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Warmer atmospheres rain more

TABLE 3. CHANGES DUE TO DOUBLING C(O, AND ENHANCING SEA SURFACE TEMPERATURES
(GLOBAL 2-YEAR MEAN)

Atmospheric Surface temperature
Tropospheric moisture
temperature content Globe Land Precipitation
(K) (%) (K) (K) (%)
11 LM 3-08 20 2:26 3-05 56
5IM 3-02 18 2-21 2-86 4-9

Mitchell et al. 1987, 10.1002/qj.49711347517



Warmer atmospheres rain more
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Energy conservation and global rainfall

Water balance within the atmosphere requires
Surface evaporation - surface precipitation = 0
Energy balance within the atmosphere requires

Net atmospheric radiative heating + latent heat flux + sensible heat flux = 0
or, in energy units,

In Earth’s atmosphere Hqy < | Oy w| and L P < SHF
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Observations constrained with energy and water balance

L'Ecuyer et al 2015: 10.1175/)CLI-D-14-00556.1



(Results from RCEMIP - beware diagnostics)

Latent Heat Flux vs. Precip (in W/ m~2 form)
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Radiation change constrains precipitation change with temperature

How does precipitation with temperature (what is the “hydrologic sensitivity’’)?

dP dQy dH dSHF

YdT,  dT, dT, dT,

In climate change simulations latent heat fluxes often decrease a little with
temperature but to first order
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Can we understand

(Spoiler alert: everything depends on radiative transfer and water vapor
thermodynamics)



“The atmosphere deepens in temperature coordinates”

Net flux divergence Net flux divergence Net flux divergence
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“The atmosphere deepens in temperature coordinates”
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An explanation: Simpson’s “law”

To the extent that
The absorption coefficient of water vapor is constant with 7, p and
Water vapor path depends only on local temperature

Then
Water vapor optical depth is a function of temperature so

Cooling by water vapor is independent of temperature in optically thick
regions



An explanation: Simpson’s “law”
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The atmosphere cools to space and warms from the surface

The monochromatic flux divergence across the whole atmosphere is

*
2

0, = J 2B, (T(z,))e "dr, — [ #(B(T,) — B(T(z,)))e~ " dz,
0 0

i.e. by cooling to space and heating from the surface at each 7

[You can get here by using the solutions to Schwartchild’s equation for up and
down flux to compute net flux

Q, = (F,(0) = FJ(0)) — (F, (z*%) — F (%)) ]



“Hydrologic sensitivity” is dominated by changes in cooling to space

The change in total flux divergence with surface temperature is

do, d (¥ _ d (% =yl
=— | #B/(I(z))e "dr,— — | aBI)—BXT(T,)))e " dx,
ar, dT, ), _AT5

because surface exchanges are small and get smaller at higher T

—T dTI/ nT;k d
~ B (1(t,))e UdT +7| —B ’ dt

S e S

because cooling is dominated by water vapor and “Simpson’s law”
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Remember emissivity is bounded by 0 < e < 1



. in spectral regions where opacity changes with temperature

Emission from the atmosphere is dominated by water vapor and carbon dioxide

T, = T,co, t Lm0 = W.co, T Dk, noWVP
neglecting pressure broadening and self-continuum

So that

dQ, . dIn WVP _,
— ¢ vCO, ﬂBy(TS) Ty,HzOe v,HyO

dT dT

A A



Complicated spectroscopy can be usefully idealized

: CO, absorption vs pressure : CO, absorption vs temperature
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... in spectral regions where opacity changes with temperature

Emission from the atmosphere is dominated by water vapor and carbon dioxide

T, = T,co, t Lm0 = W.co, T Dk, noWVP
neglecting pressure broadening and self-continuum

So that
dQ, . dIn WVP _,
o ¢ 7B ,(T) o7 wH0¢

A A

Each source of absorption - water vapor lines, water vapor continuum, carbon
dioxide - adds interesting physics



Hydrologic sensitivity results from the closing water vapor window

Line Absorption by Water Vapor




Hydrologic sensitivity results from the closing water vapor window

Line Absorption by Water Vapor
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The window darkens as it closes
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The window darkens as it closes

Line Absorption by Water Vapor

Water Vapor Atmosphere With Continuum

The window darkens from the edges, then the whole window goes opaque at once,
introducing stronger temperature dependence

One the whole window is opaque it’s out of play



Carbon dioxide masks, with another temperature dependence

Atmosphere With Water Vapor and CO2
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Carbon dioxide masks, with another temperature dependence

Line Absorption by Water Vapor




Sensitivity (W m~2 K™1)
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Column-Integrated Radiative Cooling Sensitivity
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Hydrologic sensitivity is a consequence of spectroscopy

The atmosphere rains more with surface temperature not because it warms but
because it warms and moistens simultaneously

The scale of hydrologic sensitivity is set by the surface Planck function and
shaped by the spectroscopy of water vapor and carbon dioxide

Hydrologic sensitivity peaks at ~298K and drops off quickly at higher temperatures



From theory to models

Shortwave heating also increases with warming, damping sensitivity
Changes in sensible heat fluxes modify hydrological sensitivity
Partly addressed by considering cooling in the free atmosphere

Clouds can mask changes in atmospheric emission and/or lower the
apparent surface temperature

CO; forcing damps these already-small estimates
It’s unclear how to integrate across varying temperatures

... but hydrologic sensitivity atmospheric component of the climate feedback and
models can be understood in the same framework



