Exercises

1. Let $\alpha \in \mathbb{R}$, and let $f: S' \to S'$, $f(x) = x + \alpha$. Observe that $\mu = leb$ is invariant. Prove that μ is ergodic iff $\angle \notin Q$. 2. let f = CAT MAP, and note that $\mu = lab$ is invariant. Prove that p is ergodic. Hint for 1 and 2: use Fourier series (*) 3. let $f: \mathbb{T}^3 \to \mathbb{T}^3$, $f(x,t) = (g(x), t+\alpha)$, where g = CAT MAP and $\alpha \notin \mathbb{Q}$. Prove that $\mu = leb$ is ergodic. 4. let $f^{T} \rightarrow T^{2}$, $f(X,Y) = (X + \alpha, X + Y)$. Colculate the Lyopunov exponents of f. 5. Let $\varphi_t : M \to M$ be a plow generated by a vector field X. let $f = \varphi_1$ (time-one map). Prove that $\lambda(f, X(x)) = 0$, $\forall x \in M$. (*) 6. Find an example of an Anarar defles f for which there exist ve TM s.t. $\lim_{n \to \infty} \frac{1}{n} \log \left\| d \zeta^n v \right\| < \lim_{n \to \infty} \frac{1}{n} \log \left\| d \zeta^n v \right\|.$

7. let f = OFT MAP × Id on T³. Prove that f is PH.

8. Let ES & E & be de-invariant decomposition. Show that in the definition of PH is equivalent to (3) (3) 3 N>O S.t. & verdin e Est ch mitary: $5 \| f_{N} h_{2} \| \le \| f_{N} h_{c} \| \le \frac{1}{2} \| f_{N} h_{c} \|$