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The past

(before the age of computing, what did we do to model the atmosphere
and physical systems in general?)

Slides heavily inspired by talk by Weinan E (Princeton):
“Al for Science, and the implications for Mathematics” SIAM 2023 (Amsterdam)




Taking a step back: Why do we do science?

* Find fundamental principles
* laws of planet motion, thermodynamics, quantum mechanics

 Solve practical problems
* engineering, industrial problems, e.g. weather and climate prediction



The Keplerian paradigm: data-driven approach

* Law's of planet motion

* Developel through purely
data-driven means
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The Newtonian paradigm: search for first principles

* E.g. planet motion, start with Newton's laws:
 Newton's 2nd Law: acceleration proportional to force
* Law of gravitation: force inversely proportional to distance squared

* Reduce to ODE problem

* solve ODE, get laws of planet motion



We mostly know the fundamental equations
e Paul Dirac (1929):

“The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and
the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble.”

* We just need to solve the equations :) Hierarchy of physical models:

e Schrodinger equations (quantum mechanics)
L * Navier-Stokes equations (fluid mechanics)

 Maxwell equations (electromagnetism)

* Boltzmann and Euler equations (gas dynamics)



Using the fundamental equations

* Good news:
* All natural science and related engineering problems reduce to math
problems (ODE/PDE problems)
* Bad news:

* before effective math tools scientists had to simplify or ignore models to solve
pratical problems
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The first “weather prediction model” - Lewis Fry Richardson

With equations developed and approach developed by Abbe and Bjerkness, LF
Richardson imagined__a Forecast Factory:
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for the whole globe_ Thatis a Staggering figure” Richardson 1922: “Weather Prediction by Numerical Process”
Lynch 2008: “The origins of computer weather prediction and climate modeling”



The first “weather prediction mode
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Figure 1.8 Forecast grid and observation stations for Richardson’s experiment. (After Richardson

1922)

"Atmospheric Data Analysis”, R. Daley, Cambridge Univ. Press

|II

- Lewis Fry Richardson

Richardson completed the calculations
manually using a numerical method

that he devised.

For various reasons his test, for part of
Europe, failed, with huge deviations
between forecast and observations.



The age of computing

* First major advance (von Neumann)

* Use of computers and numerical algorithms
* Finite difference, finite element, spectral methods

 Basic starting point: functions can be approximated by (piecewise)
polynomials

* For the first time able to use fundamental principles to solve practical
problems systematically

e Substantial impact
 Modern engineering design, weather forecasting, etc



The present



The present

DYAMOND initiative: global storm-resolving (Ax < 4km) run for 40 days
0(101%) scalar values for a single timestep



The challenge

* Many problems still remain not handled by fundamental principles
* Material properties and design
* Drug design
* Turbulence, polymers

* Control problems

* Theoretical work very challenging and separated from real world
* Same happening in extension of computational applied maths to these fields



The challenge - The curse of dimensionality

* As dimensionality grows, complexity grows exponentially
* In high dimension applications, (piecewise) polynomials are not efficient tools

* Mesh is too coarse

* (10 billion points uniformly spaced in unit cube with 1000 dimensions, mesh
size ~ 0.97723)

* Too many monomials
* How many pt" order monomials in d dimensions?



A high-dimensional problem: image classiciation

Deep learning I: Image classification
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A high-dimensional problem: image classiciation
Counting the dimensionality of Cifar 10
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Interlude

Using self-supervised learning to study clouds



“Archetypes” of convective organisation

“flower”

Stevens et al 2020, QJRMS



What happens between the “archetypes”?

Are they all that exist?

truecolor RGB
composite from
GOES-16 from
daytime on 2nd Feb
2020

—— tiling bbox
—— rect domain

1000km meridional and 3000km
zonal width local Cartesian
reprojection centered on

(lat, lon) = (14, -48) in tropical
Atlantic




Extracting the embedding manifold

* |dea: maybe all the tile
embeddings lie on some
manifold in the embedding

space

What does the world of cloud organisation look like?



Extracting the embeddmg mamfold

1.00 - * |dea: maybe all the tile
embeddings lie on some
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space
0.50 -
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Extracting the embedding manifold
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W

at can | do with this map of the world
of cloud organisation?
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isomap_dim

1[1]

isomap_dim

Radiative effects of cloud organisation

a) SW albedo [%] b) TOA SW flux [W/m~2] c) SW albedo model misfit [%]
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But what about the evolution of organisation?

2020/01/30 00:32

truecolor RGB

* Follow airmass along
Lagrangian trajectory (from
lagtraj) to capture evolution

GOES-16 C13 Brightness Temperature (10.1-10.35-10.6-um)
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Mapping evolution of organisation

2nd feb lagtraj trajectory {30/01T00:20 - 02/02 18:00) isomap manifold
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During first 48 hours the
organisation appears to follow
same evolution (loopin
behaviour), but then bifurcates
on last day to create flowers (!)
What's happening here?

trajectory that is
following clouds

e Tiles created
brightness
temperature of IR
channels in “water

vapour window” (11,
14, 15)

* Use embeddings

produced by neural
network from tiles, to
maB evolution onto
embedding manifold
 Network trained on IR-
triplets, covering
tropica[ Atlantic

dqmain over boreal
winter



What does the boundary layer look like?
What are the structures that trigger these clouds?

Clouds

Ax=25m Large-Eddy Simulation, RICO test-case Rendered with VAPOR



How do | “see” these structures?
The Barbados Cloud Observatory CORAL Raman LIDAR

* Measure water-vapour profiles
(below cloud), air temperature,
aerosols and cloud properties.

* resolution:
* horizontal wind: v~ 5m/s
e temporal resolution: At =4s
e => horizontal res: Ax ~ 20m
e vertical res: Az~ 15m

* Developed and run by llya Serikov
(MPI-Meteorlogy, Hamburg)




One day of LIDAR observations

2020-01-30

: .& * Depth of mixed
.2 boundary layer
+;  clearly seen

; (~600m)
* Clouds block

*z  LIDAR, cloud-
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& altitude
* More noise
: during daylight
- iy hours




One day of LIDAR observations - cont.

1. *: « Depth of mixed
. “i*  boundary layer
P - & clearly seen
(~600m)

B ¢ * Clouds block

§ £ LIDAR, cloud-
o ., base at ~600m
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* More noise
during daylight
hours
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Denoising CORAL LIDAR water vapour profiles

date = 2020-01-31, kind = observations
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e Although data is noisy (if you squint) individual coherent structures are
visible

* Assuming ~ 5m/s wind speed these structures are on order of hundreds of
meters



Traditional denoising with neural networks: supervised learning

* For supervised learning we
need pairs of noisy input
and clean target data, but
for real-life observations
we may not have clean
data

* Could synthesize training
data using an assumed
noise distribution applied to ° °
synthetic data - need

' i Noisy imag Target
simulated data and noise S SIS RS
model

* Can | do something with ’
: : o Learned
just the NOISY Noisy image mapping Target

observations?



noise2void: Learning Denoising From Single Noisy Images

(Krull et al 2019)
Y
0 %
'::- //////7

* Assume noise at any two points in
input is uncorrelated

* Exploit that image contains a high
degree of structure

e Learn correction to point value from
looking only at neighbouring pixels.
Network forced to Ignore central pIXE| Figure 3: Blind-spot masking scheme used during

by overwriting with random pixel in NOISE2VOID training. (a) A noisy training image. (b) A
neigh bourhood during training magnified image patch from (a). During N2V training, a
e If central pixel is included network randomly selected pixel is chosen (blue rectangle) and its
simply learns identity intensity copied over to create a blind-spot (red and striped

: .. square). This modified image is then used as input image
* |dea: if noise is uncorrelated then the during training. (c¢) The target patch corresponding to (b).

Only thing the ne’fWOflf can !ea rn_from We use the original input with unmodified values also as
the context (surrounding) pixels is the  target. The loss is only calculated for the blind-spot pixels
true denoised value of a pixel we masked in (b).



Teaser: Denoising CORAL LIDAR water vapour profiles

date = 2020-01-31, kind = observations
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e Although data is noisy (if you squint) individual coherent structures are
visible

* Assuming ~ 5m/s wind speed these structures are on order of hundreds of
meters



Teaser: Denoising CORAL LIDAR water vapour profiles

kind = observations
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LIDAR observations
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The future

(is now!)
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And things are moving fast... ee T
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Things have been moving very fast...

A timeline of global forecasting models

FourCastNet SwinVRNN %@ GraphCast FengWu SwinRDM NeuralGCM
cﬂ'l, Pathak et al. ¢=.n Hu et al. Lam et al. ¢=.n Chen et al. c‘:‘: Chen et al. Kochkov et al.

2023 2024

2022 v
A l

. °9 PanguWeather °oJ  AtmoRep GenCast
Keisler . i i i |
5 Biet al. —3 Lessiget al. Price et al.

§)>O = Graph-based = Transformer-based

Graphic from Joel Oskarsson
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Experimental: FourCastNet ML model: Mean sea level Experimental: Pangu-Weather ML model: Mean sea level
pressure and 850 hPa wind speed pressure and 850 hPa wind speed
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How long does it take to produce a forecast (IFS vs AIFS)?

~ 6hr on HPC ~ 25s on a GPU (A100), including write to disc

Experimental: AIFS (ECMWF) ML model: Mean sea level
pressure and 850 hPa wind speed

Base time: Fri 13 Oct 2023 00 UTC Valid time: Fri 20 Oct 2023 12 UTC (+180h) Area : Europe

Mean sea level pressure and 850 hPa wind speed

Base time: Fri 13 Oct 2023 00 UTC Valid time: Fri 20 Oct 2023 12 UTC (+180h) Area : Europe
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But how is this possible?

* Like polynomials, neural networks are just another class of special functions

Multiple Levels of representations
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But how is this possible?

* Unlike polynomials, neural networks don't suffer from curse of
dimensionality:

Approximation theory:

Error = £, d=dimensionality,
m=number of parameters in the model
Polynomial approximation: € ~ m~1/4
For € ~ 0.1, we need m ~ 109.

Neural network approximation: £ ~ m~—1/2
For £ ~ 0.1, we need m ~ 102.

See Weinan E's talk for the mathematical detail



How do these models work?

e Weather state  X*
e Dynamics model  X'=f(X""1... X"7F)

* Approximate with machine learning model [~ f

* Train on dataset of trajectories XXX
* Forecast data: Fast surrogate model
* Reanalysis data: Surpass existing NWP

Slide from Joel Oskarsson



2m temperature mean-squared error against synoptic observations

5.5 , ‘ , , , , , "In our view, we are currently placed
—— New AIFS version ; ; ; : ; i at an exciting moment in weather
1. PreviousAIFSversion | = s ' ' "_ 1
5 Pancas-Weather : : : 5 ! forecasting history." - ECMWF
~~- GraphCast : : : : i $
4541 * IFS
g .
w
2
o 4 -
@
=]
B ; z : : ,
R T T P S S
g .
= lower is better
o~
3 4
T X NI “Previous AIFS”:
j : : : : f : : - GNN with message-passing on
2 ; ; ; ; . : ; ; ; ; graph, 1deg
1 2 3 4 5 5 7 8 9 10
Forecast Da
! “New AIFS”:
northern hemisphere, September—October—November period of 2023 2 - Attention-based GNN, 0.25 deg

120/6/2023: https://www.ecmwf.int/en/about/media-centre/science-blog/2023/rise-machine-learning-weather-forecasting
216/1/2024: https://www.ecmwf.int/en/about/media-centre/aifs-blog/2024/first-update-aifs



https://www.ecmwf.int/en/about/media-centre/aifs-blog/2024/first-update-aifs
https://www.ecmwf.int/en/about/media-centre/science-blog/2023/rise-machine-learning-weather-forecasting

Heatwave forecast July 2022
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* Pangu-Weather (PGW) predicts heatwave
tempreature with similar skill to high-res forecast
(HRES) and within ensemble spread

* Pangu-Weather lacks some of fine-scale structure
in HRES
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ML & IFS: tropical cyclones

The cyclone tracks are looking very good, but the central pressure is under-predicted

a Track forecast for Typhoon Kong-rey b

Track forecast for Typhoon Yutu c

Mean direct position error
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Fig.4 |Pangu-Weatheris more accurate atearly-stage cyclone tracking
than ECMWF-HRES. a,b, Trackingresults for two strong tropical cyclones in
2018, thatis, Typhoon Kong-rey (2018-25) and Yutu (2018-26). The initial time
pointisshownbeloweach panel. The timegap between neighbouringdots is
6 h.Pangu-Weather forecasts thecorrect path of Yutu (thatis, it goes to the
Philippines) at12:00 UTCon 23 October 2018, whereas ECMWF-HRES obtains
thesame conclusion 2 dayslater, before which it predicts that Yutu will make

Forecast time (hours)

abigturntothenortheast.c, Acomparison between Pangu-Weather and
ECMWF-HRES in terms of mean direct position error over 88 cyclones in 2018.
Eachnumber inbracketsin the x-axisindicates the numberofsamplesused to
calculatetheaverage.Forexample,‘(788) means that therearein total 788 initial
points from whichthe typhoonlasts foratleast 24 hours, and the 788 direct
positionerrors of Pangu-Weather and ECMWF-HRES were averaged into the
final results.Panelsaand bwere plotted using the Matplotlib Basemap toolkit.

Bi et al. 2023

The rise of data-driven weather forecasting A PREPRINT V2
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Figure 8: Tropical cyclone verification results: (a) mean position error and (b) mean absolute central pressure error as
a function of the lead time for 2018. Forecasts are verified against the IBTrACS dataset and homogenized to have a
consistent number of cases between models. For each lead time, the number of cases is displayed directly below the
graphs. The vertical bars indicate the 2.5%-97.5% confidence intervals.

Ben-Bouallegue et al., (2023), https://doi.org/10.48550/arXiv.2307.10128
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Pangu-Weather vs ECMWF HRES — forecast bust

Root mean square error | 500hPa geopotential Nt 0

Europe

—
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* timing of forecasts
busts similar in ML
and IFS model
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Figure 2: Root-mean-square error for HRES (red) and Pangu-Weather (blue) of 500hPa geopotential 6-day
forecasts over Europe for the winter (December-January-February) 2022 /2023. Reference is the HRES
operational analysis.



ML & IFS: tropical cyclones

ML models dynamical fields (3)

IFS
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Slide from Massimo Bonavita, see https://arxiv.orqg/abs/2309.08473 for details
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Global ML NWP: Take-home messages and caveats

* ML models competitive with IFS in forecast of upper-air vars against operational analysis and surface vars

against obs

* Good ML performance in prediction of some aspects of extreme events (TCs tracks for example), but

lacking finer scale physical structure (cloud processes?)
* Once trained, ML model runs 1074 times faster than IFS
N hlo ’ : :
. Rai tincluded.i it { sic d I F |

As of Dec 2023:
GenCast produces forecast
ensembles using Diffusion
Models in GNN

As of 4/3/2024:
AIFS includes precipitation
forecast




Dec 2023: Ensemble data-driven model (GenCast, Google)

“Producing a single 15-day trajectory
with GenCast takes around a minute on a
Cloud TPU v4, and so N ensemble
members can also be generated in
around a minute with N TPUs, enabling
the use of orders of magnitude larger
ensembles in the future”

GenCast: Diffusion-based ensemble forecasting for medium-range weather

ERAS5 Analysis GenCast GraphCast Spectral power
b Sample #1 C Sample #2 d Sample #3 @ Ensemble mean f

.des
Forecast from
12h earlier

Forecast from
10d earlier

104 10°
Wavelength (km)

Figure 3 | Visualization of representative states produced by GenCast compared to GraphCast. (a) ERAS
analysis state for specific humidity at 700hPa at 6pm on the 29th of September of 2019. (b-d) 3
sample forecasts of this state by GenCast from 12 hours earlier. (e) Ensemble average obtained
by taking the mean of 50 sample forecasts by GenCast from 12 hours earlier. (f) Forecast by the
GraphCast (model which is deterministic), made 12 hours earlier. (g) Spectrum of the fields shown in
panels (a-f), with colors matching the frames of the panels. (h-m) Same as (b-g), but for forecasts
made 10 days earlier. Unlike deterministic GraphCast, which expresses uncertainty as blurring which
increases with lead time (f, 1), we observe how the sample forecasts produced by GenCast are sharp
(g, m), regardless of whether the forcasts are for 12 hours ahead (g, b-d) (where the three samples
are very similar) or 10 days ahead (m, h-j) (where the three samples differ more). The samples can
still be averaged to produced a blurry mean state (e, k). Additional visualizations and an explanation
of how this date/time was selected for visualisation are available in Appendix A.8.
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Prompt: Drone view of waves crashing against the rugged cliffs along Big Sur’s garay point beach. The crashing
blue waters create white-tipped waves, while the golden light of the setting sun illuminates the rocky shore. A
small island with a lighthouse sits in the distance, and green shrubbery covers the cliff’s edge. The steep drop
from the road down to the beach is a dramatic feat, with the cliff’s edges jutting out over the sea. This is a view
that captures the raw beauty of the coast and the rugged landscape of the Pacific Coast Highway.

- Open-Al Sora model (video diffusion model)
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How do this GNN-based forecasting models work?

3d atmospheric
state at time

78 channels
per (lat, lon) node

(+solar, landsea, etc)

1. Encode |
from physical variables on l'
lat/lon grid to latents on
icosahedron grid
using message-

passing GNN
Latent state

256 channels
per node

Figure 1: Using the current atmospheric state, the model evolves the state forward by 6 hours. The
3D atmospheric state is defined on a uniform latitude/longitude grid, with 78 channels per pixel (6
physical variables x 13 pressure levels = 78 channels). An Encoder GNN encodes onto latent features
defined on a icosahedron grid, a Processor GNN performs additional processing of the latents, and a

Latent state

256 channels
per node

2. Process
using 9 rounds of
message-passing GNN on
icosahedron grid

3d atmospheric
state at time t+6hr

78 channels
per (lat, lon) node

. 4. Add
_______________________________________________________ the state change to input

state to determine new state

Change in 3d
atmospheric
— state

78 channels
per (lat, lon) node

3. Decode

from latents on icosahedron
grid to physical variables on
lat/lon grid using
message-passing GNN

Decoder GNN maps back to the atmospheric state on a latitude/longitude grid.

Encoder Processor Decoder

AL \/ S Y
A

Figure 2: A schematic view of the local graph connectivity in the Encoder, Processor, and Decoder.
Left: local spatial and channel information is encoded into an icosahedron node using data from
nearby nodes on the input latitude/longitude grid. Center: data on the icosahedron node is further
processed using data from nearby icosahedron nodes (including itself, which is not explicitly shown).
Right: the output latitude/longitude data is created by decoding data from nearby icosahedron nodes.

Ryan Keisler, 2022



Ok, but what are GNNs (Graph Neural Networks)?

)[)—-)hg

D Equivariant and invariant layers
.-y feature extensively in GNs

Xv ’¢—’hv

Petar Velickovi¢ Graph Neural Networks: Geometric, Structural and Algorithmic Perspectives Part 2
Cambridge ELLIS Machine Learning Summer School 2022



The three “flavours” of GNN layers

S L

Convolutional
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Petar Velickovi¢ Graph Neural Networks: Geometric, Structural and Algorithmic Perspectives Part 2
Cambridge ELLIS Machine Learning Summer School 2022



A brief introduction to GNNs1
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Slide from Joel Oskarsson



But can we do km-scale forecasting?

Yes!



Neural-LAM

Hi-LAM: Hierarchical multi-scale graph

* 4 levels of nodes in mesh graph
 Intra-level edges
* Inter-level edges between adjacent levels

» Sequential GNN message passing up and down

the hierarchy
Encode = Process Decode—
Hierarchical
®® H" “'9 oo’
/[><]\ o ‘ K) g) ‘
/00N A !
o000 00° .—.—“—“ mm o0 0000
¥
T IIIIIIIII EEREEEEEER

Slide from Joel Oskarsson



Neural-LAM: Example forecast results

nlwrs 0 (W/m?), t=1 (3 h)

u65 (m/s), t=1 (3 h)

Slide from Joel Oskarsson



Results: Artefacts

Hierarchical graph appears to avoid near-node artefacts



Results: RMSE

RMSE (m/s)
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Lead time (h)

V-component of wind

RMSE (kg/m?)
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Lead time (h)

Water vapor
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So where are things going?



Next step: LAM machine learning weather model

national km-scale data-driven weather model

Graph-based Neural Weather
Prediction for Limited
Area Modeling

Seminar @ DMI, 10 /10 2023

Joel Oskarsson

Division of Statistics and Machine Learning,
Department of Computer and Information Science,
Linkoping University, Sweden

Joint work with: Tomas Landelius (SMHI), Fredrik Lindsten (LiU)

LINKOPING
UNIVERSITY

See O
skarsson et al 2023, https://arxiv.org/abs/2309.17370
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Next step: LAM machine learning weather model

national km-scale data-driven weather model

Graph-based Neural Weather

prediction for Limited WNW%@
. UL o RS g

Area Modeling ‘

R LT oA
Seminar @ DMI, 10/10 2023

Joel Oskarsson

Division of Statistics and Machine Learning,
Department of Computer and Information Science,
Linkoping University, Sweden

el
Joint work with: Tomas Landelius (SMHI), Fredrik Lindsten (LiU) % A
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LINKOPING
II.“ UNIVERSITY
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LY e Meteorologica
Institute

ESA-ECMWF WORKSHOP
Machine Learning for Earth System Observation and Prediction, 7-10 May 2024

Data-driven modelling for limited area forecasting ol s

G Austria

Simon Adamov (MCH), Leif Denby (DMI), Tomas Landelius (SMHI), Fredrik Lindsten (LiU), Joel Oskarsson (LiU),
Thomas Rieutord (Met Eireann), Irene Schicker (GeoSphere Austria), Michiel Van Ginderachter (RMI)

Tooling for constructing the graph Updates on modelling efforts

Nordic Domain [1]

o Using data from MetCoOp Ensemble Predicton System (MEPS),
L L e ot araph components. Ne\_lal-lAM is used tobuid a_(aslsunogate mode. )
o Trained on a dataset containing 10 forecasts per day from a period of

Introduction

Toaid the further development of diffe: rent graph architectures in
neural-lam and graph-based \weather models in general, functionality

Recent work by Oskarsson etal. 2023 (1) has demonstrated with
neuraldam that itis possible to train graph neural network to produce
R I B e N

 Started collaboration together with

all\\/l/lgl, MetEireann, Geosphere Austria
f -B, SMHI, FMI og MeteoSwiss on '
urther development of Neural-LAM

e Converted 30yr 2.5km DANRA

(northern Europe) reanalysis from GRIB

to zarr format for i ini
preparin
data paring training

Pre‘sented at ESA-ECMWF workshop at
Esrin, Rome in May




ML-LAM co\\aboration

Collaborative deve\opment of data-driven weather forecasting for limited area modelling

(A Overview [ Repositories 5 [0 Projects @ Packages Q people 1

Pinned
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Neural Weather prediction for Limited Area Modeling

@ Python % 70 g 27 @ Python K3 B

(= weather-model-graphs public

Tooling for creating, visualising and storingd data-driven

weather- model graphs

@ Python a4 Y2

g

develo
pment doc: https://bit.ly/mllam-plan



https://github.com/mllam/
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Probabilistic Weather Forecasting with Hierarchical
Graph Neural Networks

Joel Oskarsson Tomas Landelius
Link6ping University Swedish Meteorological and
joel.oskarsson@liu.se Hydrological Institute

tomas.landelius@smhi.se

Marc Peter Deisenroth Fredrik Lindsten
University College London Link6ping University
The Alan Turing Institute fredrik.lindsten@liu.se

m.deisenroth@ucl.ac.uk

Abstract

In recent years, machine learning has established itself as a powerful tool for
high-resolution weather forecasting. While most current machine learning mod-
els focus on deterministic forecasts, accurately capturing the uncertainty in the
chaotic weather system calls for probabilistic modeling. We propose a probabilistic
weather forecasting model called Graph-EFM, combining a flexible latent-variable
formulation with the successful graph-based forecasting framework. The use of a
hierarchical graph construction allows for efficient sampling of spatially coherent
forecasts. Requiring only a single forward pass per time step, Graph-EFM allows
for fast generation of arbitrarily large ensembles. We experiment with the model
on both global and limited area forecasting. Ensemble forecasts from Graph-EFM
achieve equivalent or lower errors than comparable deterministic models, with the
added benefit of accurately capturing forecast uncertainty.



Latent variable model
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Integrated with hierarchical GNN
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i Model. The corresponding overview for the global setting is given in fig. in appendix
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Water Vapor

Prel. Results: Ensemble forecasts

wvint_0 (kg/m?), t=1 (3 h) r2(-), t=1(3h)
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Many ongoing ML-weather projects in Europe!

SR

Roland Potthast 2024

Figure 1 sketch of the E-Al EUMETNET initiative



ECMWEF ML Pilot project

Machine Learning pilot project kick-off
workshop

R “The ECMWEF ML Pilot project is a Member-led project
ECMWF | Reading | 3-7 June 2024 funded by ECMWF (ECMWF/C/107(23)12 Rev.2) with the
objective to foster European collaboration on machine
learning (ML) for weather forecasting with a focus on the
whole forecasting chain (model, analysis, uncertainty
estimation, MLops platforms) and high resolution/limited
area modelling, as well as training activities. The project is
part of a new EUMETNET optional programme on Al and
Machine Learning (E-Al), reflecting the strong initiative and

motivation of European NMHS to collaborate and advance on

these topics.”



—c ECMWF Search site... Q @ Help 3 Llogin

About Forecasts Computing Research Learning Publications

Who we are ‘ What we do ‘ Jobs Media centre Suppliers Location

Enter the ensembles

News
21 June 2024

In focus We introduce a first version of an ensemble AIFS, explain how it works, show some early
results and explain where you can view charts.

AIFS blog

Science blog

Key facts and figures

Media resources

Videos

Data-driven regional modelling It's rain(ing) data First update to the AIFS
23 April 2024 4 March 2024 16 January 2024
With colleasiies from MFT Norwav. we We nrovide an 1indate on the AIFS. incliding We have introdiiced a new version of the

https://www.ecmwf.int/en/about/media-centre/aifs-blog
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DANRA (2.5km reanalysis, 30 years)
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First year of DANRA 2m temperature: https://www.youtube.com/watch?v=NNpPamhi2co
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https://www.youtube.com/watch?v=NNpPamhi2co

DMI NWP Group ML Roadmap

2024

2025

v

2m temperature

Neural-LAM forecast

10m wind
W Neural-LAM forecast
Surface precipitation

LDCast nowcast

M

Neural-LAM forecast

Surface Irradiance

SHADECast nowcast

Neural-LAM forecast

Lee-wave rotor risk

LeeWaveNet

Q1

DANRA reanalysis in
zarr, code refactor

DANRA reanalysis in
zarr, code refactor

code refactor

code refactor

Q2

Training data prep
and first training

Training data prep
and first training

DANRA forecast in
zarr

SARAH-3
reanalysis in zarr

DANRA forecast &
surface obs in zarr

Code refactored &
containerised

Q3

Global model ICs + BCs,
real-time setup

Global model ICs + BCs,
real-time setup

RadKlim & DMI radar
archive in zarr, code
refactor

RadKlim & DMI radar
archive in zarr

baseline with solarSTEPS
and SARAH-3,
SHADECast refactored

SARAH-3 reanalysis in
zarr

real-time inference on
NWP model output

Q4

Domain transfer
learning + validation

Domain transfer
learning + validation

Train in Seamless

Train/validation on
RadKlim/DMI archive

MSG derived surface
irradiance emulation

Train/validation on
DANRA and SARAH-3

Q1

Refactor VAE arch & COMEPS
ensemble in zarr

Refactor VAE arch & COMEPS
ensemble in zarr

Real-time inference from
DMI radar obs

Real-time inference from
DMI radar obs

real-time inference from
MSG retrievals

Real-time inference from
global ICs + BCs

Q2

real-time ensemble
inference

real-time ensemble
inference

Comparison of
Neural-LAM and
SHADECast

v0.1.2

Q3

DMI surface obs archive in zarr,
train/valid on DMI archive

DMI surface obs archive in zarr,
train/valid on DMI archive

Refactor into Seamless




Where will things go from here?

* Forecasting directly from observations
 AtmoRep: Transformer-based synop predictions from satellite radiances
* Aarkwark weather: Convolution-based synop -> analysis -> forecast

* Using the latent-space:
* Forecasting, enquery, physical constraints, combining heterogenious data

* Increased focus on observations
* Imposing physical structure in architecture, loss, etc

* Km-scale forecasti ng Best courses to get start (in my opinion) - both free:

* Convection, precipitation https://fast.ai: “Practical Deep Learning for Coders” and
“From Deep Learning Foundations to Stable Diffusion”

() github.com/leifdenby g lcd@dmi.dk @ @leifdenby@mas.to


https://www.atmorep.org/
https://arxiv.org/abs/2404.00411
https://fast.ai

Boundary forcing

Prediction

Forcing Extract Boundary



MetCoOp Ensemble Prediction System
(MEPS)

960x1080 (2.5 km) x 65 vertical
* Non-hydrostatic dynamics
* |FS HRES and IFSENS boundaries

* 66h ensemble forecast run hourly

* Idea: Emulate with fast deep learning model

79



Dataset

* Subset of atmospheric variables used:

Spatial down-sampling x4 (10 km)
Pressure (surface, MSL)

Additional forcing inputs:

Geopotential (500, 1000 hPa)  TOA radiation, time, land/water mask
Wind (lev 65, 850 hPa)

Temperature (2m, lev 65, 500, 850 hPa)
Relative humidity (2m, lev 65)
Total water vapor column

» Forecast as boundary forcing

10 forecasts per day from ~2 years

3h time-steps

Net short- and longwave solar radiation

2021 2022 2023
| | | J

Apr May June July Aug Sep Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Jan Feb Mar

[N N I N N O O N o v v e
|: Training [:] Validation |:| Test
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Model training

* Every training example consists |
for three tiles (triplet) the R
anchor (t,), neighbour (t,) and BT
distant (t,) tiles. e

e Use loss function which
optimises for anchor and

neighbour tiles being close in e
embedding space and distant neighbour tile HH - Ed
tile being far away (measured e AR N
by Euclidian distance): (rom different day) ﬁ neuralnemork S actors

tile triplet

L(ta,tn,ta) = max(0, || fo(ta) — fo(tn)ll2 = [ fo(ta) — fo(ta)ll2 +m)

See Denby 2020 (10.1029/2019GL085190) for details



Using convolutional network to produce embedding

multiple layers of convolutions
and non-linear activations

(N * Training done with pytorch (and
S | pytorch-lightning)

T L = - * Use pre-trained Resnet34 (transfer
256 ki D;‘j_:’ e U:::::;.-,-.- S — learni ng)
T eer 1D ambedding * Replace last layer by fully connected
vector Iayer
N object parts...
e texture * Currently using Nj=100 embedding
4 scges length
RéB * Experimenting with shorter embedding
vectors

neural network

. Each layer contracts information from a finite part of image into a single value

- These are composited over multiple layers to produce more complex features



