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On the automorphism group of gap shift

Seyyed Alireza Ahmadia,∗

aDepartment of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran
Department of Mathematics, University of Vienna, Vienna, Austria

Abstract

Let (XS , ρ) be a gap shift, and G = Aut(XS) denote the group of homeomorphisms of XS

commuting with the shift map. We investigate the algebraic properties of the countable group G

and the dynamics of its action on XS and associated spaces.

Keywords: automorphism group, shift of finite type, gap shift, low complexity, entropy
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Intrinsic ergodicity for non-invertible DA maps 

Carlos F. Álvarez 1 and Marisa Cantarino 2 

1Pontifical Catholic University of Valparaiso, Chile  
2 Monash University, Australia 

 

We will provide a result so that the isotopic maps to Anosov endomorphisms, known as 

Derived from Anosov (DA), have a unique measure of maximal entropy. In addition, we will 

give an example that satisfies the hypotheses of such a theorem. 

 

[1] Álvarez, C.F., Cantarino, M. Equilibrium States for Partially Hyperbolic Maps with One-

Dimensional Center. J Stat Phys 190, 194 (2023).  
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Nonlinearity 35, 10 (2022), 5297–5310. 

[4]  Mañé, R. Contributions to the stability conjecture. Topology 17, 4 (1978), 383–396. 
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Abstract for a Poster
Asad Ullah

Centro de Matemática e Aplicações (CMA-UBI)
Universidade da Beira Interior, Covilhã, Portugal

In this work, we address the decay of correlations for dynamical systems that admit an induced
weak Gibbs Markov map (not necessarily full branch). Additionally, we yield results concern-
ing the Central Limit Theorem and Large Deviations.

This is a joint work with Helder Vilarinho.
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Complex dynamics and chaos control of a Bertrand duopoly game with 

homogeneous players 

M. Azioune 1, M-S. Abdelouhab 1  

1Laboratory of Mathematics and their interactions, Abdelhafid Boussouf University Center, 

Mila, Algeria  

 

 

The complex dynamic behavior of the Bertrand duopoly game involves the intricate 

interplay of actions and reactions among competing firms within the market. Our 

study addresses this complexity by examining how firms, operating with limited 

information, determine pricing decisions influenced by various factors. Initially, we 

formulate a model to illustrate how homogeneous players, operating with limited 

information, determine pricing decisions influenced by various factors. Subsequently, 

we analyze equilibrium points and discover that as firms adjust their strategies more 

rapidly, the stable state of the system, known as Nash equilibrium, becomes unstable, 

resulting in unpredictable (chaotic) behavior. We then explore the chaotic dynamics 

that ensue from this instability, leading to unpredictable market outcomes. Our 

numerical analyses confirm these findings. Finally, we apply state feedback control to 

stabilize the system, particularly at the Nash equilibrium point. This stabilization helps 

guide the market towards stability amidst dynamic fluctuations. 

 

 

[1] Elsadany AA, Agiza HN, Elsadany EM. Complex dynamics and chaos control of heterogeneous quadropoly 

game. Appl Math Comput, 219 (2013), 11110–8. 

[2] Y. Peng, Q. Lu, Y. Xiao, X, Wu, Complex dynamics analysis for a remanufacturing duopoly model 

with nonlinear cost, Phys. A, 514 (2019), 658–670. 

 [3] S. S. Askar, On complex dynamics of cournot-bertrand game with asymmetric market information, 

Appl. Math. Comput., 393 (2021), 125823. 
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On orbit complexity of dynamical systems: intermediate value property
and level set related to a Furstenberg problem

Yuanyang Chang1, Bing Li2, and Meng Wu3

1 Wuhan University of Technology
2 South China University of Technology

3 University of Oulu

For symbolic dynamics with some mild conditions, we solved the lowering topological entropy
problem for subsystems and determine the Hausdorff dimension of the level set with given com-
plexity, where the complexity is represented by Hausdorff dimension of orbit closure. These
results can be applied to some dynamical systems such as β-transformations, conformal ex-
panding repeller, etc. We also determine the dimension of the Furstenberg level set, which is
related to a problem of Furstenberg on the orbits under two multiplicatively independent maps.
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Classification of Ising Model Configurations in Two and Three
Dimensions using Convolutional Neural Networks

Alejandro Cobo1, Ramon Xulvi-Brunet1

1 National Polytechnic School

A Convolutional Neural Network (CNN) is a widely used deep learning tool for processing
and classifying images [1]. In physics, a system of interest is the Ising model, which is
widely used for studying phase transition phenomena in magnetic materials [2]. This
model consists of a network of spins organized in space [2]. The spatial distribution of
the spins leads to the formation of visual patterns characterized by regions where they
exhibit a specific orientation. This distribution varies depending on whether the system
is two-dimensional or three-dimensional. Distinguishing between the patterns formed by
both distributions is not easily discernible to the naked eye. The aim of this project
is to determine whether the system described by the Ising model is two-dimensional
or three-dimensional based on these patterns, regardless of whether it is in a steady
state or in a transient regime. A CNN is employed to classify images of these patterns,
generated through Monte Carlo simulations of a two and three-dimensional Ising model.
The network is capable of classifying these patterns with remarkable effectiveness for
states sufficiently distant from a random state, suggesting that it is possible to determine
the dimensionality of the system from these patterns.

[1] Rawat, W., Wang, Z., Neural computation 29, 2352–2449 (2017)
[2] Barry A. Cipa, The American Mathematical Monthly 94, 937-959 (1987).
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Invariant densities for intermittent maps with critical points 

Hongfei Cui  

College of Sciences, Wuhan University of Science and Technology 
  

 

For a class of piecewise convex maps T with an indifferent fixed point and critical points on 

the interval [0, 1], we show that T has a unique absolutely continuous invariant probability 

measure μ, and the invariant density has a upper bound and a lower bound. The Frobenius–

Perron operator of T is asymptotically stable. We also obtain the polynomial decay rate of 

correlations with respect to μ by using the probabilistic method proposed by Liverani, Saussol 

and Vaienti. 

 

 

[1] Hongfei Cui,   J. Differ. Equations Appl. 27(3), 404-421(2021). 

  

P07



From Decay of Correlations to Recurrence Times
in Systems with Contracting Directions

José F. Alves1, João S. Matias1

1 Centro de Matemática da Universidade do Porto

Classic results by L.-S. Young show that the decay of correlations for systems that admit induc-
ing schemes can be obtained through the recurrence rates of the inducing scheme. Reciprocal
results were obtained for non-invertible systems (without contracting directions). Here, we
obtain reciprocal results also for invertible systems (with contracting directions).

[1] AIMINO, R., AND FREITAS, J. M. Large deviations for dynamical systems with stretched expo-
nential decay of correlations. Portugaliae Mathematica 76, 2 , 143–152, (2020)

[2] ALVES, J. F. Nonuniformly hyperbolic attractors. Geometric and probabilistic aspects. Springer
Monographs in Mathematics. Springer International Publishing, (2020).

[3] ALVES, J. F., FREITAS, J. M., LUZZATTO, S., AND VAIENTI, S. From rates of mixing to recur-
rence times via large deviations. Adv. Math. 228, 2 , 1203–1236, (2011)

[4] ALVES, J. F., MATIAS, J. S. From Decay of Correlations to Recurrence Times in Systems with
Contracting Directions arXiv preprint arXiv:2401.06024., (2024)

[5] BUNIMOVICH, L. A., AND SU, Y. Maximal large deviations and slow recurrences in weakly chaotic
systems. Advances in Mathematics 432, 109267, (2023)

[6] YOUNG, L.-S. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math.
(2) 147, 3 , 585–650, (1998)
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Besov-ish spaces of distributions as particle systems
Pedro Morelli1 and Daniel Smania2

1,2Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação -
Universidade de São Paulo (ICMC/USP) - São Carlos, Brazil

Atomic decomposition has been a longstanding idea in mathematics. Literature abounds
with numerous examples demonstrating how to express various types of function spaces using
a simpler subclass of its elements. For example, we can mention the decomposition of Besov
Spaces by Souza [6] or Frazier and Jawerth [2], as well as the groundbreaking result by Girardi
and Sweldens [3], which offers a decomposition of Lp in terms of Haar wavelets. In a series of
recent works, Smania et.al [1, 5, 4] employed Haar wavelets and the notion of a measure space
with a good grid to define a family of spaces, denoted as Bs

p,q, which generalize the classic
Besov spaces for values of p ∈ [1,∞), q ∈ [1,∞] and s ∈ (0, 1/p) and establish results about
transfer operators on such spaces. In our current investigation, we aim to expand this definition
to encompass the case where p = q = ∞ and to provide an atomic decomposition statement for
some Besov-ish spaces of distributions in terms of objects that we call Particle Systems.

[1] Arbieto, A., Smania, D. (2019). Transfer operators and atomic decomposition. arXiv e-prints.
doi:10.48550/arXiv.1903.0694

[2] Frazier, M., Jawerth, B. (1985). Decomposition of Besov Spaces. Indiana University Mathematics
Journal, 34(4), 777–799. http://www.jstor.org/stable/24893969

[3] Girardi, M., Sweldens, W. A new class of unbalanced Haar wavelets that form an unconditional basis
for Lp on general measure spaces. The Journal of Fourier Analysis and Applications 3, 457–474
(1997). https://doi.org/10.1007/BF02649107

[4] Smania, D. (2021). Classic and exotic Besov Spaces induced by good grids. Journal of Geometric
Analysis, 31( 3), 2481-2524. doi:10.1007/s12220-020-00361-x

[5] Smania, D. (2022). Besov-ish spaces through atomic decomposition. Analysis & PDE, 15( 1).
doi:10.2140/apde.2022.15.123

[6] Souza, Geraldo Soares de. The atomic decomposition of Besov-Bergman-Lipschitz
Spaces. Proceedings of the American Mathematical Society 94, no. 4 (1985): 682–86.
https://doi.org/10.2307/2044886.
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Dynamics of Heteroclinic Networks: Unraveling Complex Interactions and Stability 

D. S. David 1, B. D. Sebo 1, and M. S. Abdelouahab 2 

1Department of Mathematics & Statistics, University of Liberia  
2 AbdelHafid Boussouf University Laboratory of Mathematics and their Interactions 

 

Heteroclinic networks, intricate structures within dynamical systems, are pivotal in 
understanding complex interactions and stability phenomena. This research investigates the 
dynamics of heteroclinic networks, aiming to elucidate their formation, evolution, and stability 
characteristics. Through mathematical modeling, numerical simulations, and network analysis 
techniques, we delve into the intricate dynamics of interconnected trajectories approaching 
distinct equilibrium points. Our study explores the influence of network topology on the stability 
and transitions of heteroclinic networks, shedding light on their role in triggering system-level 
behaviors. By unraveling these complexities, we aim to contribute to fundamental understanding 
in dynamical systems theory and pave the way for applications across diverse fields, from 
neuroscience to engineering. This research endeavors to provide insights into the dynamics of 
complex interactions, offering valuable implications for the control and prediction of real-world 
systems. 
 

[1] Kirk. V, Rucklidge A. M., The effect of symmetry breaking on the dynamics near a structurally 

stable heteroclinic cycle between equilibria and a periodic orbit, Dynamical Systems: An International 

Journal, 23(1):43-74, (2008). 

[2] Kirk V. J., Lane E., Postlethwaite C. M., Rucklidge A. M., Silber M., Mechanism for switching 

near a heteroclinic network, Dynamical Systems- An International Journal, 25(3):323-349, (2010). 

[3] H. Meyer-Ortmanns, Heteroclinic networks for brain dynamics, Frontier Network. Physiology. 

3:1276401 (2023). 

[4] C. Bick, S. V.D. Gracht, Heteroclinic dynamics in network dynamical systems with high-order 

interactions, Journal of Complex Networks (2024)2. 
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A convergence rate for Birkhoff means of certain uniquely
ergodic toral maps

Aline Melo1, Silvius Klein2 and Xiao-Chuan Liu3

1Federal University of Ceará
2Pontifical Catholic University of Rio de Janeiro

3Federal University of Pernambuco

One of the fundamental results in ergodic theory – the Birkhoff theorem – refer to the
almost everywhere convergence of additive ergodic processes. It is well known that given
a uniquely ergodic system and a continuous observable, the corresponding Birkhoff aver-
ages converge everywhere and uniformly [1]. In this poster, we will present an estimate
on the uniform convergence rate of the Birkhoff averages of a higher dimensional torus
translation given by a frequency satisfying a generic arithmetic condition and a contin-
uous observable. This convergence rate depends explicitly on the modulus of continuity
of the observable and on the arithmetic properties of the frequency. Furthermore, we
obtain similar results for affine skew product toral transformations and, in the case of one
dimensional torus translation, these estimates are nearly optimal. This is a joint work
with Xiao-Chuan Liu and Silvius Klein [2].

[1] G.D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. USA, 17 (1931), pp.
656-660.

[2] S. Klein, X. Liu and A. Melo. Uniform convergence rate for Birkhoff means of certain
uniquely ergodic toral maps, Ergodic Theory Dynam. Systems, 41.11, pp. 3363–3388, 2021.
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Constant Production in an Orchard: An Interaction-based Approach

Swati Chauhan, Shiva Dixit, Manish Dev Shrimali, Kenshi Sakai, Awadhesh Prasad

Department of Physics, Central University of Rajasthan, Ajmer, Rajasthan, India

Abstract

Alternate bearing, the cyclic pattern of heavy and light fruit crops in fruit species, is a complex phenomenon influenced
by both internal and external influences in an orchard. The impact of direct interactions practically realized through
grafting and indirect interactions, which would be practically realized through pollination between two plants using
the resource budget model was introduced in [1]. We have observed a fascinating phenomenon in our study, where
the introduction of mixed interaction (direct and indirect) within a coupled map lattice not only fosters intricate
dynamics but also gives rise to the intriguing concept of anti-synchronization. This remarkable phenomenon entails
a synchronized pattern among paired plants, wherein one plant yields a crop in a given year while the other plant in
the subsequent year. In an orchard comprising 2L2 trees, grafting, and pollination result in a distinct temporal pattern.
Specifically, during a given period, approximately L2 trees undergo an on-year, while the remaining trees experience
an off-year. This cyclic alternation enables the total production of 2L2 trees to remain constant each year. We utilized
two coupled tent map systems to derive the condition for the stability of the onset of the anti-synchronization state
analytically. Our findings demonstrate that the strength of interaction plays a significant role in the occurrence of anti-
synchronization thereby controlling alternate bearing. In general, our results provide insights into the interactions
involved in the phenomenon of alternate bearing in an orchard and may have practical implications for sustainable
and efficient crop production.

References

[1] A. Prasad, K. Sakai, Y. Hoshino, Direct coupling: a possible strategy to control fruit production in alternate bearing, Scientific reports 7 (1)
(2017) 39890.

Preprint submitted to Elsevier April 10, 2024
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Ergodicity and Accessibility of Partially Hyperbolic Diffeomorphisms in the Absence of
Periodic Points

Ziqiang Feng1, Raúl Ures2

1,2 Department of Mathematics, Southern University of Science and Technology, Shenzhen, China

Almost 30 years ago, Pugh and Shub proposed their Stable Ergodicity Conjecture that ”stable ergodicity holds in
an open and dense set of conservative partially hyperbolic diffeomorphisms”. It is proved by F. Hertz, J. Hertz and
R. Ures in the one-dimensional center case, and K. Burns and A. Wilkinson in the center-bunching setting. Both
proofs implies that in three-dimensional manifolds, ergodicity is an abundant property for conservative partially
hyperbolic diffeomophisms.

In the search for a more precise description of the abundance of ergodicity, F. Hertz, J. Hertz and R. Ures
formulated their Ergodicity Conjecture (HHU Conjecture) that all partially hyperbolic diffeomorphisms are ergodic
unless in three precise types of manifolds. This conjecture has motivated several works and has been verified in
certain particular cases.

We provide an affirmative answer to HHU Conjecture for a new class of partially hyperbolic diffeomorphisms.
Any C2 conservative partially hyperbolic diffeomorphism with no periodic points in a closed 3-manifold is

ergodic.
Moreover, we also show the following result on accessibility:
Let f : M3 → M3 be a C1 partially hyperbolic diffeomorphism of a closed 3-manifold with no periodic

points. If the fundamental group of the manifold is not virtually solvable, then f is accessible.
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Title: Modeling and analyzing the dynamics of a glucose-insulin regulation system using integer 

and fractional order systems. 

 

Carine Simo1, Patrick Louodop1 , Bowong Samuel2 

 
1 Laboratory of Electronics and Signal Processing, Universiy of Dschang, BP 96  Dschang, Cameroun 
2 1. Laboratory of Mathematics and Computer Science, University of  Douala , BP 24 157   Douala, Cameroun 

* correspondant Author: cainesimo20@gmail.com 

 

 

 The study of the glycose-insulin interaction is very important to understand the mechanisms linked to 

glucose dynamics in the body. Its dysfunction is not without consequences and can lead to many 

diseases such as anxiety, coma, vision impairments, retina microvascular connection, neuronal 

connections and above all diabetes. The need to detect diabetic risk factors and treat diabetes-related 

disorders and complications has led to an increase in the number of glycoregulation models and 

simulation platforms designed primarily to analyze the various pathologies. In this work, we study the 

dynamics of a glucose-insulin regulatory system at both integer and fractional order. We highlight 

certain differences linked to their dynamics characteristics. The numerical simulation methods used for 

these various analyses are those of Runge Kutta of order 4 and Grünwald-Letnikov. The study of the 

dynamics is mainly carried out by plotting bifurcation diagrams and Lyapunov maximum exponents. The 

resulting analysis shows chaotic behavior (presence of a disease) and periodic behavior (absence of 

disease). The mathematical models and algorithms used in this study reveal the harmful consequences 

of excess glucose on health. These advances will lead to a better understanding of how glucose is 

regulated in the blood, improved methods for managing blood sugar levels and a significant 

improvement in quality of life. 

 

Key words: Chaos, Insulin, Glucose, Fractional order, 
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Computation of Microcanonical Entropy at Fixed Magnetization 

of the Long-Range Interacting System 

Alessandro Campa1, Giacomo Gori2,3, Vahan Hovhannisyan4,  

Stefano Ruffo5,6 and Andrea Trombettoni3,5 

 
1 National Center for Radiation Protection and Computational Physics, Istituto 

Superiore di Sanit`a, Viale Regina Elena 299, 00161 Roma, Italy 
2 Dipartimento di Fisica e Astronomia G. Galilei, Universit´a degli studi di Padova, 

via Marzolo 8, 35131 Padova, Italy 
3 CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste, Italy 

4 A. I. Alikhanyan National Science Laboratory, Alikhanyan Br. 2, 0036 Yerevan, Armenia 
5 SISSA, via Bonomea 265, I-34136 Trieste, Italy & INFN, Sezione di Trieste, I-34151 

Trieste, Italy 
6 Istituto dei Sistemi Complessi, CNR, via Madonna del Piano 10, I-50019 Sesto 

Fiorentino, Italy 

E-mail: alessandro.campa@iss.it, gori@sissa.it, v.hovhannisyan@yerphi.am, ruffo@sissa.it, 

andreatr@sissa.it  

 

 

We developed the method to determine the microcanonical entropy at fixed magnetization 

starting from the canonical partition function. The presented method is based on the introduction 

of one (or more) auxiliary variables and on a min-max procedure, where the minimization is 

performed on the variable β, which can be both positive or negative. We emphasized that the 

method can be very useful where direct counting is not applicable or very difficult/convoluted. We 

applied our results to the case of systems having long- and short-range (possibly competing) 

interactions. 
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On the modified complex balance harmonic method for seventh-order 
galloping oscillations 

Mohammed Karama  

Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni Mellal, 
Morocco 

 
 
This paper introduces a novel modified complex balance harmonic method (MCBHM) based 
on the displacement and velocity complex variables, which is compared with the multiple 
scales method (MSM) when applied to the Duffing oscillator under a seventh-order 
aeroelastic galloping force. Furthermore, we obtain the approximate solutions by using 
MCBHM and compare them to those obtained by the MSM. The Raphsen-Newton method is 
employed to solve the obtained polynomial equations for steady states, confirming the 
validity of the proposed method through numerical simulations. The stability chart is 
established by utilizing the Jacobian matrix of slow-flow equations. 
 
 
[1] H. Nayfeh, D.T. Mook, Nonlinear Oscillations. (Wiley, New York, 1979). 
[2] Weerakoon, S. Fernando, T.G.I., A variant of Newton's method with  accelerated third-order 
convergence, Applied Mathematics Letters 13,87-93 (2000). 
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    Swarmalator systems form a recent and interesting research profile in the family of complex 

systems where elements oscillate and swarm and their rich dynamics are part of most biological 

systems, chemistry agglomerations and enzymes formations, interacting electronics 

components and some few optics behaviours [1,2,3]. Though recent works focus on this 

research field, many are still to be studied and a more realistic system of these interacting 

particles will be that into which delay [4] is taken into account which is still greatly lacking. 

     Here, we analyse a system of swarmalators into which delay was introduced at the internal 

phase dynamics and observe its effects on the group of interacting elements. We lay emphasis 

on the effect of delay on the phase transitions from one observable state to another. We 

characterise observed states and name new ones and determine the influence of other 

deterministic parameters coupled to the introduced delay. The system considered here takes 

into consideration the attractive and repulsive forces of its creation [5] and the observed 

outcomes are determined using order parameters coupled with observation of time series of the 

group of elements. We find that increasing delay in the internal phase state forces the elements 

of the systems to synchronize in phase and also agglomerate in space leading to knew yet 

unobserved phenomena of great importance to animal tissues formation and to large numbers 

of interacting bodies in motion. Mainly we have first order transitions [6,7] and a first-time 

appearance of a two step first order transition new in the field of swarmalator systems showing 

rich dynamics. 

     Our work is a primer of its own as it considers the aspect of synchronization transitions 

induced by delay and sheds more light into swarmalator systems and their behaviours be it for 

life systems or interacting swarmalator bots. 

 
[1]  P. Japón, F. Jiménez-Morales  and  F. Casares Cells  Dev. 169, 203726 (2022).. 

[2] Y. Origane and D. Kurabayashi, Symmetry 14, 1578 (2022) 

[3] S. Ceron , K. O’Keeffe , and K. Petersen , Nat. Commun. 14(1), 940 (2023). 

[4] N. Blum ,  A. Li , K. O'Keeffe ,  and O. Kogan , Phys. Rev. E. 109(1), 014205 (2024). 

[5]K. P. O’Keeffe, H. Hong and S. H. Strogatz, Nat. Commun. 8,1--13 (2017) 

[6] S. J. Kongni, V. Nguefoue., T. Njougouo , P. Louodop , F. F. Ferreira, R. Tchitnga,and H. A. 

Cerdeira  A., Phys. Rev.  E. 108(3), 034303  (2023). 

[7] J. Gómez-Gardenes, S. Gómez , A. Arenas , Y. Moreno, Phys. Rev. lett. 106(12), 128701 (2011). 

 

P18



Flexibility of generalized entropy for wandering dynamics
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1,2 Federal University of Minas Gerais

A classical problem in dynamical systems is to measure the complexity of a map in
terms of its orbits, and one of the main concepts used to achieve this goal is entropy. The
notion of generalized entropy extends the classical notion of entropy and it is a useful tool
to study dynamical systems with zero topological entropy. We show a flexibility result
in the context of generalized entropy. The space of dynamical systems we work with is
homeomorphisms on the sphere whose non-wandering set consist in only one fixed point.

[1] J. Correa and H. de Paula, Flexibility of generalized entropy for wandering dynamics,
ArXiv./abs/2303.14780, (2023).

[2] J. Correa and H. de Paula, Polynomial entropy of Morse-Smale diffeomorphisms on
surfaces, Bull. Sci. Math., Vol. 182, (2023).

[3] J. Correa and E. R. Pujals, Orders of growth and generalized entropy, J. Inst. Math.
Jussieu, Vol. 22(4), (2023).

[4] L. Hauseux and F. Le Roux, Entropie polynomiale des homéomorphismes de Brouwer,
Annales Henri Lebesgue, Vol. 2, (2019).
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Moduli of Continuity of Lyapunov Exponents of Random Matrix
Products

Presenting: Yingjian Liu

IMPA

Given any compactly supported probability distribution on GL(d), the Lyapunov exponents are
defined. It is proven in [1] that the Lyapunov exponents vary continuously. What about the
moduli of continuity? For the case d = 2, it has been proved in [2] that they are pointwise
Hölder continuous at points with simple Lyapunov spectrum, and pointwise log-Hölder contin-
uous at the points with equal Lyapunov exponents, hence all points.

[1] A. Avila, A. Eskin, M. Viana, Continuity of the Lyapunov exponents of random matrix products.
preprint arXiv:2305.06009, 2023.

[2] EH Tall, M. Viana, Moduli of continuity for the Lyapunov exponents of random GL(2)-cocycles.
Trans. Am. Math. Soc. 373(2), 1343-1383 (2020).
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Equilibrium States for Open Zooming Systems

E. Santana1

1 UFAL - Federal University of Alagoas / Penedo

The zooming systems were introduced by Pinheiro in [2] and the open zooming systems
were introduced in [3] and a Markov structure adapted to special holes was constructed.
In the context of non-uniformly expanding maps and the so-called hyperbolic potentials,
possibly with the presence of a critical set, the authors establish the finiteness of equilib-
rium states in [1]. The zooming systems generalize the non-uniformly expanding maps by
allowing contractions beyond the exponential context.
In the context of open zooming systems (see [3]), possibly with the presence of a crit-
ical/singular set, we prove the existence of finitely many ergodic zooming equilibrium
states for zooming potentials that are also Hölder continuous. Among the examples of
zooming potentials are the so-called hyperbolic potentials and also what we call pseudo-
geometric potentials φt = −t log Jµf , where Jµf is a Jacobian of the reference zooming
measure. We prove uniqueness of equilibrium state when the system is also strongly topo-
logically transitive and backward separated.
Then, our results generalize the Markov structure in [2] to the context of open zooming
systems and the result in [1] for equilibrium states. As an application, we prove unique-
ness of measure of maximal entropy for the important class well known as Viana maps,
introduced in [4].

[1] J. F. Alves, K. Oliveira, E. Santana, Equilibrium States for Hyperbolic Potentials via Induc-
ing Schemes, arXiv: 2003.11620

[2] V. Pinheiro, Expanding Measures, Annal. de l’Inst. Henri Poincaré, 28, 889 (2011).
[3] E. Santana, Equilibrium States for Open Zooming Systems, arXiv: 2010.08143
[4] M. Viana, Multidimensional NonHyperbolic Attractors, Pub. Math. de l’Inst. des Haut. Étud.

Scient., 85, 1, 62 (1997).
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Maximal entropy measures for certain partially hyperbolic
diffeomorphisms
Juan Carlos Mongez

UFRJ

We will present the results obtained in [2] where we considered partially hyperbolic diffeomor-
phisms f with a one-dimensional central direction such that the unstable entropy exceeds the
stable entropy. Our main result proves that such maps have a finite number of ergodic measures
of maximal entropy. Moreover, any C1+ diffeomorphism near f in the C1 topology possesses
at most the same number of ergodic measures of maximal entropy. These results extend the
findings in [1] to arbitrary dimensions and provide an open class of non Axiom A systems of
diffeomorphisms exhibiting a finite number of ergodic measures of maximal entropy.

[1] Buzzi, Jérôme; Crovisier, Sylvain; Sarig, Omri. Measures of maximal entropy for surface diffeo-
morphisms. Annals of Mathematics, v. 195, n. 2, p. 421-508, 2022.

[2] Mongez, Juan Carlos; Pacifico, Maria Jose. Finite Measures of Maximal Entropy for an Open
Set of Partially Hyperbolic Diffeomorphisms. arXiv preprint arXiv:2401.02776, 2024.
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On the Phase Transition of the Ising Model with Competing Interactions 

on (m,k)-Ary Trees. 

Aminah Qawasmeh 1 , and Farrukh Mukhamedov1,2  

1Department of Mathematical Sciences, College of Science, 

United Arab Emirates University 

P.O. Box 15551, Al Ain, Abu Dhabi, UAE 

 
2 V.I. Romanovskiy Institute of Mathematics,  

Uzbekistan Academy of Sciences, 9, University str. 

100174, Tashkent, Uzbekistan 

 

Abstract 

 

The Ising model was initially introduced by Lenz 1920 and further improved by Ising 1925 

who solved the 1D version of the model. Subsequently, in 1944, Lars Osanger made a 

significant breakthrough by solving the 2D case on a square lattice with the absence of an 

external field. Although the Ising model is primarily a physical model, it has also made a 

major revolution in statistical mechanics and has significant contributions to the mathematics 

literature, its formulation involves tools from mathematical fields such as measure theory, 

graph theory, combinatorics, and convex analysis, among others. The interdisciplinary nature 

of the Ising model has made it a subject of interest for both mathematicians and physicists. 

Over time innovative techniques have been developed to address problems associated with 

the Ising model, leading to the emergence of independent fields within mathematical physics, 

such as integrable systems, graphical representations, and rigorous renormalization methods. 

In the first phase of our study, we restrict to the nearest-neighbour Isingng model on special 

graphs known by (m,k)-ary trees, which have significant applications in socio-physics and 

biology. We essentially focus on the critical points at which phase transition occurs. At the 

second stage, we address the question of whether a phase transition occurs when the Ising 

model with nearest neighbour and one level neighbours considered on the same type of trees. 

 

 

[1] F.Mukhamedov, R.Utkir, On Some Remarks On The Ising Model With Competing Interactions 

On A Cayley Tree, arXiv preprint arXiv:0510022v1 (2005). 

[2] U. Rozikov, Gibbs measures on Cayley trees,World Scientific, Hackensack, NJ, (2013). 
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Abstract for poster presentation
Ramanpreet Kaur

Indian Institute of Science Education and Research (IISER) Mohali, India.

For a transcendental entire function with sufficiently small growth, Baker raised the question
whether it has no unbounded Fatou components. We have shown that if the function is of order
strictly less than half, minimal type, then it has no unbounded Fatou components. This, in
particular gives a partial answer to Baker’s question. In addition, we have addressed Wang’s
question on Fejér gaps. Certain results about functions with Fabry gaps and of infinite order
have also been generalized.

[1] J. M. Anderson and A. Hinkkanen, Unbounded domains of normality, Proc. Amer. Math. Soc. 126
(1998), no. 11, 3243–3252.

[2] I. N. Baker, Zusammensetzungen ganzer Funktionen, Math. Z. 69 (1958), 121–163.
[3] I. N. Baker, The iteration of polynomials and transcendental entire functions, J. Austral. Math. Soc.

(Series A) 30 (1981), 483-495.
[4] A. F. Beardon, Iteration of Rational Functions, vol. 132 of Graduate Texts in Mathematics,

Springer, New York, NY, USA, 1991.
[5] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29 (1993) 151–188.
[6] W. H. J. Fuchs, Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math. 7 (1963),

661–667.
[7] A. Hinkkanen, Entire functions with no unbounded Fatou components, in Complex Analysis

and Dynamical Systems II, Contemp. Math. 382, Amer. Math. Soc., Providence, RI, 2005, pp.
217–226.

[8] X. H. Hua, C.C. Yang, Dynamics of Transcendental Functions, Gordon and Breach Science Pub.,
1998.

[9] J. K. Langley, Postgraduate notes on complex analysis, 2007.
[10] T. Murai, The deficiency of entire functions with Fejér gaps, Ann. Inst. Fourier (Grenoble) 33

(1983), no. 3, 39–58.
[11] P. J. Rippon and G. M. Stallard, Functions of small growth with no unbounded Fatou components,

J. Anal. Math. 108 (2009), 61–86.
[12] A. P. Singh, Composite entire functions with no unbounded Fatou components, Journal of Mathe-

matical Analysis and Applications, vol. 335, no. 2, pp. 907–914, 2007.
[13] G. M. Stallard, The iteration of entire functions of small growth, Math. Proc. Cambridge Philos.

Soc. 114 (1993), no. 1, 43–55.
[14] Y. Wang, Bounded domains of the Fatou set of an entire function, Israel J. Math. 121 (2001) 55–60.
[15] Y. Wang, On the Fatou set of an entire function with gaps, Tohoku Math. J. 53 (2001) 163–170.
[16] Jian-Hua. Zheng, Unbounded domains of normality of entire functions of small growth, Math.

Proc. Cambridge Philos. Soc. 128 (2000), no. 2, 355–361.
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Non-uniform hyperbolicity of maps on T 2

Sebastián A. Ramı́rez1 and Kendry J. Vivas2

1 Pontificia Universidad Católica de Chile, Santiago, Chile
2 Católica del Norte, Antofagasta, Chile

In this work we prove that the homotopy class of non-homothety linear endomorphisms on
T 2 with determinant greater than 2 contains a C1 open set of non-uniformly hyperbolic
endomorphisms [2]. Furthermore, we prove that the homotopy class of non-hyperbolic
elements (having either 1 or −1 as an eigenvalue) whose degree is large enough contains
non-uniformly hyperbolic endomorphisms that are also C2 stably ergodic. These results
provide partial answers to certain questions posed in [1].

[1] M. Andersson, P. Carrasco and R. Saghin, Non-uniformly hyperbolic endomorphisms,
arXiv:2206.08295v2, 2022.

[2] S. Ramirez and K. Vivas, Non-uniform hyperbolicity of maps on T 2, arXiv:2312.16742, 2023.
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Abstract template for dynamial system conference
MEYSAM NASSIRI1, HESAM RAJABZADEH 1, and ZAHRA RESHADAT 1

1 Institute for Research in Fundamental Sciences (IPM)

We establish a new stable phenomenon for linear cocycles over chaotic systems in Hölder reg-
ularity. We show that every linear cocycle over a shift of finite type either admits a dominated
splitting or is C0-approximated by a cocycle which Cα-stably exhibits bounded orbits, α > 0.
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Historical behavior of skew products and arcsine laws

Pablo G. Barrientos1, Raul S. Chavez2, and Lorenzo J. Dı́az2

1Universidade Federal Fluminense
2Pontificia Universidad Católica de Rı́o de Janeiro

We consider skew products over Bernoulli shifts, where the fibered dynamics are given
by diffeomorphisms of the interval. We study the historical behavior, referred to as
non-convergence, of the Birkhoff average. We establish a connection between historical
behavior and the arcsine law, which allows us to construct large classes of dynamics
that provide an affirmative solution to Takens’ last problem. These classes include one-
dimensional dynamics such as Thaler’s interval maps, and skew products whose interval
fiber maps have a zero Schwarzian derivative.

[1] A. Bonifant and J. Milnor. Schwarzian derivatives and cylinder maps. In Holomorphic dy-
namics and renormalization, volume 53 of Fields Inst. Commun., pages 1–21. Amer. Math.
Soc., Providence, RI, 2008

[2] D. Coates and S. Luzzatto. Persistent non-statistical dynamics in one-dimensional maps,
2023.

[3] D. Coates, S. Luzzatto, and M. Muhammad. Doubly intermittent full branch maps with
critical points and singularities. Comm. Math. Phys., 402(2):1845–1878, 2023.

[4] S. Crovisier, D. Yang, and J. Zhang. Empirical measures of partially hyperbolic attractors.
Comm. Math. Phys., 375(1):725–764, 2020

[5] F. Takens. Orbits with historic behaviour, or non-existence of averages. Nonlinearity,
21(3):T33–T36, 2008.

[6] M. Thaler. A limit theorem for sojourns near indifferent fixed points of one-dimensional
maps. Ergodic Theory Dynam. Systems, 22(4):1289–1312, 2002.
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Dynamical behavior of finance systems
M. Sadam, B. Senyange

Muni University, 725 Arua-Uganda

In this work we investigate the dynamically invariant structures and chaotic behavior in finance
systems. We perform an analysis of the Huang–Li financial model [1] for which we compute
the Poincaré map [2] and common chaos indicators, namely, the Lyapunov Exponents [3] and
the Smaller Alignment Index (SALI) [4].

[1] D. Huang, H. Li, Sichuan University Press, Chengdu (1993).
[2] M. Henon, C. Heiles, The Astr. Journal 69, 1 (1964).
[3] G. Benettin, L. Galgani, A. Giorgilli, J. Strelcyn, Meccanica 15, 9–20 (1980).
[4] C. Skokos, G. A. Gottwald, J. Laskar, Springer-Verlag Berlin Heidelberg 15 (2016).
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A generalization of distality
J.C. Salcedo1, and E. Rego2

1Universidade Federal do Rio de Janeiro
2Southern University of Science and Technology

In this poster/talk we will present some properties of N -distal homeomorphims. To this end,
we will show some results contained in [3] where in particular, we define N -equicontinuity and
prove that every N -equicontinuous systems is N -distal. We introduce the notion of N -distal ex-
tensions and N -distal factors and show that M -distal extensions of N -distal homeomorphisms
are MN -distal. We use the Ellis semigroups theory to obtain a criterion for existence of non-
trivial distal factors for N -distal homeomorphisms and a restriction on the number of minimal
subsystems for a transitive N -distal systems. Finally, we prove that topological entropy van-
ishes for N -distal systems on compact metric spaces. These results generalize previous ones
for distal systems [1], [2].

[1] Fürstenberg, H. . The structure of distal flows, Amer. J. Math., 85, (1963).
[2] Parry, W. . Zero entropy of distal and related transformations, Topological Dynamics (Symposium,

Colorado State Univ., Ft. Collins, Colo.,1967), Benjamin, New York, (1968).
[3] Rego, E. and Salcedo, J.C. . On N -distal homeomorphism, Qual. Theory Dyn. Syst., 22, 138 (2023).
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Example of Discontinuity for the Lyapunov Exponents for
SL(2,R)-cocycles

Raquel Salgado Saraiva1

1 Univesidade Federal de Minas Gerais (UFMG)

In this work, we study an example of a discontinuity point for the Lyapunov exponents as
function of the cocycle, relative to the α- Hölder topology, motivated by [2]. In [1], Backes-
Brown- Butler proved that if a Hölder continuous SL(2,R)-valued cocycle satisfies the fiber
bunching condition, it is a continuity point for the Lyaunov exponents. Then, in our example,
we consider a SL(2,R)- valued cocycle very far from being fiber-bunched.

[1] L. Backes, A. Brown and C. Butler. Continuity of Lyapunov exponents for cocycles with invariant
holonomies. J. Mod. Dyn., 12, 223-260 (2018).

[2] C. Butler. Discontinuity of Lyapunov exponents near fiber bunched cocycles. Ergodic Theory Dy-
nam. Systems, 38(2), 523-539 (2018).
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On the expansiveness of invariant measures under pseudogroups
L. Segantim1

1 UFRJ (Federal University of Rio de Janeiro)

The expansiveness of a measure plays an important role in the study of dynamical systems,
providing properties with respect to classical dynamic objects. Based on the work of Arbieto
and Morales [1], we will define the concept of expansiveness of a measure from the point of
view of pseudogroups and then we will discuss an implication in what we will define as the
analogue of stable sets for pseudogroups.

[1] A.Arbieto, C.Morales Some properties of positive entropy maps. Ergodic Theory and Dynamical
Systems. 34, 765 (2013).
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Global dynamics of homogeneous polynomial Gradient system
H. Sellami1, R. Benterki1,2

1Dynamical systems and its applications, Mohamed El Bachir El Ibrahimi Bordj Bou Arreridj
University

2Dynamical systems and its applications, Mohamed El Bachir El Ibrahimi Bordj Bou Arreridj
University

The classical Center-Focus Problem posed by H. Poincaré in 1880s is concerned on the exis-
tence of a center or focus at a singular point of a polynomial differential system of the form

ẋ = −y + Pn(x, y), ẏ = x+Qn(x, y), (1)

with Pn and Qn homogeneous polynomials of degree n. The center is a type of singular point
where the trajectories of the system are periodic, while the focus is a type of singular point
where the trajectories spiral around it .There are several approaches to solving the center-focus
problem, including algebraic methods and geometric methods. The centers of the polynomial
differential systems (1) have been studied for n = 2 ,3, 4 and 5.

While the phase portraits of systems with centers of degrees 2 and 3 have been classified in
the Poincaré disc [1] and [2], this is not the case for the centers of degrees 4 and 5. Following the
same approach as the study done for the centers of systems (1), this paper study the classification
of the phase portrait of the homogeneous Gradient systems of degree 1, 2, 3 and 4 in the Poincaré
disc. These systems are represented by the equations

ẋ = ∂Gn(x,y)
∂x

, ẏ = ∂Gn(x,y)
∂y

, (2)

where Gn(x, y) is a homogeneous polynomial of degree n with n ∈ {1, 2, 3, 4}.

[1] D. SCHLOMIUK, Algebraic particular integrals, integrability and the problem of the center, Trans.
Amer. Math. Soc. 338, 799-841 (1993).

[2] C.A. BUZZI, J. LLIBRE AND J.C. MEDRADO, it Phase Portraits of reversible linear differential
systems with cubic homogeneous polynomial nonlinearities having a non-degenerate center at the
origin, Qual. Theory Dyn. Syst. 7, 369-403 (2009).
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Advances and open problems on symbolic dynamics over infinite
alphabets

Marcelo Sobottka1

1Federal University of Santa Catarina (Brazil), Department of Mathematics -
marcelo.sobottka@ufsc.br

The aim of this work is to present some recent results on the theory of shift spaces over
infinite alphabets.

The first part of this presentation begins by examining the core features of classical defini-
tions, such as shifts of finite type (SFT), sofic shifts, and sliding block codes, as they are given
within the context of finite-alphabet shift spaces. From our observations, we propose general
definitions that fit in both the contexts of finite and infinite alphabets [1]. The proposed defini-
tions are used to recover several results in a more general setting [3, 4]. In particular, we present
results that enable the characterization of shifts of finite type and sofic shifts in terms of (infi-
nite) labeled graphs. Moreover, we define two new classes of shift spaces that can only exist in
the context of infinite alphabets: weakly sofic shifts and shifts of variable length (SVL). While
the class of weakly sofic shifts extends the class of sofic shifts, the shifts of variable length
can be viewed as the topological counterparts of variable length Markov chains. Together with
shifts of finite type, shifts of variable length form a special class called finitely defined shifts
(FDS).

In the second part of this work, we introduce the blur shift spaces [2]. These are symbolic
systems on the monoid N, constructed from classical shift spaces by selecting sets of infinitely
many symbols to be represented by a single new symbol, and defining a suitable topology. Blur
shifts can act as a compactification scheme for classical shift spaces and serve to generalize
the constructions proposed in [5] and [6], which were used to find out equivalence between the
topological conjugacy of Markovian shifts and the isomorphism of their associated C∗-algebras.

We conclude by presenting a list of open problems related to the subjects.

[1] M. Sobottka, Bulletin of the Brazilian Mathematical Society, New Series, 53, 981–1031 (2022).
[2] T. Z. Almeida, M. Sobottka, Bulletin des Sciences Mathématiques. 173, 103069 (2021).
[3] U. B. Darji, D. Gonçalves, M. Sobottka, Advances in Mathematics. 385, 107760 (2021).
[4] D. A. Lind, B. Marcus, An introduction to symbolic dynamics and coding. Cambridge, Cambridge

University Press. Second Ed. (2021).
[5] W. Ott, M. Tomforde, P. N. Willis, One-sided shift spaces over infinite alphabets, New York Journal

of Mathematics. NYJM Monographs 5. State University of New York, University at Albany, Albany,
NY. 54 pp. (2014).

[6] D. Gonçalves, D. Royer, Int. Math. Res. Not., 2019, 2177-2203 (2019).
[7] A. Author, B. Coauthor, J. Sci. Res. 13, 1357 (2012).
[8] A. Author, B. Coauthor, J. Sci. Res. 17, 7531 (2013).
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Scaled Thermodynamic Formalism for
the Metric Mean Dimension

Maria Carvalho1, Gustavo Pessil1, Paulo Varandas1

1 Centro de Matemática da Universidade do Porto

Metric mean dimension is a geometric invariant of dynamical systems (X, d, T ) with infinite
topological entropy. It quantifies the rate at which the amount of ε-distinguishable orbits goes
to infinity as ε → 0. As in the topological pressure of finite entropy systems, one can add the
dependence on a continuous potential φ : X → R.

Being a renormalization of the entropy, which now depends on the choice of equivalent
metric to generate the topology, it is natural to search for a measure-theoretic notion of metric
mean dimension H satisfying the classical variational principle, namely

mdimM(X, d, T, φ) = sup
µ

{
H(µ) +

∫
φdµ

}
.

We will define such an object, state the variational principle and compute it explicitly for some
classical examples of the theory. On these examples the obtained formula for the metric mean
dimension with potential will be given in terms of ergodic optimization.

[1] M. CARVALHO, G. PESSIL AND P. VARANDAS. A convex analysis approach to the metric mean
dimension: limits of scaled pressures and variational principles. Adv. Math. 436 (2024) 109407
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The existence of a semi-dispersive billiard with infinite topological entropy

Zusana Cecilia Verástegui Muñoz 1, Peter Edward Hazard1

1Fluminense Federal University

A theorem of D.Burago, S.Ferleger and A. Kononenko [1], states that for a non-degenerate
semi-dispersive billiard table, the time-one map of the billiard flow has finite topological en-
tropy. In this work, we consider an example, originally due to Burago [2], of a degenerate
semi-dispersive billiard table for which the time-one map of the billiard flow has infinite topo-
logical entropy.

[1] D. Burago, S. Ferleger, A. Kononenko, Topological entropy of semi-dispersing billiards. In: Ergodic
Theory and Dynamical Systems, 18, pp. 791-805 (1998).

[2] D. Burago, Semi-dispersing billiards of infinite topologycal entropy. In : Ergodic theory and Dy-
namical Systems 26, pp.45-52 (1) (2006).
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Historical behavior for skew product diffeomorphisms
Lucas Viana Reis1, Ali Tahzibi1

1Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo (USP),
Brasil

In [1], the authors constructed a family of skew product diffeomorphisms of the cylinder which
displays different dynamical features according to the Schwarzian derivative of their fiber maps,
including intermingled basins and physical measures. In particular, they proved that when the
maps have zero Schwarzian and the diffeomorphism is replaced by a step skew product, the
system has historical behavior, that is, the empirical measures don’t converge in a positive
volume of points. The question of whether historical behavior is also present in the original
cylinder map was left open.

In this work, we apply ideas from the article and [2] to investigate the presence of historical
behavior in the original example and related maps, by employing probabilistic tools such as the
almost sure invariance principle (approximation by Brownian motions) and arc-sine laws. This
is in collaboration with Douglas Coates.

[1] A. Bonifant and J. Milnor, “Schwarzian derivatives and cylinder maps,” American Mathematical
Society, pp. 1–24, (2008).

[2] S. Crovisier, D. Yang, and J. Zhang, “Empirical Measures of Partially Hyperbolic Attractors,”
Communications in Mathematical Physics, vol. 375, no. 1, pp. 725–764, (2020).
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