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Parcel-In-Cell (PIC) models

@ These are (almost fully) based on parcels. Very different approach!
o Important: these parcels must interact (mix on small scale).

o Clean distinction between resolved dynamics and small-scale mixing.

Domantas Dilys, using EPIC’s predecessor MPIC
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Implementation

@ We use parcels carrying any number of (conserved) attributes and vorticity
(evolved). Monotonic by design and globally conservative.

o Parcels have a volume V; and a shape matrix B; in order to determine gridded fields
needed to construct velocity on the grid.

@ Incompressible, Boussinesq, evaporation and condensation but no precipitation yet.
@ There are 2D (below) and 3D versions.
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Mixing via splitting and merging

Splitting and merging conserve
@ total centroid

@ total area/volume

@ total second moments (approximately)

Split criterion:
a
A= l_) > Amax [:4]

an > amax

Merge criterion:

Vi < Vinin

Nearest neighbour merging
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Resolution dependence
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Histograms of liquid water
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Enhanced mixing via the grid

@ Basic idea: nudge parcel value to grid value, which represents a mean of neighbours.

¢ = dp — ¢g = ¢'(0)e 7FI*

@ [ plays similar role to C; in Smagorinsky scheme.

@ Apply to grid point contributions to ensure conservation!
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Application to moist thermal

0.08

0.07

0.06

0.05

(EPIC-MIX)

°
S
4
humidity

H
g
E
2 0.03
=
]
z
=J
0.02
g
g 0.01
)
0.00

July 9, 2024



Moist thermal statistics
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Prototype BOMEX simulations

@ Realistic thermodynamics: potential temperature, liquid water and water vapour.
@ Includes large-scale forcings and surface fluxes.

@ Mean velocity profile nudged at this point. 33m isotropic grid.

3000

z (m)

—2000 -1000 2000
X (m)

Baing EPIC July 9, 2024 10 /25



Liquid water path
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Time-mean mass flux in BOMEX
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Summary

o Clean separation between resolved dynamics and parameterised mixing.
@ Turbulent mixing on small scales a challenge, even in Lagrangian models.

@ Alternative approaches to be explored.

A 2D ellipse with isotropic growth

Yaxis

Xeaxis
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Alternative mixing formulations?

- Parcels grow and dilute over time.

- Parcels move stochastically (Brownian/Langevin/SDE).

- Parcels stretch stochastically (Brownian/Langevin/SDE for deformation tensor).
- Use parcel properties more efficiently?

A 2D ellipse with isotropic growth

‘Yaxis
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Parcel-based model based on ellipses

Motion of a fluid ellipse in a linear background flow':

Given a linear background straining flow

u(x, t) = S(x, t)x(t)

where
Semi-major/-minor axes a and b _ _ (ux(xt)  uy(x,t)
S(x, t) = Vu(x, t) = (vx(x, ) wxt))
S then reformulating the time derivative of the el-
x'B ' x=1 lipse equation results in
_ (Bu B . - dB
where B = (312 Bzz) is symmetric. = — BST + SB.

Note: This is also valid in 3D!

Ellipse area preserved = Possible to store 2 (3D: 5)
values per parcel (but may want one more for sym-
metry)!

McKiver, W. J. & Dritschel, D. G. (2003). The motion of a fluid ellipsoid in a general linear background
flow. Journal of Fluid Mechanics, 474, 147-173.
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Deformation with matrix exponentials?

Computational cost is a challenge. Can we increase time step?

o e > i ox

I ————

Tendency calculations, previously use RK4 directly on

98 _ st sB.
dt

Solution for constant S, which preserves volume (because S is traceless)

B(t + At) = e%2'B(t)e® 2.

@ Bit expensive, but can limit matrix multiplications needed to 3 for 8th order Taylor
expansion (Bader et al. 2019).

@ Possibly combine with scaling and squaring (Ward, 1977).

@ Combines with low-storage RK schemes (Bazavov, 2020).
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Test

- Pick random symmetric B arrays.

- Pick random traceless Sstart and Send arrays.

- Calculate time-step pre-factor (using worst case).
- Calculate error as function of time-step.
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Plans: microphysics

@ Plan: prognostic supersaturation and two-moment cloud droplets.

o Non-precipitating vs. precipitating microphysics.

@ Approach also suitable for approach using droplet bin sizes or superdroplets.
o Comparison against WOEST flight data.
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Superdroplets
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Plans: surface exchange

@ Current simulations use free-slip boundary conditions, constant fluxes, and nudging
of mean wind.

o Convective Boundary Layer study ongoing (Sam Wallace, St Andrews).

{ ; ,,( A 2
R R g
R,

@ Wind speed would determine interactive surface fluxes.

@ It is not clear a priori how to implement atmospheric boundary conditions.

o Formulate Monin-Obukhov in terms of vorticity? Alternatives?
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Currently Cartesian grid, incompressible.

@ However, in principle these aren't restrictions.
1. Calculate flow field from parcel properties.
2. Move and deform parcels.
3. Split and merge parcels.

Needs thinking about corrections. Local deviations from incompressible typically
small in atmosphere.

Hybrid gridded-Lagrangian options?
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Exploit parcel (near) overlap?
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Uses algorithm of Gilitschenski and Hanebeck, IEEE, 2012
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Parcel-level behaviour
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Computational cost considerations

EPIC 32 ] EPIC 64 EPIC 128

humidity [-]




Number of grid cells Energy loss (%o)

EPIC  PS3D
48% x 12 0.310 0.514
642 x 16 0.124 0.217
96% x 24 0.040 0.065
128% x 32 0.017 0.029
2562 x 64 0.002 0.005

Table 3: Relative total energy loss (in per mille) for the internal wave test case between
the initial time ¢ = 0.0 and the final time ¢t = 47/+/2 versus the grid resolution. Note that
the simulation values are interpolated to match the final time.
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