sink term due
to microphysics, which is necessary in overcast conditions. The reader is referred to Tompkins
(2002) for details of these source and sinks terms, although it should be noted that some of these,
in particular the skewness budget terms from microphysics and deep convection, have been justifi-
ably criticized by Klein et al. (2005) for their ad hoc nature. Nevertheless, the inclusion of even a
reduced set of variance sources/sinks, especially from turbulence, is able to reproduce the observa-
tions of turbulence increasing or decreasing variance according the mean humidity gradients, and
coincidently creating cloud or breaking-up an overcast cloud deck (Fig. 1.37).

1.1.7.1 Tiedtke scheme

The ECMWF cloud cover scheme (Tiedtke, 1993; Tompkins et al., 2007) is also prognostic, but
rather than recording the moments of the assumed uniform total water PDF directly, it instead
translates the changes in the PDF into changes in the cloud cover variable, which is integrated as
the prognostic quantity. This has some advantages of simplifying some microphysical processes,
but has the disadvantage that information is lost when a gridcell is either cloud-free or overcast,
since in these cases C=1 or 0 for a whole range of possible uniform distributions of total water (i.e.
there is no longer a 1-1 relationship tying a unique PDF to a unique pair of values of cloud water
and cloud cover). See lab exercises.



36 CHAPTER 1. MODELLING THE ATMOSPHERE: THE SMALL STUFF COUNTS

summary In summary, we have introduced the various approaches to diagnosing the proportion
of a grid box covered by cloud in global models. The main point is that partial coverage can occur
if and only if subgrid-scale fluctuations of humidity and temperature exist. All cloud schemes
that predict partial cloud cover therefore implicitly or explicitly make assumptions concerning
the magnitude and distribution of these fluctuations; the total water probability density function
(PDF).

We discussed simple diagnostic schemes that use RH as their main or only predictor for cloud
cover. We then discussed statistical schemes that explicitly specify the humidity PDF. We showed
that if the moments of such schemes are time-space invariant, then the cloud cover deriving from
statistical schemes can be written as diagnostic RH form. In other words, rather than using ad
hoc relationships, one can derive a RH-scheme to be consistent with an underlying PDF.

It was pointed out that knowing the PDF for humidity and cloud fluctuations gives vital
extra information that can be used to correct biases in nonlinear processes such as precipitation
generation or interaction with radiation.

More complex statistical schemes were then discussed which attempt to predict the sources and
sinks of the distribution moments, so that the PDF can realistically respond to the various relevant
atmospheric processes. The lecture dwelled on the choice of the prognostic variables, in particular
whether it is preferable to predict the PDF moments themselves, or instead to predict integrated
and direct cloud quantities such as the cloud liquid water. Advantages and potential drawbacks of
each approach were discussed; which were essentially that by directly predicting the cloud variables,
one ensures their conservation, and processes such as microphysics are far easier to handle, but that
in clear sky or overcast conditions there is lack of information so that diagnostic/fixed assumptions
have to be made concerning the subgrid distribution in these situations. These assumptions may
also lead to a lack of “reversibility” in this approach.

It was pointed out that the Tiedtke scheme is essentially a manifestation of the second approach,
where both cloud water and cloud cover are predicted, and where often an underlying assumption
concerning the humidity and cloud distribution is made to derive the sources and sinks of these
prognostic variables. We highlighted that, while proven successful in NWP, the scheme suffers from
the same drawback of requiring the implementation of a fixed (independent of local dynamical
conditions) RHcrit for cloud formation and a lack of reversibility.

1.1.8 Cloud overlap

Cloud schemes must also consider how cloud overlap in the vertical.
Some common assumptions includes the

• Maximum

• Random

• Maximum-Random (Random if clouds separately by a clear layer)

• Exponential-random (Maximum overlap in vertically contiguous clouds decays exponentially
with distance)

some of these assumptions are shown in Fig. 1.38.
The maximum overlap assumption assumes that the clouds are maximally correlated in the

vertical, thus minimizing cloud overlap. Thus the overall cloud cover Ci,j of layers i and j is
simply:

Cmax
i,j = max(Ci, Cj) (1.62)

Random overlap instead assumes that cloudy layers are randomly distributed.

Cran
i,j = Ci + Cj − CiCj (1.63)

An infrequently used assumption of minimum overlap assumes that mutually exclusivity leads
to a maximal cloud coverage.

The combined max-ran scheme is still widely used in models, and assumes that adjacent cloudy
layers are maximally overlapped, while layers separated by a clear layer are randomly overlapped.

A final recently developed scheme is known as the EXP-RAN scheme Hogan and Illingworth
(2000), which is a generalization of the MAX-RAN scheme (Fig/ 1.39).
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Figure 1.38: Schematic of the macroscale parametrization problem

Figure 1.39: schematic of cloud overlap from Reading University and Hogan and Illingworth (2000)

It still assumes that the overlap in continually cloudy adjacent layers, decorrelates according
to a scale height τ , while layers separated by a clear layer are still randomly overlapped. Thus for
continuously cloudy layers:

Cexp−ran
i,j = αCmax

i,j + (1− α)Cran
i,j (1.64)

where α has been parameterized as

α = exp
−D

τ
(1.65)

where various values have been derived for τ , with Hogan and Illingworth (2000) giving a value of
2 km. Further generalizations of this scheme incorporate solar geometry Tompkins and Giuseppe
(2007) and wind shear Giuseppe and Tompkins (2015).

It is clear that combining overlap, subgrid partial cloud cover, sub-cloud variability, the situation
can get complicated (Fig. 1.40)! It is clear that there will always be a need for diagnostic closure
assumptions concerning sub-grid scale geometrical and microphysical effects, no matter how much
resolution one throws at a problem!
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Figure 1.40: Schematic of the macroscale parametrization problem
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• Resolution determines the finest scale of motions that can be explicitly modelled;
the truncation scale. The effect on the grid-resolved scale of any process occurring
on smaller spatial scales than this has to be parameterized.

• Parameterizations are models for small scale processes written in terms of
grid-scale variables. The way this is done can be guided by observations, higher
resolution models or theory, but they can never be exact, since the small scales
are not explicitly modelled. Essentially an attempt is made to model the statistics
of the phenomena.

• Computing resources need to be shared between model resolution, timestep
(=accuracy), complexity of physics parametrization and number of en-
semble members
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