Exercises

- 1. Let $f: M \rightarrow M$ and $g: N \rightarrow N$ be C' dipper morphisms s.t.: (1) f is Anorov with decomposition $TM = E^{J} \oplus E^{m}$ and $\lambda \in (0,1)$ s.t. $\|qt_{n} \wedge_{l}\| \leq y_{n} \| \wedge_{l}\| \qquad A \wedge_{n} \in E_{n} \qquad A \vee_{l} \otimes 0$ (2) For all v^{slu} E E^{slu} unitary and weTN unitary: 2. let f: M→M be C'and gx: N→N, XEM, a family of different: (1) f is Anorov with decomposition $TM = E^{J} \oplus E^{n}$ and $\lambda \in (0,1)$ s.t. $\|qt_n \wedge_n\| \geq y_n \| \wedge_n\| \qquad A \wedge_n \in E_n \qquad Au \geq 0$
 - (2) For all v^{slu} ∈ E^{slu} unitary and we TyN unitary:
 λ⁻ⁿ ldfⁿ_x v^sll≤ lldg^{*}_x)_ywll ≤ λⁿ lldf^{*}_x v^ull , ∀n≥0.

Prove that $F : M \times N \to M \times N$ is partially hyperbolic. $(X, Y) \mapsto (f(x), g_X(Y))$

3. Let $g: \mathbb{T}^2 \to \mathbb{T}^2$ be the OAT MAP and $f: \mathbb{T}^3 \to \mathbb{T}^3$ be $f(x,t) = (g(x), t + \varphi(x))$ where $\varphi: S' \rightarrow IR$ is C⁴. For $\gamma \in W^{s}(g, x)$, let $\Theta_{x}(y) = \sum \varphi(f^{*}(y) - \varphi(f^{*}(y)).$ Prove that $W^{s}(x, (x, t) = \{(y, t + 0x(y)): y \in W^{s}(q, x)\}.$ Conclude an analogous result for the unitable direction. 4. Let P be a measurable portition and in a probability measure. If 1 Mpostxex and 1 upostxex are both dirintegrations of m with respect to μ , then $\mu_{p(x)} = \nu_{p(x)}$ for $\mu - a.e. x \in X$. 5. (Fubini por disintegration) let P be a measurable portition, M prob. measure and Imply/xex the disintegration of m with respect to P. Prove that por every y: X→ IR measurable it holds: $\int \psi \, d\mu = \iint \psi \, d\mu p_{b} d\mu.$

6. Let $V = (V_1, V_2) \in \mathbb{R}^2$ s.t. $V_2/V_1 \notin \mathbb{Q}$, and let P be the partition of \mathbb{T}^2 s.t. $\mathcal{P}(X) = \{X + tv : v \in \mathbb{R}\} \subset \mathbb{T}^2$ is the line through X

in the direction of v.

- (1) Prove that I is NOT measurable.
- (2) Conclude that for the OAT MAP the partition into stable (or unstable) manifolds (NOT measurable.